
Veri�cation by Approximate Forward and Backward Reachability �

Shankar G. Govindaraju David L. Dill

Computer Systems Laboratory, Stanford University, Stanford, CA 94305

fshankar@encore, dill@csg.stanford.edu

Abstract

Approximate reachability techniques trade o� accu-
racy for the capacity to deal with bigger designs. In this
paper, we extend the idea of approximations using over-
lapping projections to symbolic backward reachability.
This is combined with a previous method of comput-
ing overapproximate forward reachable state sets using
overlapping projections. The algorithm computes a su-
perset of the set of states that lie on a path from the
initial state to a state that violates a speci�ed invari-
ant property. If this set is empty, there is no possibility
of violating the invariant. If this set is non-empty, it
may be possible to prove the existence of such a path
by searching for a counter-example. A simple heuris-
tic is given, which seems to work well in practice, for
generating a counter-example path from this approxi-
mation. We evaluate these new algorithms by applying
them to several control modules from the I/O unit in
the Stanford FLASH Multiprocessor.

1 Introduction

Binary Decision Diagrams (BDDs) [1] have enabled
formal veri�cation to tackle larger hardware designs
than before. However for many large design exam-
ples, even the most sophisticated BDD-based veri�ca-
tion methods cannot produce exact results because of
size blowup. However, required properties of a design
rarely rely on every implementation detail of the de-
sign, so approximate veri�cation algorithms may yield
meaningful results while handling larger designs.

We are interested in properties that hold for every
member of a set S of states. A superset Sap of S is
called an overapproximation of S. Although Sap may
be larger than S, it may also have a smaller represen-
tation, so the computation of the Sap may be more ef-
�cient than S. If every state in Sap satis�es a property,
we can be sure that every state in S also satis�es the
property. Hence, a su�ciently accurate approximation
can yield a useful result.

Of course, overapproximations are subject to false
errors. We call states that violate a user speci�ed prop-
erty bad states. Even if there is a bad state in Sap S
might not contain a bad state. However, knowing that

�

This work was supported by DARPA contracts DABT63-94-C-

0054 and DABT63-96-C-0097. The content of this paper does not

necessarily reect the position or the policy of the Government and

no o�cial endorsement should be inferred.

Sap contains a bad state may still be useful. First, per-
haps the approximation can be improved to show that
there are actually no bad states. Second, it is often
possible to search e�ciently for a state in S that vio-
lates the property, by limiting the search to Sap. The
existence of such a state conclusively proves that the
property may be violated. Finally, it may be possible
to modify the design to ensure that Sap (of the new
design) contains no bad states, which would allow ver-
i�cation of the property while potentially making the
design more robust.

The method described here successively re�nes an
approximation of the set of states that lie on a path
from the initial state to a bad state. It alternates for-
ward and backward passes; each pass uses the approxi-
mation computed by the previous pass (called the cur-
rent set, below). A forward pass �nds a subset of the
current set which appears to be reachable from an ini-
tial state, while a backward pass �nds a subset of the
current set which seems to consist of predecessors of
the bad states. It repeats until the set of states no
longer changes (i.e., until a �xed point is reached).

If the resulting set is empty, no bad states are reach-
able from the initial state, so the property has been
veri�ed. Otherwise, the method has not ruled out the
possibility of there being a path from the initial state
to a bad state (and hence, a design error). So a simple
heuristic is used that computes a subset of the reach-
able states from the initial state that is likely to contain
the bad state. If this succeeds, the error is a genuine
error and a counterexample path can be reported to
the user for debugging.

The approximation used is based on overlapping pro-
jections of sets of states, represented as binary decision
diagrams (BDDs). The projection of a set S of bit vec-
tors onto a set of one-bit variables, wj , is the (larger)
set of bit vectors that match some member of S for
all variables in wj (the values of other variables are ig-
nored). S can be approximated by projecting it onto
many di�erent subsets of the variables, and considering
Sap to be the intersection of all of the approximations.

The method is evaluated on several control modules
from a real, large design unit in the Stanford FLASH
Multiprocessor, with promising results. Properties in
the design were either shown to hold for all reachable
states, or actual violations were proved to exist in the
exact reachable state space (the violated assertions re-

sulted from omitting constraints on the possible inputs
to the design).

Algorithms for e�ciently computing the set of pro-
jections of the states reachable from an initial state
were described in DAC98 [7]. This work extends that
by adding e�cient backwards traversal from the bad
states, along with a search for de�nite errors when an
error cannot be ruled out by the overapproximation.
The most di�cult aspect of this problem is e�ciently
computing a su�ciently accurate preimage of an im-
plicit conjunction of BDDs. The implementation is
based on cofactoring on the values of the domain vari-
ables.

1.1 Related Work
At a high level, this work is quite similar to that of
Wong-Toi, et al. [5], who used successive forward and
backwards overapproximations and underapproxima-
tions to verify real-time systems. That work used poly-
hedra for representing sets of real numbers along with
BDDs, but approximation was used only for the poly-
hedra, not for the BDDs.

Various approaches to approximate reachability and
veri�cation using BDDs have preceded this work. Ravi
et al [10, 11] use \high density" BDDs to compute an
underapproximation of the forward reachabe set. Cho
et al [4] proposed symbolic forward reachability algo-
rithms that induce an overapproximation. They par-
tition the set of state bits into mutually disjoint sub-
sets, and do a symbolic forward propagation on indi-
vidual subsets. Cabodi et al [3] combine approximate
forward reachability with exact backward reachability.
Lee et al [9] propose \tearing" schemes to do approx-
imate symbolic backward reachability. They also par-
tition the set of state bits into mutually disjoint sub-
sets. They form the block sub-relations for the various
subsets, and then incrementally \stitch" the block sub-
relations together until the approximated next state re-
lation is accurate enough to prove or disprove a given
property. In contrast to the approaches in [4], [3] and
[9], we allow for overlapping subsets, as overlapping
projections have been shown [7] to be a more re�ned
approximation compared to earlier schemes based on
disjoint partitions.

2 Background

We analyze synchronous hardware, given as a Mealy
machine M = hx; y; q0;ni, where x = fx1; : : : ; xkg is
the set of state variables, and y is the set of input
signals. We will use x0 = fx0

1; : : : ; x
0

k
g to denote the

next state versions of the corresponding variables in x
= fx1; : : : ; xkg. The set of states is given by [x ! B],
where B = f0,1g. The initial state q0 2 [x ! B]. The
next state function is n : [x! B]� [y! B]! [x! B].

In our applications, sets can be viewed as predicates,
since we can form the characteristic function corre-
sponding to a set. BDDs can be used to represent
predicates and manipulate them [2]. For example, let

R(x) be a predicate with support in x, we can compute
the image of R under n as

Im(R(x);n(x; y)) = �x0:9x; y:(x0 = n(x; y)) ^ R(x):

Let g be a user speci�ed property, and �g denote the
complement of g. Then the preimage of �g(x), ie the set
of states that can reach a state violating the property
g in one step, can be computed as follows:

Pre(�g;n) = �x:9x0; y:(x0 = n(x; y)) ^ �g(x0):

2.1 Approximation by Projections
Let w = (w1; : : : ; wp) be a collection of not necessar-

ily disjoint subsets of x. We de�ne the operator �j(R)
which projects a predicate R(x) onto the variables in
wj . Let z consist of all of the Boolean variables in x
that are not in wj . We can de�ne �j as

�j(R(z; wj)) = �wj :9z:R(z; wj):

Clearly the set of Boolean vectors satisfying R is a sub-
set of those satisfying �j(R). This can be written using
logical implication as R! �j(R). The projection oper-
ator � projects a predicate R(x) onto the various wj 's,
and its associated concretization operator conjoins
the collection of projections.

�(R(x)) = (�1(R); : : : ; �p(R)):

(R1; : : : ; Rp) =

p^

j=1

Rj :

Lemma 1 For every predicate R(x) and collection of
subsets (w1; : : : ; wp) of x, R! (�(R)).

Let R = (R1; : : : ; Rp) and S = (S1; : : : ; Sp) be two
equally sized tuples. We de�ne the meet (u) and join
(t) operator between R and S as follows:

(R1; : : : ; Rp) u (S1; : : : ; Sp) = (R1 ^ S1; : : : ; Rp ^ Sp)

(R1; : : : ; Rp) t (S1; : : : ; Sp) = (R1 _ S1; : : : ; Rp _ Sp)

Note that (R) [(S) � (R t S). Hence the join
operator is an approximation of set union. (However,
the meet operator is an exact set intersection operator,
since (R) \ (S) = (R u S)).

The operator � allows us to represent a big BDD
with support in x by a tuple of potentially smaller
BDDs with limited support, at the cost of loss of ac-
curacy. can potentially result in a bigger BDD with
bigger support, hence we would like to avoid comput-
ing (R1; : : : ; Rp) explicitly. Let Imap (the subscript
ap denotes \approximate") return the projected ver-
sion of the image of an implicit conjunction of BDDs.

Imap(R;n) = �(Im((R);n(x; y)))

Using Imap, we can compute an overapproximation,
FwdReachap(q0), of the reachable states for a machine
M as follows:

FwdReachap(q0) = lfp R:(�(q0) t Imap(R;n))

where lfp is a least �xed point iteration [2] which
starts with R = (0; : : : ; 0), and on each iteration joins
the current approximate set with the approximate suc-
cessor set. Finally after reaching convergence, it re-
turns a tuple R to FwdReachap(q0). The overapprox-
imate reachable states set is the implicit conjunction
(FwdReachap(q0)).

Similarly, let Preap return the projected version of
the preimage of an implicit conjunction of BDDs.

Preap(R;n) = �(Pre((R);n(x; y)))

Using Preap, we can compute an overapproximation,
BackReachap(�g), of the set of states in M that can
reach the set of states �g as follows:

BackReachap(�g) = lfp R:(�(�g) t Preap(R;n))

As in the forward case, the least �xed point routine
above starts with R = (0; : : : ; 0) and on reaching con-
vergence, it returns a tupleR to BackReachap(�g). The
overapproximated set of states that can reach �g is is the
implicit conjunction (BackReachap(�g)).

FwdReachap (and BackReachap) are overapproxi-
mations because the image (and preimage) at every
iteration of the least �xpoint routine is an overapprox-
imation. These approximate operators give us exact
results in the special case when there is just one sub-
set, w1 = x, in the collection w.

3 Overlapping Projections

Recently, it has been shown [7] that overlapping pro-
jections are an improved approximation scheme com-
pared to earlier schemes based on disjoint partitions.
Further an e�cient algorithm to compute the function
Imap(R;n) was proposed in DAC98 [7]. In this pa-
per we propose an e�cient algorithm to compute the
function Preap(R;n).

3.1 Computing Preap by Domain Cofactoring
The key step in symbolic backward propagation algo-
rithms is the preimage computation.

Preap(R;n) = (S1; : : : ; Sp) = �(Pre((R);n(x; y)))

Instead of using next state relations to compute the
preimage [2, 9], Filkorn [6] showed that the the preim-
age of a set represented by a BDD Q, can be obtained
by substituting the state variables in Q with their cor-
responding next state function.The obvious algorithm
to compute Sj would be to substitute the functions in
(R) and then hide existentially all the variables apart
from those appearing in wj . However, since most of
the variables would be hidden, the size of the inter-
mediate BDD during this computation would be pro-
hibitive even when the �nal BDD was small.

Instead, Sj is computed by recursively cofactoring
on the domain variables in wj , which allows the exis-
tential quanti�cation to be done on the y. Each state
variable x in R is renamed to x0 to avoid conicts. Let

� be a map from each x0

i
to the function that is to be

substituted for it. Initially, � maps x0

i
to its next state

function, but � is modi�ed in the recursive calls to the
preimage function. Only some of the functions in �
will be used because some x0

i
variables do not appear

in any Ri; let j�j be the number of functions in � that
will actually be substituted.

The recursive algorithm Predc (the subscript dc de-
notes \domain cofactoring") takes as arguments the
current substitution, �, the current approximation R,
the approximate reachability set from the �rst forward
pass I, and the set of variables wj to project onto. I
is used to prune preimage states that are de�nitely not
reachable. (The algorithm shown below to compute Sj ,
assumes there are only two subsets in our collection w.
The extension to any arbitrary number of subsets is
obvious. We use # to denote the ordinary cofactor op-
erator).

function Predc(�; [R1; R2]; [I1; I2]; wj)
if (I1 == 0) or (I2 == 0) return 0
if (j�j == 0) return R1 ^R2

v next variable to cofactor on
t Predc(� #v; [R1 #v; R2 #v]; [I1 #v; I2 #v]; wj)
e Predc(� #�v; [R1 #�v; R2 #�v]; [I1 #�v; I2 #�v]; wj)
if (v 2 wj) result ite(v; t; e)
else result (t _ e)

return result

The following optimizations are used to reduce the num-
ber of recursive calls to Predc:

� If any of the BDDs in I becomes 0 during co-
factoring, the algorithm immediately returns 0.
This computes an on-the-y conjunction of the
approximate preimage with the invariant.

� The substitution � only includes functions that
need to be substituted into the Ri's. Further,
if at any point the support of a function in �
is wholly contained inside wj , it is immediately
substituted into the Ri's and thereafter removed
from �. When j�j = 0, all the the support of
all Ri's is contained in wj , so the algorithm com-
putes their explicit conjunction and returns.

� The algorithm cofactors only on the variables in
wj . However it doesn't cofactor on variables from
wj that don't appear in � (it may be necessary
to quantify them existentially in I, though).

� After cofactoring on variables in wj , the support
of the functions in � is disjoint from wj , and now
the result of Predc is either 0 or 1. Since, by
this point in the recursion, the BDDs are gen-
erally small, the algorithm does the substitution
and returns 1 only if the resulting BDD is not a
constant 0. This approach worked �ne on all the
examples that were tested; however, in case of
BDD blowup, the algorithm could return a con-
servative value of 1.

3.2 Refinement
Because each pass is approximate, repeated forward
and backwards passes yield progressively more accu-
rate results. Each step of each forward and backward
traversal is intersected with the set of states computed
by the previous traversals. Passes are alternated un-
til the approximation no longer improves. Here is the
veri�cation algorithm, which computes an overapprox-
imation of the states that lie on a path from the initial
state q0 to a state not satisfying a user-speci�ed prop-
erty g.

function BackAndForth (g)
Rf (0; : : : ; 0)
Rb (1; : : : ; 1)
while (Rf 6= Rb) do

Rf lfp R:(�(q0) t (Imap(R;n) uRb))
if ((Rf)! g) return \no errors"
Rb lfp R:(�(�g) t (Preap(R;n) uRf))
if ((Rb) ^ q0 = 0) return \no errors"

endwhile
return Rf

The tests (Rf) ! g and (Rb) ^ q0 = 0 can be per-
formed without computing the explicit conjunctions of
the BDDs in Rf and Rb by computing images, us-
ing the method of multiple constrain [7]. (Rf) ! g
holds i� Im((R); g) = f1g, and (R) ^ q0) = 0 i�
Im((R); q0) = f0g. If BackAndForth is unable to
prove the desired property g, it is often possible to run
it again with larger blocks of variables in w, beginning
with an initial approximation derived from the previ-
ous result. This is possible because restricting to the
previous approximate sets greatly reduces the size of
the BDDs during the approximation.

3.3 Counterexamples
If BackAndForth reports a possible error, it is useful to
check whether there is an actual error by generating an
example path from q0 to a state that does not satisfy
g. This both con�rms the existence of an error and
provides debugging information to the user.

In exact reachability analysis, if an error state is
reachable from an initial state, it is straightforward
to construct a speci�c path from the initial state to
an error. But in approximate analysis, such a path
may not exist. More subtly, the algorithm may have
found a real error via a non-existent path. A simple
search method was implemented for counterexample
generation which worked well on examples.

Starting from the error states, the algorithm com-
putes approximate preimages and stores the preimages
obtained at the various iterations of the �xpoint al-
gorithm in a stack. Let T0; T1; : : : ; Tm (where Tm in-
tersects with the error states) be the �nal contents of
the stack, and let Ti be the �rst level at which the ap-
proximate preimage intersects with the initial state q0.
Choose a single state, s0 from the intersection q0 ^ Ti
and compute an exact image of s0. If the image of s0
intersects with Ti+1, choose a single state s1 from the

intersection and continue moving forward. It is also
possible that the image of some state sl in layer Tj
may lie entirely in Tj and not intersect with Tj+1 at
all (implying Tj+1 is approximately reachable from sl
but not exactly reachable from sl), in which case, ran-
domly choose another state sl+1 from the image of sl
and continue trying to move to the next layer in the
stack. Thus, unlike the conventional method of gener-
ating counter-examples from exact preimages, we may
have to spend more than one step at the same layer in
the stack. If the algorithm spends more than 10 steps
at the same layer, it aborts and reports that it could
not �nd a counterexample. This simple algorithm has
worked well in practice, and has generated counterex-
amples in all cases where the algorithm could not prove
the desired property.

4 Experiments

The method was evaluated on a collection of control
circuits from the MAGIC chip, a custom node con-
troller in the Stanford FLASH multiprocessor [8]. The
circuits are control intensive; the state bits do not in-
clude data path bits. Table 1 gives a brief description
of the various control modules in the I/O unit.

Table 1. Control Modules in I/O unit in FLASH

Module State Bits Input Bits
IOInboxQCtl 23 8
ReqDecode 37 27
ReqService 41 58
IOMiscBusCtl 44 18
PciInterface 88 55

The experimental implementation of the method was
in LISP, calling David Long's BDD package (imple-
mented in C) via the foreign function interface. The
properties to prove were invariants provided by the de-
signer. (Traditional benchmarks, such as ISCAS 89, do
not come with speci�ed properties, so they could not
be used here.) The maximum number of BDD nodes
was limited to 10 million nodes for each experiment.
The variable subsets w were chosen manually, using
the same heuristics as in [7].

4.1 Results
In the tables below, Inv lists the property to be

proved. The column under P gives the results of the
veri�cation e�ort. A `Y' means that property was
proved, `N' means a counter-example was generated,
and `?' means that the veri�cation exercise could not
be completed.

Nodes is the maximum number of BDD nodes that
existed at a time during the experiment, and Time is
the cpu time (in seconds) to complete the experiment
on a MIPS R4300 with 768MB main memory (the cpu
time includes time spent during Lisp garbage collec-
tion).

The Exact column shows results of the exact preim-
ages of the error states, when it was possible to com-
pute them. The exact preimages were computed rela-
tive to the approximate reachable set computed during
the �rst forward pass of the approximate algorithm.
The same variable ordering was used in all the exam-
ples, to get the numbers for the Exact method and the
Approximate method.

Table 2. IOInboxQCtl Invariants
Inv Exact Approximate

P Nodes Time P Nodes Time
p1 Y 4,216 9.5 Y 4,196 10.8
p2 Y 4,408 9.5 Y 4,312 10.8
p3 N 112,257 80.6 N 75,600 88.0
p4 Y 5,519 9.5 Y 4,850 10.8
p5 N 119,710 81.0 N 79,619 86.4

Table 3. ReqDecode Invariants
Inv Exact Approximate

P Nodes Time P Nodes Time
p1 Y 97,362 52.2 Y 42,954 49.9
p2 Y 680,107 76.1 Y 88,213 59.5

Table 4. ReqService Invariants
Inv Exact Approximate

P Nodes Time P Nodes Time
p1 Y 95598 517.8 Y 74419 419.1
p2 N 121573 1276.7 N 93799 860.4
p3 Y 94510 820.0 Y 74419 418.5
p4 Y 112367 1021.6 Y 94365 418.5

4.2 Discussion
The approximate scheme is able to prove or disprove
the property in all the cases, unlike the exact method
which fails to complete the veri�cation exercise for most
of the properties in the PciInterface design example.
Further, the approximate approach uses fewer BDD
nodes to prove or disprove the invariant. The di�er-
ence in the required number of BDD nodes is fairly
large, in most of the cases. Note that in case of the
PciInterface design example, the approximate method
completes the veri�cation exercise well within the 10
million node limit.

For the smaller example of IOInboxQCtl, the approx-
imate method takes marginally more time than the ex-
act method. The time advantage of the approximate
method becomes clearer as we go for the larger design
examples. Most of the time was spent in the approx-
imate forward traversal (which was done for both the
Exact and Approximate case).

The input environment for these design examples
was assumed to be totally non-deterministic. The \er-
rors" reported here were all because of such an overly
general environment model. Extension to this work
would be to incorporate better environment models.

Table 5. IOMiscBusCtl Invariants
Inv Exact Approximate

P Nodes Time P Nodes Time
p1 N 2936929 1031.5 N 512469 301.5
p2 Y 1791385 850.4 Y 426324 302.3

Table 6. PciInterface Invariants
Inv Exact Approximate

P Nodes Time P Nodes Time
p1 ? >10 mil ? Y 1012742 559.8
p2 Y 1116686 2271.2 Y 1007843 661.6
p3 ? >10 mil ? Y 1324916 750.9
p4 ? >10 mil ? N 2060485 1290.6
p5 ? >10 mil ? N 1268233 686.9
p6 ? >10 mil ? N 2097440 973.6
p7 Y 1113254 468.8 Y 1007408 420.1

5 Acknowledgments

We thank Hema Kapadia, the chief designer of the I/O
unit in the MAGIC chip, for providing invariants for
the examples, and Jules Bergmann for helping us use
his tool, vex, as a front end Verilog parser.

References

[1] Bryant, R. E., \Graph-Based Algorithms for Boolean Func-
tion Manipulation," IEEE Transactions on Computers,
Vol. C-35, No. 8, pp. 677-691, August 1986.

[2] Burch, J. R., Clarke, E. M., McMillan, K. L., Dill, D, L,

and Hwang, L. J., \Symbolic Model Checking: 1020 States
and Beyond," LICS 1990, pp. 428-439.

[3] Cabodi, G., Camurati, P., and Quer, S., \Symbolic Explo-
ration of Large Circuits with Enhanced Forward/Backward
Traversals," EURO-DAC 1994, pp. 22-27, 1994.

[4] Cho, H. et. al, \Algorithms for Approximate FSM Traversal
Based on State Space Decomposition," IEEE TCAD, Vol.
15, No. 12, pp. 1465-1478, December 1996.

[5] Dill, D. L., and Wong-Toi, H., \Veri�cation of Real-Time
Systems by Successive Over and Under Approximation,"
CAV 1995, pp. 409-422.

[6] Filkorn, T, \Functional Extension of Symbolic Model
Checking," CAV 1991, pp. 225-232.

[7] Govindaraju, G. S., Dill, D. L., Hu, A. J, and Horowitz, M.
A., \Approximate Reachability with BDDs Using Overlap-
ping Projections," DAC 1998, pp. 451-456.

[8] Kuskin, J., et. al \The Stanford FLASH Multiprocessor,"
ISCA 1994, pp. 301-313.

[9] Lee, W., Pardo, A., Jang, J., Hachtel, G., and Somenzi,
F., \Tearing Based Automatic Abstraction for CTL Model
Checking," ICCAD 1996, pp. 76-81.

[10] Ravi, K., and Somenzi, F. \High-density Reachability
Analysis," ICCAD 1995, pp. 154-158.

[11] Ravi, K., McMillan, K. L., Shiple, T. R., and Somenzi,

F., \Approximation and Decomposition of Binary Decision

Diagrams," DAC 1998, pp. 445-450.

	CDROM Home Page
	ICCAD98
	Front Matter
	Table of Contents
	Session Index
	Author Index

