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Abstract

A method is presented for identifying primitive path-delay faults
in non-scan sequential circuits and generating robust tests for all
robustly testable primitive faults. It uses the concept of sensitiz-
ing cubes introduced in an earlier paper and a new, more effi-
cient algorithm for generating them. Sensitizing cubes of the next-
state and output logic are used to obtain static sensitizing vec-
tors that can be applied to the non-scan sequential circuit as part
of a vector-pair. These vector-pairs are also used in deriving ro-
bust tests. Initializing sequences from a reset state and sequences
that propagate fault effects from flip-flops to primary outputs are
also generated. The proposed method has been implemented and
used to derive tests for primitive faults in ISCAS’89 and MCNC’91
benchmark circuits.

1 Introduction

Delay testing is becoming increasingly important because of the
need to operate digital circuits at the highest possible speeds. The
circuit under test is assumed to have been tested for logical faults
and therefore functionally correct. Faulty behavior is modeled by
delay faults, the most widely used model being the path delay fault
[1]. The presence of a path delay fault increases the propagation
delay along the faulty path beyond the limit for correct operation.
A test for a path delay fault propagates a signal transition along the
path and checks whether the final value reaches the destination at
the appropriate time.
Delay testing of combinational circuits has received considerable
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attention in the literature, e.g., [1]-[8]. Since delay faults are of-
ten the result of variations in the fabrication process, we must be
able to detect individual faults independent of actual delay values
in the rest of the circuit [1]. Tests that satisfy this condition are
called robust tests [2]. Several techniques have been developed
for generating robust tests for delay faults in combinational cir-
cuits [2, 3, 4], but the fault coverage obtained is often quite low.
A weaker class of tests, called validatable non-robust (VNR) tests,
has been proposed to test faults that are not robustly testable [3, 5].
A VNR test detects the target fault if a set of other faults is also
tested for and shown to be absent. Even with the use of VNR tests,
all faults in a circuit may not be testable.

Although a large fraction of path delay faults in a combinational
circuit may not be testable, some of them may not have any effect
on circuit delay. These faults are redundant, and need not be tested
[6]. Another class of faults, called robust dependent (RD) faults
[8] need not be tested if all remaining (non-RD) faults are tested
by robust tests. If the circuit contains any untestable non-RD fault,
it may malfunction even if it produces correct responses for all
tests. Thus, an important problem in delay testing is to identify all
faults that must be tested to guarantee that the tested circuit will
function correctly at the tested speed and any lower speed.

It has been shown that, for any combinational circuit, there ex-
ists a set of faults called primitive faults, that must be tested to
guarantee correct timing [9, 10]. The set of primitive faults may
contain single and multiple path delay faults. A method of iden-
tifying primitive faults in two-level circuits was proposed in [9].
An extension for arbitrary multi-level circuits using its ENF [11]
was also suggested, but may be applicable only to relatively small
circuits. Sivaraman and Strojwas [12] have developed a method
based on stabilization times applicable to multi-level circuits. It
uses a different fault model based on physical parameters of the
circuit being tested. Krstic, et al. [13] have proposed a method
that identifies all primitive faults of cardinality less than or equal
to two. It can be extended to find primitive faults of cardinality
greater than two at the expense of computational complexity. A
method of primitive fault identification and test generation using
the concept of sensitizing cubes [14] has been shown to be effec-
tive for circuits of moderate size.

While the results on delay testing of combinational circuits are
directly applicable to sequential circuits with scan, the use of
enhanced-scan flip-flops to allow application of arbitrary vector
pairs results in increased chip area and performance degradation.
The use of special flip-flops to improve delay-fault testability with-



out increasing path delays has been found to complicate test appli-
cation [15]. Methods of partial enhanced-scan have been proposed
[16, 17], but they do not provide adequate coverage of delay faults.
Methods of synthesizing testable non-scan sequential circuits have
been proposed in [18, 19], but the area overhead of the methods is
high. Even if scan design is used, the only faults that can affect
circuit behavior are those that are sensitized during normal (non-
scan) operation. While identification of redundant and untestable
faults [20, 21] can be used to reduce test generation effort, the re-
maining set would still contain faults that need not be tested. Thus,
primitive faults must be identified assuming non-scan operation to
avoid unnecessary tests and pessimistic test results.
The goal of this paper is to develop methods of identifying primi-
tive faults in non-scan sequential circuits, and deriving robust tests
for robustly testable primitive faults. Combinationally primitive
faults are first identified using sensitizing cubes as in [14]. How-
ever, sensitizing cubes are obtained using a new method, which is
expected to be more efficient. A combinationally primitive fault
is primitive in the sequential circuit if there is a vector-pair that
sensitizes it can be justified, and fault effects propagated to a pri-
mary output. If no such vector-pair exists, multiple faults contain-
ing the combinationally primitive fault are analyzed in the order
of increasing size. The test generation procedure produces com-
plete test sequences, including initialization and fault propagation
to primary outputs.
The rest of the paper is organized as follows. After presenting
some basic definitions in Section 2, we discuss primitive fault
identification in combinational circuits in Section 3. Sections 4
and 5 discuss primitive fault identification and test generation in
sequential circuits. Experimental results and conclusion are in
Sections 6 and 7, respectively.

2 Preliminaries

Most of the definitions that apply to single paths and single
path delay faults [2, 6] can be generalized to multiple paths and
multiple-path delay faults.
A set of single pathsf�1�2; ::::�ng to the same destination is
called amultipath�. A gate input on any single path�i 2 �

is anon-path inputof �. An input to any gate on�, that is not an
on-path input, is aside inputof �.
A multipath delay fault (MPDF)on� consists of a delay fault on
every single path�i 2 � for the same direction of transition (ris-
ing or falling) at the destination. The terms path and fault will refer
to multipath and MPDF, respectively, unless otherwise specified.
Let F be an MPDF on a multipath�, and letF 0 be a fault on
�0 � � for the same direction of transition asF . ThenF 0 will be
called asubfaultof F , and denotedF 0 � F . If F 0 � F , thenF is
a proper subfault ofF .
A multipath � is statically sensitizedby an input vectorv if it
produces a non-controlling value on every side input of the mul-
tipath. A vectorfunctionally sensitizesa multipath if it produces
non-controlling values on the side inputs of gates whose on-path
inputs have the non-controlling value.
A vector-pair< v1; v2 > is a non-robust testfor an MPDF on
�, if it produces an appropriate transition(s) at the source of the
multipath, andv2 sets all side inputs to non-controlling values.

A vector pair< v1; v2 > is a robust test[2] for a path delay
fault F if the output of the circuit in the presence ofF is dif-
ferent from that of the fault-free circuit, independent of delays in
the rest of the circuit. A robust test must satisfy the above condi-
tions for non-robust tests, and for every gate with the controlling
value on on-path inputs, the side inputs must remain steady at the
non-controlling value.

3 Primitive faults in combinational circuits

Faults that must be tested to guarantee timing correctness of a cir-
cuit are called primitive faults. Such faults were defined in [9]
for combinational circuits in terms of sensitizability of paths. We
shall use a functional definition instead, so that it applies to both
combinational and sequential circuits.
Definition 1: An MPDFF is primitive if there exists a vector-pair
for which the circuit withonly the faultF presentmayproduce
an observable output different from that produced by the fault-free
circuit, and there is noF 0 � F with the same property.
The following lemma follows directly from [9, 10].
Lemma 1: An MPDF F in a combinational circuit is primitive
if and only if it is non-robustly testable and no subfault ofF is
nonrobustly testable.
Our method of identifying primitive faults uses the concept of sen-
sitizing cubes [14]. Acubeis defined as a subset of input literals.
A cube can be represented by the values assigned to the inputs, or
as a product of literals. Thus, a cube corresponds to a set input
vectors, each of which will be referred to as avertex. The vertices
in a cube are said to be covered by the cube. A vertex in a cube
that is not covered by any other cube is called anessential vertex.
Each primary output of the circuit will be treated separately.
Definition 2: A minimal set of input values necessary to produce
a specific output value (often called mandatory assignments) is
called asensitizing cubeof the output. There are two sets of sen-
sitizing cubes associated with each output of a circuit: sensitizing
0-cubes and sensitizing 1-cubes.
Definition 3: A path � is associatedwith a sensitizing cubeq
if (1) it sets every side-input to the non-controlling value when
the on-path input is non-controlling and (2) no side input has a
controlling value when the on-path inputs are controlling. We shall
refer toq as a sensitizing cube of�.
Sensitizing cubes can be determined by tracing back from the out-
put and assigning signal values as follows: If a controlling value
is necessary to produce the desired gate output, assign the control-
ling value to a gate input that has not been chosen before. If non-
controlling values are required, assign it to all gate inputs. Repeat
the process until primary inputs are reached. Justify all assigned
line values, making only necessary assignments, and determine
all implications. A conflict-free assignment of input variables ob-
tained in this manner corresponds to a sensitizing cube.
For each sensitizing cube, the associated paths are identified using
using Definition 3 as follows: For gates with one or more inputs
with the controlling value, all gate inputs with the controlling value
are on-path inputs of the same multipath. For gates with only non-
controlling value inputs, only one of the inputs is selected for the
path. All sensitizing cubes and the associated multipaths can be



found by a depth-first traversal of the circuit using the above
method. The following example demonstrates the procedure.

Example 1: Consider the circuit (from [14]) and the set of signal
values shown in Fig. 1(a). This set of necessary signal values to
makef = 1 is obtained by selecting the first (upper) input of
each gate for assigning the controlling value. The input assignment
corresponds to the sensitizing 1-cube

q1 = ab = 0 0 x

associated with pathsa357f , b257f andfa1457f; b1457fg.
Similarly, assigning 1 to the lower input of gate 7, we get

q2 = c = x x 0

which sensitizes pathc67f to 1. The sensitizing cubes and the
paths associated with them, obtained by justifyingf = 0 are:

1 x 1: a357f andc67f .
x 1 1: b257f andc67f .

Fig. 1(b) shows the value assignments that produce the sensitizing
0-cube1 x 1. The cubex 1 1 is obtained by assigning 0 to the
third input of gate 5. Note that assigning 0 to the middle input of
gate 5 results in a conflict and does not produce a sensitizing cube.
The example shows that a sensitizing cube may be associated with
more than one multipath. A multipath may also have more than
one sensitizing cube for the same output value. 2

The above method of computing sensitizing cubes eliminates the
need for obtaining collapsed form expressions of the outputs as in
[14]. Although the worst case time complexity of the two methods
may be the same, the memory requirements of the new method are
expected to be lower. Unlike the earlier method, cubes that can-
not be sensitizing cubes are not generated at all, resulting in some
speed-up. We expect the proposed method to be able to handle
larger circuits than the method in [14].

For the sake of convenience, we shall not explicitly specify the di-
rection of transition for faults. A fault on a multipath� will refer
to the MPDF on� for a rising or falling transition at the destina-
tion, depending on whether we are considering sensitizing 1-cubes
or 0-cubes. We shall say that the path� is primitive when the fault
on the path with the implied direction of transition is primitive.

The following lemmas from [14] are used in identifying primitive
faults in combinational circuits.

Lemma 2: Every essential vertex of a sensitizing cube statically
sensitizes a primitive fault.

Lemma 3: Let v be a common vertex of a setQ = fq1; q2; :::; qkg
of sensitizing cubes, wherek > 1. The multipath� sensitized by
v is primitive, if and only if (1) noqi 2 Q has an essential vertex,
(2) no proper subset ofQ has a common vertex and (3) no proper
subset of� is static sensitizable.

Primitive faults in combinational circuits are identified by finding
MPDF’s that are statically sensitized by vertices satisfying Lem-
mas 2 and 3. Since a path may have a number of sensitizing cubes,
some faults may be identified as primitive more than once. There
may also be faultsFi, Fj that satisfy condition (1) of Lemma 3. If
Fi � Fj , Fj must be deleted from the set of primitive It has been
shown in [22] that all primitive faults in combinational circuits can
be identified using Lemmas 2 and 3.
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Figure 1. Finding sensitizing cubes.

4 Primitive faults in sequential circuits

In this section, we first present some properties of primitive faults
in sequential circuits, and use then to develop an algorithm for
identifying them. Proofs of lemmas have been omitted, but can be
found in [22].

4.1 Properties

In non-scan sequential circuits, tests can be applied only at primary
inputs, and the test results observed at primary outputs. A vector-
pair< v1; v2 > is necessary to generate an appropriate transition
at the source of the path being tested and propagate the transition
along the path. Each vectorvi consists of a state componentSi and
a primary input componentIi. Since the state variables cannot be
controlled directly, the vector-pair must also satisfy the condition
thatS2 is reached by applyingI1 to the circuit in stateS1. Such
vector-pairs are calledapplicablevector-pairs.
In extending the concept of primitive faults to sequential circuits,
we must consider a fault as primitive only if its presence can affect
circuit behavior in the normal mode of operation. Fault activation
must be with transitions that can be produced in the circuit, and
fault effects reaching flip-flops must propagate to primary outputs
under the normal clock speed.
In this paper, we consider only MPDF’s such that the faulty paths
have a common destination, as defined in Section 2. Later, we
show why multiple-faults on multipaths to different destinations
may have to be considered in some cases.
Lemma 4: An MPDFF on a multipath� to a primary output is
primitive if and only if there exists a vector-pair< v1; v2 > such
that
(1) it is applicable;
(2) launches an appropriate transition at the source of�;
(3) v2 statically sensitizes�; and
(4) there is no subfault ofF which satisfies the above conditions.



When the destination of the faulty path is a state variable flip-flop,
a vector-pair that satisfies conditions (1)-(3) above will be said to
activatethe fault.
Lemma 5: An MPDFF on a multipath� to a state variable flip-
flop yi is primitive if and only if
(1) there exists a vector-pair< v1; v2 > that activates the fault;
(2) there exists an input sequenceI = I3; I4; :::; In which makes
a primary output of the fault-free circuit sensitive to the value atyi
without activating the path�; and
(3) there is noF 0 � F which satisfies the above conditions.
Since Lemma 5 stipulates thatI not activate�, fault propagating
sequences for determining whether a fault is primitive can be de-
rived without considering fault effects. This can be done by finding
an input sequence that propagates aD from the destination of�
to a primary output, using D-algorithm and time frame expansion
[23].
The method presented in Section 3 can be used to find primitive
faults in the next-state and output logic, treated as combinational
circuits. Primary inputs and flip-flop outputs are treated as inputs,
while primary outputs and flip-flop inputs are considered outputs.
Faults that are primitive in these circuits will be calledcombina-
tionally primitive. A combinationally primitive fault is primitive in
the sequential circuit if a vector-pair that sensitizes it is applicable,
and if the path is to a flip-flop, a propagating sequence also exists.
The following lemma shows that if a combinationally primitive
fault does not satisfy these conditions, certain other faults must be
analyzed to determine whether they are sequentially primitive.
Lemma 6: Let vertexv in a sensitizing cube statically sensitize a
MPDFF . If an applicable vector-pair< v0; v > does not exist, or
if the fault effect cannot be propagated to a primary output, then a
fault F 0 � F may be sequentially primitive.
Before discussing the detailed algorithm for primitive fault identi-
fication, we briefly consider the case of faults on paths to two or
more flip-flops, alluded to earlier. A vector that statically sensi-
tizes an MPDF to a state variableyi may also sensitize paths to
other state variables. According to Definition 1, a fault occurring
alone, must affect an output to be considered primitive. Consider
the case where an MPDFF1 on a path toyi cannot be propagated
from yi. Assume that the vector-pair that activatesF1 also acti-
vates an MPDFF2 to yj and that the simultaneous changes atyi
andyj can be propagated to an output. IfF2 cannot be activated
and propagated to an output when occurring alone, the two faults
together must be treated as primitive by Definition 1. We shall
refer to such a set of MPDF’s with different destinations as acom-
plex MPDF. The method presented in this paper can be extended
to complex MPDF’s by considering sets of MPDF’s, but may not
be practical. While the existence of primitive faults of this type is
theoretically possible, we believe that they are unlikely to occur in
practice.

4.2 Primitive fault identification

Our primitive fault identification method first derives all sensitiz-
ing 0- and 1-cubes for each state variable and each output. Com-
binationally primitive faults are identified using Lemmas 2 and 3.
Essential vertices in the sensitizing cubes of the destination are
processed first. For every essential vertexv, we attempt to derive

PROCEDURE Applicable(v)
BEGIN
Returns a vectorvi such that< vi; v > is applicable;
� if impossible
(y1; y2; :::yn): state component ofv
Qi, 1 = 1; 2; :::; n: sensitizing cubes
C0

i ; C
1

i : Sensitizing cubes ofYi variable

FOR i = 1 through n
IF (yi = 0)

Qi = C0

i

ELSE
Qi = C1

i

ComputeP = fp1; p2; :::pkg, where eachpi
is the intersection of cubes,one from each setQi

FOR each untried vectorvi in P

IF < vi; v > creates appropriate transitions
at start of path

Mark vi as tried
returnvi

ELSE
Mark vi as tried

return�
END

Figure 2. Finding an applicable vector-pair.

an applicable vector-pair withv as the second vector, using a pro-
cedure that will be described later. If the destination is a flip-flop
input, we also try to derive an input sequence that propagates the
fault effect to a primary output. If successful, the fault is put in
a list of potential primitive faults, provided it is not already in the
list. Otherwise, the vertex is flagged.
Next, vertices common to two or more cubes satisfying Lemma 3
are processed. Letv be a common vertex of a set of cubesQ
satisfying Lemma 3. If an applicable vector-pair and a propagating
sequence are found, the fault is compared with those in the list of
potential primitive faults and added to the list, ensuring that the
list does not contain duplicates or faults that contain other faults in
the list. Otherwise, the common vertex is flagged, and the process
is repeated for all common verticesv0, such thatv0 is a vertex
in some cube inQ and satisfies Lemma 3. The flagged vertices
are ignored during this step. The procedureApplicable, shown in
Fig. 2, uses sensitizing cubes to find applicable vector-pairs. For
a given vectorv, it a returns a vectorv1 such that< v1; v > is
applicable. Each call returns a new vector, and if no suitable vector
exists a null vector� is returned. ProcedureSequentialprimitive
given in Fig. 3 identifies all primitive faults in a sequential circuit.
It uses the recursive procedureCommonvertex, shown in Fig. 4,
to process common vertices.
Example 2: Consider the part of the output logic of a sequential
circuit shown in Fig. 5. The sensitizing 1-cubes of the circuit are
shown in Fig. 5(c). The combinationally primitive faults are sen-
sitized by the essential vertices 001, 111, 100 and by the common



PROCEDURE Sequentialprimitive
S0; S1: set of sensitizing cubes for a PO or FF input
L0; L1: rising and falling transition primitive faults
BEGIN

FORi = 0; 1

Li = �

FOR every essential vertexv
f = fault statically sensitized byv
IF Applicable(v) = �

Flagv
ELSE IF destination = FF

IF PO cannot be sensitized
Flagv

IF v is not flagged
Li = Li

S
f

FOR every common vertexv satisfying Lemma 3
Commonvertex(v; Q; i)

END

Figure 3. Primitive fault identification.

PROCEDURE Common vertex(v; Q; i)
BEGIN

f = fault statically sensitized byv
IF Applicable(v) = �

Flagv
IF destination is an FF

IF PO cannot be sensitized
Flagv

IF v is flagged
FOR everyv0 2 q0; v0 6= v; q0 2 Q;

IF v0 is a common vertex ofQ0 and satisfies Lemma 3
Commonvertex(v0; Q0; i)

ELSE FOR allf 0 2 Li

IF f � f 0

Li = Li � f 0

IF f 0 6� f for anyf 0 2 Li

L = Li

S
f

END

Figure 4. Static sensitizing vector identifica-
tion.

vertex 010. Assume that appropriate transitions into all of them
except 111 are available in the sequential circuit. Since the path
sensitized by 111 is not sequentially primitive, it is flagged. Ig-
noring the flagged vertex, i.e., treating it as a non-essential vertex,
vertex 110 satisfies Lemma 3. The multipath shown in Fig. 5(b)
sensitized by the common vertex 110 will be primitive, if an ap-
propriate transition to it exists. Note that the single path shown in
Fig. 5(a) sensitized by 111 is contained in the multipath sensitized
by 110. 2

1

3

4

5

b
c

a

0

b
a

f

1101
ab

c

essential vertex

f

(c)

1

6

1

2

b
c

c

a

b

c

a

a

a

7

75

6

3

4

1

2

c

c

00 10

1

1 1 1 1

1

1

1

1
1

1

1

1

1

1

1

1

1

1
1

1

1
1

1 1

10

0

0

0

0

0

(b)
Simulation of vector: a b c = 1 1 0

Simulation of vector: a  b c = 1 1 1

(a)

0

0

0

Figure 5. Circuit and sensitizing cubes of Ex-
ample 2.

5 Test Generation

The test generation algorithm assumes that the circuit to be tested
has a reset input which takes it to a unique reset state which is not
affected by any fault. A test for a path delay fault consists of three
parts: initialization, fault activation, and propagation to a primary
output. The last part is required only for faults on paths that termi-
nate at flip-flops. The initializing and propagating sequences will
be applied with a “slow clock” whose period is such that delay
faults have no effect [24].

5.1 Fault activation

The procedure for identifying primitive faults (Fig. 3) produces an
applicable vector-pair< v1; v2 >, such thatv2 statically sensitizes
each fault. This vector-pair is checked to see whether it satisfies
the robustness condition. If not, procedureApplicableis used



repeatedly to find another initial vectorv10, such< v1
0; v2 > sat-

isfies the robustness condition, or no new applicable< v1
0; v2 >

remains.

5.2 Initializing sequence

Once an applicable vector pair< v1; v2 > is obtained, an input
sequence that takes the circuit from the reset state toS1 is ob-
tained. LetS1 = (y1; y2; :::; yn) and letQ = (Q1; Q2; :::; Qn),
whereQi is the set of sensitizing 1(0)-cubes ifyi = 1(0). The
state component of each intersection of cubes, one from each set
Qi, represents a state (or a set of states if some variables are un-
specified) from whichS1 can be reached. The input part is the
input needed for that transition. If any intersection contains the
required reset state, the input part of the intersection will take the
circuit from the reset state toS1. Otherwise, for each intersection,
we treat the state component as the new state to be reached, and
repeat the procedure until the reset state appears in one of the inter-
sections. The input components of the intersections along the path
to the reset state constitute the initializing sequence. Note that the
method finds transitions only as needed.

5.3 Fault propagation to primary outputs

Delay fault effects that reach state variable flip-flops may produce
incorrect next-state values at one or more flip-flops. These values
can be propagated to primary outputs as in stuck-at fault testing,
since delay faults will not have any effect due to the “slow clock”
used during this phase. If the fault effect reaches only a single state
variable, a sequence for propagating it to a primary output can be
derived using D-propagation and the iterative array model of the
sequential circuit.
A vector pair that robustly activates a path terminating at a partic-
ular state variable may also sensitize paths to one or more other
state variables, not necessarily robustly. Thus, the state reached
by the circuit may depend on delays on paths other than the one
tested. Ifk state variables may be affected, including the destina-
tion of the target fault, there are2k � 1 possible incorrect patterns
to be distinguished from the correct one. A method using multiple
propagating sequences, similar to iterative array testing [23, 25] is
possible but may not be practical for large circuits.
We propose an iterative method of fault propagation which treats
faults whose effects have been successfully propagated in earlier
iterations as not present in the circuit during the current iteration.
These faults are treated as having been tested. Initially the set
of tested faults is empty. In each iteration, all flip-flops whose
values could be affected during each test, except the destination of
the path being tested and those in the tested set, are assigned the
unknown valuex. Values at the destinations of tested paths are
set their fault-free values. D-propagation from the destination flip-
flop to a primary output is attempted with time-frame expansion. If
a sequence is found within a specified number of time frames, the
fault is added to the set of tested faults. The procedure is repeated
until no more faults can be added to the set of tested faults. The
procedure is given in Fig. 6.
This method may not be able to derive propagating sequences for
all testable faults, but the sequences generated will be correct. The

PROCEDURE Propagate
BEGIN

A = �

DO
B = A

FOR every unpropagated test< v1; v2 >

F = set of faults robustly activated
by< v1; v2 >

yi = destination of faults inF
Setyi = D

FOR everyyj , j 6= i that is affected byF
IF yj is not the destination of a fault inA

Setyj = x

ELSE
Setyj = Yj(v2)

(fault-free value produced byv2)
Set remainingyk ’s to Yk(v2)
IF D-propagation to PO is successful

A = A
S
F

WHILE A 6= B

END

Figure 6. Procedure for fault propagation.

tests derived by this method are similar to validatable non-robust
tests, since the propagation of a fault from a flip-flop to a primary
output is valid if certain other faults are tested and proven to be
absent.

6 Experimental Results

A program implementing the primitive fault identification and test
generation methods proposed in this paper has been implemented
in the C language. Primitive faults were identified and robust tests
were derived for a number of sequential circuits in ISCAS’89 and
MCNC’91 benchmarks. Experimental results are summarized in
Table 1. As mentioned in Section 5, our experiments assumed that
the fault-free and faulty circuits are started in a reset state which
is unaffected by the fault. This implies that faults that affect ini-
tialization will not be present in the circuit and are excluded in the
results reported. This restriction can be easily removed.
The first two columns give the circuit name and the number of
gates in the circuits considered. Faults are divided into two groups:
those on paths to primary outputs, and those on paths that end
on flip-flops. Experimental results are also grouped accordingly
in Table 1, with a third group including all faults. Within each
group, we give the total number of single faults, the total number
of primitive faults identified and the number of primitive faults
for which robust tests were obtained. Our algorithm identifies all
primitive faults on paths to primary outputs but, not all those on
paths to flip-flops. Therefore, upper bounds on primitive faults on
paths to flip-flops are also given in the table. Times given in the
last column are total CPU times for primitive fault identification
and test generation, on an IBM RS 6000 server.
Our algorithm considers all applicable vector-pairs that satisfy the
conditions for sensitization during primitive fault identification.



Similarly, all appropriate vector-pairs are considered until one that
robustly sensitizes each primitive fault is found. However, only a
limited search is used in propagating fault effects from flip-flops
to primary outputs. For determining whether a fault on a path to a
flip-flop is primitive, we first try to find an input vector that prop-
agates it to a primary output. If successful, the fault is primitive.
Otherwise, for each correct/incorrect state pair reached at the end
of the first clock cycle, we try propagate the fault effect to a pri-
mary output with sequence of length� 4. If propagation to a
primary output is unsuccessful, the fault may or may not be prim-
itive. These faults account for the difference between the upper
bounds and the primitive faults given in the table. A similar ap-
proximation was also used in fault propagation during test gener-
ation. Our results indicate there were many faults for which we
could not determine whether they were primitive. The coverage of
primitive faults was also low in all the circuits in our experiments.
Clearly, the coverage of primitive faults is somewhat higher, even
if the number of primitive faults equals the upper bound given in
the table.
Both the primitive fault identification and test generation results
can be improved by using more sophisticated fault propagation
techniques. Since fault propagation is done in the gate-level cir-
cuit, the use of controllability and observability measures should
also give better results. In the case of test generation, our algorithm
assigns the unknown value (x) to flip-flops unless the path to it has
been tested robustly. This leads to pessimistic results. The method
can be improved by considering all combinations explicitly, when
when only a few flip-flops are affected by the fault.

7 Conclusion

We have extended the concept of primitive faults, previously de-
fined only for combinational circuits, to sequential circuits. By
using a functional definition, the same definition applies to both
combinational and sequential circuits. Problems like faults that
prevent initialization, and start-up states that cannot be reached
from other states are handled in a natural way.
We have presented an algorithm which, in principle, can identify
all primitive faults in sequential circuits and generate robust tests
for all robustly testable primitive faults. It uses the concept of sen-
sitizing cubes introduced in an earlier paper, and uses a more effi-
cient algorithm to generate the cubes. These sensitizing cubes are
used for obtaining static sensitizing vectors for identifying primi-
tive faults as well as deriving robust tests for them. We have intro-
duced a new method for fault propagation which gaurantees that
the tests produced are validatable non-robust tests.
The proposed method of primitive fault identification identifies
only primitive MPDF’s, which by definition have a common des-
tination. We have shown that it is possible for a primitive fault
to contain paths to more than one flip-flop. A new class of faults
called complex MPDF’s consisting of MPDF’s to two or more des-
tinations must be considered for identifying all primitive faults.
Extensions of the proposed method to complex MPDF’s is under
investigation.
The effectiveness of our method of primitive fault identification
and test generation has been demonstrated for sequential circuits
of moderate size. The cube-oriented operations may make the

method unsuitable for very large circuits. An important area for
further investigation is the development of methods that operate
entirely on the circuit model. Another area for further work is on
algorithms for fault effect propagation. The use of testability mea-
sures is likely to extend the usefulness of the techniques developed
in this paper.
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