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Abstract

Noise can cause digital circuits to switch incorrectly

and thus produce spurious results. Noise can also have

adverse power, timing and reliability e�ects. Dynamic

logic is particularly susceptible to charge-sharing and

coupling noise. Thus the design and optimization of

a circuit should take noise considerations into ac-

count. Such considerations are typically stated as

semi-in�nite constraints. In addition, the number of

signals to be checked and the number of sub-intervals of

time during which the checking must be performed can

potentially be very large. Thus, the practical incorpo-

ration of noise constraints during circuit optimization

is a hitherto unsolved problem.

This paper describes a novel method for incorporat-

ing noise considerations during automatic circuit opti-

mization. Semi-in�nite constraints representing noise

considerations are �rst converted to ordinary equality

constraints involving time integrals, which are readily

computed in the context of circuit optimization based

on time-domain simulation. Next, the gradients of

these integrals are computed by the adjoint method.

By using an augmented Lagrangian optimization merit

function, the adjoint method is applied to compute all

the necessary gradients required for optimization in

a single adjoint analysis, no matter how many noise

measurements are considered and irrespective of the

dimensionality of the problem. Numerical results are

presented.

1 Introduction

In the context of digital circuits, noise is de�ned as
any deviation of a signal from its stable value in those
subintervals of time when it should otherwise be sta-
ble [1]. Noise in digital circuits can be attributed to
several sources such as leakage noise, charge-sharing

noise, crosstalk noise, power supply noise, shot noise,
thermal noise and 
icker noise. Rigorous noise analy-
sis and noise considerations during design are becom-
ing increasingly important. The following trends in
modern digital integrated circuit design accentuate
the need for careful and detailed consideration of noise
during circuit design and optimization.

� Supply voltages are being lowered, leading to
smaller margins for noise.

� Transistor threshold voltages are being lowered,
leading to higher levels of leakage noise.

� Circuits are being packed closer together, leading
to increased coupling and cross-talk noise.

� Signals have faster rise and fall times, leading to
more power supply noise.

� The increased use of dynamic circuitry for perfor-
mance reasons worsens the susceptibility to noise
problems. Charge-sharing noise problems are of-
ten avoided by appropriate sizing of transistors.

When a circuit is optimized, noise should be con-
sidered in addition to such criteria as delay, power
and area. The mathematical expression of noise con-
siderations in circuit optimization is in the form of a
nonlinear semi-in�nite problem [2, 3]. In addition, the
number of signals that must be checked for noise vio-
lations and the number of sub-intervals of time during
which these checks must be performed are potentially
very large. Hence the incorporation of noise consider-
ations during circuit optimization is an arduous task
and no practical solution exists in the literature.

This paper presents a method for e�ciently in-
corporating noise considerations during circuit op-
timization based on time-domain simulation. The
semi-in�nite noise considerations are �rst mapped into
equality constraints involving time integrals. The time
integrals are computed during the simulation in the
inner loop of the optimizer. The time integral form
of the resulting equality constraint lends itself well to
gradient computation by the adjoint method [4]. By
exploiting the fact that the optimizer builds a scalar
merit function, all the gradients of the merit function
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Figure 1: Dynamic circuit susceptible to charge-
sharing noise and associated waveforms.

are computed in a single adjoint analysis [5, 6], thus
rendering the procedure tractable. Prototype software
to tune transistor and wire sizes while taking into ac-
count noise, delay, slew, power and area considerations
has been developed.

Section 2 demonstrates the key idea by means of a
simple example and the concept is generalized in Sec-
tion 3. Implementation details are discussed in Sec-
tion 4 and numerical results presented in Section 5.
Section 6 concludes the paper with some observations
and avenues of future work.

2 Demonstration of the concept by

means of an example

Fig. 1 shows a CMOS dynamic logical AND circuit
susceptible to charge-sharing noise, and associated
waveforms. The �rst-arriving active-low reset pulse
on input R pre-charges the node N1, which in turn
switches the output node N2 to a low state. Assume
that node N3 is in a low state due to previous switch-

ing history. The subsequently incident active-high
pulse on input A switches transistor Q1 on. Since
input B remains low, the nodes N1 and N2 are not
supposed to switch logical state and the circuit should
maintain its reset state.

However, since transistor Q1 is on, charge-sharing
occurs between nodes N1 and N3 until both nodes
reach an equilibriumvoltage. The equilibriumvoltage,
between the initially high state of node N1 and the ini-
tially low state of node N3, is determined by the rela-
tive capacitances associated with these nodes. The re-
sulting dip in voltage at node N1 due to charge-sharing
noise is schematically indicated in its waveform. Since
node N2 is low, the small stand-by transistor QS is on.
It counteracts the voltage dip on node N1 and eventu-
ally restores both nodes N1 and node N3 to the high
state. Thus it is imperative that the relative sizing of
transistors prevents the dip from causing the output
inverter INV to switch. To ensure that the inverter
output is stable, the magnitude of the noise dip in the
waveform on node N1 needs to be within the allowed
noise margin of the inverter. This noise margin level
is indicated as NMH in Fig. 1.

Assume that the optimization problem for this cir-
cuit is as follows:

min t0(x) (1)

x

s:t: vN1(x; t) � NMH 8t 2 [t1; t2]

where t0(x) is the 50% crossing point of the falling
voltage transition on node N2 and vN1 is the voltage
on node N1, which is a function of the optimization
variables xi; i = 1; 2; : : : ; 6 and time t. Assume that
the variables of optimization are the widths of the six
transistors in the �gure (two being inside the inverter).

Problem (1) describes a semi-in�nite problem [2, 3],
with time as the semi-in�nite parameter. The con-
straint in problem (1) must be satis�ed at an in�nite
number of time points between t1 and t2. We refor-
mulate problem (1) as

min t0(x) (2)

x

s:t: c(x) =

Z t2

t1

maxfNMH � vN1(x; t); 0gdt = 0

wherein the semi-in�nite noise constraint of prob-
lem (1) has been transformed into an equality con-
straint involving the time integral c(x). Note that the
equality constraint is satis�ed if and only if the semi-
in�nite constraint in problem (1) is satis�ed1. The

1The waveform v(x; t) is a continuously di�erentiable func-
tion of x and t.
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Figure 2: Noise spike in a signal that should be stable.

equality constraint relates to penalty functions for the
semi-in�nite constraint (see, for example, [7]).

Fig. 2 shows the waveform vN1(x; t), and c(x) is
indicated by the shaded area. The constraint in prob-
lem (1) is satis�ed when this shaded area vanishes.
Note that if we run a time-domain simulation of this
circuit, vN1(x; t) is known for all time. Time, which is
our semi-in�nite parameter, is discretized during the
simulation, thus making it easy to compute c(x).

Referring to Fig. 2, we can write

c(x) =

Z t2

t1

maxfNMH � vN1(x; t); 0gdt

=

Z te

ts

fNMH � vN1(x; t)gdt; (3)

where ts and te are the start and end times of the
unwanted signal deviation beyond the noise margin.
Of course, it is possible that the signal crosses the
noise marginmultiple times, leading to multiple \noise
bumps." In such a case, c(x) is computed as a sum-
mation of integrals. For purposes of illustration, this
example assumes that there is a single noise bump.
Thus, integrating the quantity fNMH�vN1(x; t)g be-
tween ts and te yields the required result.

In order to solve problem (2), we also need to pro-
vide the gradients of c(x) to the optimizer. We note
that c(x) of equation (3) is di�erentiable. Thus we can
write

@c(x)

@x
=

@

@x

�Z te

ts

fNMH � vN1(x; t)gdt

�
: (4)

Note that te and ts themselves are functions of the tun-
able parameters of the circuit, and hence will change
from iteration to iteration of the optimization. There-
fore, we cannot di�erentiate the integral on the right
hand side of equation (4) directly. So we rewrite equa-

tion (4) as

@c(x)

@x
=

@

@x

�Z
1

�1

fNMH � vN1(x; t)g�

fu(t� ts) � u(t� te)gdt

�
; (5)

where u(t) is the unit step function. Then

@c(x)

@x
=

�Z
1

�1

�
@vN1(x; t)

@x
fu(t� ts)� u(t� te)gdt

�

+

�Z
1

�1

fNMH � vN1(x; t)g�

f�
@ts

@x
�(t � ts) +

@te

@x
�(t� te)gdt

�
; (6)

where �(t) represents the unit Dirac impulse function.
Finally, we obtain

@c(x)

@x
=

�Z te

ts

�
@vN1(x; t)

@x
dt

�

�

�
@ts

@x
fNMH � vN1(x; t)gjt=ts

�

+

�
@te

@x
fNMH � vN1(x; t)gjt=te

�
: (7)

Since the noise deviations at t = te and t = ts are 0
by de�nition, the �nal result is

@c(x)

@x
=

Z te

ts

�
@vN1(x; t)

@x
dt: (8)

In the special case when either ts = t1 or te = t2,
then the corresponding limit of the integration is not a
function of x and the same result is trivially obtained.

We observe that equation (8) requires us to com-
pute the time integral of a voltage gradient, or equiv-
alently the gradient of a time integral of a voltage.
The integral form of equation (8) lends itself particu-
larly well to adjoint computations. Transient sensitivi-
ties are computed in the adjoint method by expressing
each sensitivity function as a convolution integral. A
current source of value �u(t � ts) + u(t � te) applied
to the measurement node during the adjoint analysis
will allow us to obtain the gradients of c(x) with re-
spect to all the variables of the problem in a single
appropriately con�gured [4, 8] adjoint analysis.

Thus we can e�ciently compute both c(x) and its
gradients. However, in a practical situation, there
may be a large number of signals to be checked for
noise, and several sub-intervals of time during which
the checking must be carried out. Thus the above
computations may render the optimization too inef-
�cient to be practical. However, if the optimization



algorithm involves repeated minimization of a scalar
merit function, we can directly compute the necessary
gradients of the merit function rather than those of the
individual measurements. For simplicity, suppose we
have n noise constrains and the optimizer formulates
a Lagrangian merit function

� = t0(x) +
nX
i=1

�ici(x); (9)

where �i are the Lagrange multipliers or dual vari-
ables. Then, instead of computing the gradients of
t0(x) and each of the ci(x), we can compute instead
the gradients of � by applying the adjoint method
of gradient computation [4, 5, 6]. The excitations of
the adjoint computation will then be dependent on
optimizer variables like the Lagrange multipliers, and
will all be simultaneously applied. The simulator and
optimizer software must cooperate closely in order to
apply this method to determine the gradients of �.
Then, we can compute all the gradients of � in a sin-

gle adjoint analysis, irrespective of the number of vari-
ables of the problem, irrespective of the number of sig-
nals that must be checked for noise, and irrespective
of the number of time sub-intervals during which the
checking must be carried out!

The following section will expand this key idea to
a general circuit optimization problem, with general
equality and inequality constraints and possibly ob-
jective functions involving noise considerations.

3 Mathematical formulation

Consider a circuit optimization problem

min max maxfv0(x; t)� k20 ; 0g

x 8t 2 [t10 ; t20]

s:t: cei(x) = 0; i = 1; 2; : : : ; E

s:t: cli(x) � 0; i = 1; 2; : : : ; L

s:t: cgi(x) � 0; i = 1; 2; : : : ; G

s:t: k1nvn(x; t) � k2n 8t 2 [t1n ; t2n];

n = 1; 2; : : :; N: (10)

The variables of the problem are denoted by x,
fv0(x; t)�k20g is a noise function whose positive devi-
ation from zero we wish to minimize, ce, cl and cg are
E, L and G equality, less-than and greater-than con-
straints, respectively, expressed in terms of the circuit
measurements. Unlike the simple example of Section 2
which had a single noise constraint, problem (10) has
a noise objective function and any number of noise

constraints. Each of N noise constraints has four con-
stants associated with it, k1n, k2n , t1n and t2n . For a
signal that should be at a stable logical low, typically
k1n = 1 and k2n = NML. For a signal that should
be at a stable logical high, typically k1n = �1 and
k2n = �NMH .

Problem (10) above is remapped to

min z

x; z

s:t: z � maxfv0(x; t)� k20; 0g 8t 2 [t10; t20]

s:t: cei(x) = 0; i = 1; 2; : : : ; E

s:t: cli (x) � 0; i = 1; 2; : : : ; L

s:t: cgi (x) � 0; i = 1; 2; : : :; G

s:t: k1nvn(x; t) � k2n 8t 2 [t1n ; t2n];

n = 1; 2; : : :; N: (11)

This problem is in turn reformulated as

min z

x; z

s:t: z � 0

s:t: c0(x; z) =Z t20

t10

min[z �maxfv0(x; t)� k20; 0g; 0]dt= 0

s:t: cei(x) = 0; i = 1; 2; : : : ; E

s:t: cli(x) � 0; i = 1; 2; : : : ; L

s:t: cgi(x) � 0; i = 1; 2; : : :; G

s:t: cn(x) =Z t2n

t1n

maxfk1nvn(x; t)� k2n; 0gdt = 0;

n = 1; 2; : : : ; N (12)

and the problem is posed to the nonlinear optimizer
as one involving ordinary constraints. The introduced
variable z requires initialization, typically at a value
that approximates the maximum of fv0(x; t)� k20; 0g
for the initial value x over the interval [t10; t20 ]. At
each iteration of the optimization, the circuit being
optimized is simulated in the time-domain to deter-
mine all the measurements of the system. Further, the
waveforms vn(x; t); n = 0; 1; : : : ; N are computed for
the intervals of time t1n � t � t2n . In each such inter-
val, the corresponding waveform is checked to deter-
mine the sub-intervals tsnj � t � tenj ; j = 0; 1; : : : ; Jn

during which z � maxfv0(x; t)� k20 ; 0g for n = 02, or

2Our algorithm insists that simple bounds are satis�ed, so
z � 0. If not, the de�nition of c0(x; z) has to be slightly
modi�ed.



(k1nvn(x; t) � k2n) � 0 otherwise. If the noise objec-
tive function or any of the noise constraints involves
no such sub-intervals, then the corresponding cn and
its gradients are identically zero. If not, cn for this
iteration of the optimization may be written as

c0(x; z) =

J0X
j=1

Z te0j

ts0j

fz � v0(x; t) + k20gdt; (13)

or

cn(x) =
JnX
j=1

Z tenj

tsnj

fk1nvn(x; t)�k2ngdt; n = 1; 2; : : : ; N

(14)
and thus easily computed since time is discretized dur-
ing the time-domain simulation and the voltage wave-
forms are known. At this point, the original noise ob-
jective function has been mapped into a di�erentiable
equality constraint and an objective function compris-
ing of a newly introduced variable and each constraint
has been mapped into a di�erentiable equality con-
straint.

The next step is to compute the gradients of the
merit function of the optimizer. One way to do so is
to compute the gradient of each of the objective func-
tions and constraints. The gradients of the regular
constraints (ce, cl and cg) are computed by any ap-
plicable means. The gradients of the noise constraints
of the reformulated problem, cn, are written (de�ning
k10 = �1 ) as

@cn

@x
= k1n

JnX
j=1

Z tenj

tsnj

@vn(x; t)

@x
dt;

n = 0; 1; : : : ; N and for all x; (15)

with @c0
@z

=
PJ0

j=1(te0j � ts0j ). Although tsnj , tenj , z

and Jn are functions of x and change from iteration to
iteration, Equation (15) above is valid since for each
sub-interval, in the case when n = 0

either v0(x; ts0j ) � k20 � z = 0 or ts0j = t10 (16)

and

either v0(x; te0j ) � k20 � z = 0 or te0j = t20 (17)

or otherwise

either k1nvn(x; tsnj ) � k2n = 0 or tsnj = t1n (18)

and

either k1nvn(x; tenj ) � k2n = 0 or tenj = t2n : (19)

Note that t1n and t2n , n = 0; 1; : : : ; N , are not func-
tions of x.

Since the right hand side of Equation (15) is a time
integral of a voltage gradient, it is amenable to e�-
cient computation by the adjoint method. The pro-
cedure involves attaching a zero-valued current source

at each node that has a noise constraint during the
nominal transient analysis. During the adjoint analy-
sis, an appropriately scaled pulse of current is applied
through this current source in the sub-intervals of time
tsnj � t � tenj ; j = 0; 1; : : : ; Jn.

As mentioned in the previous section, the gradients
of the merit function of the optimizer can be computed
by means of a single adjoint analysis. In this situation,
the cn(x) constraints are treated as ordinary equality
constraints. At each iteration, cn(x) is expressed as
a summation of time integrals (Equations (13) and
(14)) and a single adjoint analysis is applied to obtain
the gradients of the merit function of the optimizer by
appropriate choices of adjoint excitations [4, 5, 6].

In the case where the optimization merit function
does not involve any semi-in�nite component it can be
dealt with directly [5, 6]. In addition, we note that the
following three types of objective functions are readily
accommodated by appropriate introductions of auxil-
iary variables and constraint de�nitions.

min max jv0(x; t)� k20j (20)

x t

min max v0(x; t) (21)

x t

max min minfv0(x; t)� k20; 0g (22)

x t

max min v0(x; t) (23)

x t

Thus the method of incorporating noise constraints
applies to any number of noise constraints and objec-
tive functions and any number of unwanted signal de-
viations during the time period of each noise consider-
ation. Further, the computation of gradients by means
of a single adjoint analysis can be applied irrespective
of the number of measurements, the number of ordi-
nary constraints, the number of noise constraints and
the number of objective functions. Further, the con-
cept can be applied to any di�erentiable merit function
such as penalty or barrier merit functions (referred to
as interior and exterior techniques in [9]).

4 Implementation

The method proposed in this paper was implemented
in the Ji�yTune framework [10, 5, 6]. This section
presents a short description of Ji�yTune and then
mentions some salient points of the implementation
of noise-aware circuit optimization. Ji�yTune opti-
mizes circuits by adjusting transistor and wire sizes.
Delay, slew, power, area and noise considerations are



presently supported. Ji�yTune allows 
exible de�ni-
tion of objective functions and constraints. Further,
minimax optimization is supported and is typically
used to minimize the worst of several path delays.
The minimax capability can now also be used to min-
imize the worst of several noise violations. Ji�yTune
uses the general-purpose nonlinear optimization pack-
age LANCELOT [11, 12, 13] and fast simulation [14]
and adjoint gradient computation [8, 15] in SPECS.
The adjoint Lagrangian method of gradient computa-
tion [5, 6] is used to e�ciently determine the gradi-
ents of the merit function of LANCELOT. Several spe-
cial considerations to render the optimization e�cient
[16], tailor the optimization to the circuit tuning task
[6], stop the optimization at a meaningful point [10]
and customize Hessian updates [5, 6] to the adjoint
Lagrangian computations have been implemented in
Ji�yTune.

Ji�yTune includes a graphical user-interface in the
Cadence schematic environment. The interface allows
convenient speci�cation of circuit optimization prob-
lems and visualization of tuning results. \Grouping"
of similar structures and ratio-ing of individual tran-
sistors are allowed.

Ji�yTune has successfully been used to tune high-
performance circuits of PowerPC and S/390 micro-
processors. Circuits with over 10; 000 tunable tran-
sistors have been tuned in a few hours of CPU time.
Ji�yTune has also been helpful in understanding the
tradeo�s inherent in circuit designs. It has proved
useful for circuit re-use in the case of changed require-
ments, changed loading conditions or remapping to a
new technology. All the tuning criteria are stored as
attributes of the schematic in order to facilitate design
re-use.

As indicated above, noise considerations are imple-
mented by �rst converting them to time-integral con-
strains. Zero-valued current sources are added at the
noise measurement points. The integrals are evaluated
on the 
y during the nominal simulation in SPECS

at each iteration of LANCELOT. Further, the crossing
times (tsnj and tenj of the previous section) are stored

during the nominal simulation. Before the adjoint sim-
ulation begins, the excitations to be applied on the
auxiliary current sources are determined. These exci-
tations are typically scaled and shifted unit-step func-
tions, with the durations determined by the crossing
times.

Then the adjoint analysis is carried out with these
additional excitations representing the contributions
of the noise functions to the overall merit function.
Convolution between the nominal and adjoint wave-
forms is carried out for each parameter to deter-
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Figure 3: Reduction of noise during iterations of the
optimization.

mine the required time-domain sensitivities. Exten-
sive chain-ruling is employed to determine the gradient
of the merit function with respect to all the rami�ca-
tions of changing a parameter. For example, changing
a transistor width changes the channel current, the in-
trinsic MOS parasitic capacitances and the associated
di�usion capacitances. All these e�ects are combined
to obtain the �nal gradient vector used by LANCELOT
to compute the next step of the optimization.

5 Results

The circuit in Fig. 1 was optimized to minimize the
worst-case delay from the data inputs to the output,
while constraining the area (as modeled by the sum
of the tunable transistor widths) and ensuring that
the intermediate node N1 conformed to tight noise
constraints. Ji�yTune solved the problem in 9 itera-
tions. Snapshots of the waveform on node N1 at the
start, middle and end of the optimization are shown
in Fig. 3. The horizontal line in the �gure shows the
noise margin NMH speci�ed. As the optimizer pro-
gresses, devices are sized to make the noise violation
smaller, until eventually the voltage is entirely above
NMH during the speci�ed time period.

In a separate set of experiments, Ji�yTune was used
to study the delay vs. noise tradeo� in a dynamic AND
gate. The circuit of Fig. 1 was tuned in a realistic cir-
cuit environment to minimize the switching delay from
the data input A to the output, with a noise constraint
on node N1 and a 200 ps constraint on the delay from
the reset signal falling to the output node falling. The
P to N ratio of the output inverter was constrained to
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be no larger than 4 to maintain balance between the
rise and fall times of N2. The required noise margin
(Vdd � NMH ) on N1 was varied from 50 mV to 300
mV and a series of circuit optimization runs were per-
formed. Fig. 4 shows the results of this experiment.
The solid line shows the variation of delay (including
one inverter stage through which the input signals are
fed) with noise margin and the ratio of the width ofQ1
to that of the stand-by transistor QS is shown with a
dotted line. As the noise margin is loosened, the opti-
mal delay of the gate improves and the N/P ratio gets
larger since QS can be made smaller to meet a less
stringent noise criterion. At a noise margin of about
250 mV, the best possible delay is obtained, and the
ideal N/P ratio is in the neighborhood of 5.5. Beyond
that, the PFET QS is at its minimum width and no
further improvement in delay is possible, since noise
is no longer the limiting factor. In this manner, Ji�y-
Tune can be used to study tradeo�s between delay and
noise (and of course, area and power) during library
design of dynamic cells.

To test the e�ciency of incorporating a large num-
ber of noise constraints, the following experiment was
carried out. A dynamic logic \branch-scan" circuit
with 144 MOSFETs was con�gured with 36 delay
measurements, each of which is treated as a sensitiv-
ity function. The number of tunable transistors was
varied from 1 to 104, and the number of noise func-
tions on various signals during various sub-intervals
of the simulation was varied from 1 to 459. For each
such combination, simulation and gradient computa-
tion were carried out. The gradient computation was
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Figure 5: Growth of CPU time with the number of
parameters and noise functions.

in \adjoint Lagrangian" mode whereby the gradients
of LANCELOT's merit function were computed in a
single adjoint analysis. In each run, the overhead of
the run time for gradient computation over the run
time for nominal transient simulation was determined.
Fig. 5 plots the overhead as a percentage, as a func-
tion of the number of noise functions (over and above
the 36 delay functions) and the number of tunable
transistors. As can be seen from the �gure, the over-
head changes from 3% to 18% as the number of pa-
rameters is increased from 1 to 104. For each new
parameter, an additional convolution must be carried
out between the waveforms of the nominal and adjoint
circuits. The larger number of convolutions accounts
for the increase in overhead with the number of pa-
rameters. However, even with 104 parameters, the
overhead is a modest 18% over the nominal transient
simulation. More importantly, the increase in CPU
time with additional noise functions is negligible since
a single adjoint analysis is conducted irrespective of
the number of such functions! Thus a large number of
noise considerations can be incorporated with a very
small impact on run time. (The noisy nature of the
data in Fig. 5 is due to the granularity of CPU time
measurements.)



6 Conclusions and future work

Noise considerations are an increasingly important
part of modern integrated circuit design. Ideally, au-
tomatic optimization of circuits should take into ac-
count noise objective functions and noise constraints.
Since noise considerations give rise to semi-in�nite
problems, they are hard to incorporate during cir-
cuit optimization. In this paper, we presented a
method to remap these noise considerations to time-
integral equality constraints. The problem then be-
comes amenable to solution by a standard nonlinear
optimizer, provided we can compute gradients. By
using the adjoint method to directly compute the gra-
dients of the optimizer's scalar merit function, we
showed that all the required gradients can be com-
puted during a single adjoint analysis of the under-
lying circuit, thus rendering the process feasible and
practical. The method is applicable to di�erent types
of noise, general circuitry and a general choice of merit
function.

The method of incorporating noise considerations
presented in this paper can be applied to any type of
circuit optimization that uses simulation in the inner
loop, including optimization based on static timing
analysis [17]. Timing analysis and tuning of custom
high-performance circuitry is often performed by sim-
ulating \channel-connected components" in the time-
domain. The methods in this paper can be applied to
optimally size large circuits to avoid noise problems,
to understand tradeo�s in the design of library cells,
to optimally space wires to avoid coupling noise and in
package design. Noise measures such as the \noise sta-
bility" criterion of [1] can be appropriately translated
into semi-in�nite constraints and are then amenable
to the methods described in this paper. Electromigra-
tion constraints that limit peak current density can be
incorporated by the methods described in this paper,
too.

The generation of the list of noise constraints for
a large circuit can be a tedious job. Automation of
the speci�cation of noise considerations during circuit
optimizationwouldmake the noise-aware optimization
capability easier to use and conducive to productive
design.
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