
A Fast, Accurate, and Non-statistical Method for Fault Coverage Estimation

Michael S. Hsiao (mhsiao@ece.rutgers.edu)
Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ

Abstract

We present a fast, dynamic fault coverage estima-

tion technique for sequential circuits that achieves

high degrees of accuracy by signi�cantly reducing

the number of injected faults and faulty-event eval-

uations. Speci�cally, we dynamically reduce injec-

tion of two types of faults: (1) hyperactive faults

that never get detected, and (2) faults whose ef-

fects never propagate to a 
ip-
op or primary out-

put. The cost of fault simulation is greatly re-

duced as injection of most of these two types of

faults is prevented. Experiments show that our

technique gives very accurate estimates with fre-

quently greater speedups than the sampling tech-

niques for most circuits. Most signi�cantly, the

proposed technique can be combined with the sam-

pling approach to obtain speedups equivalent of

small sample sizes and retain estimation accuracy

of large fault samples.

I Introduction

Fault coverage estimation techniques attempt to quickly
and accurately estimate the fault coverage from a given
test set. As complexity and size of VLSI circuits steadily
increase, fast and reliable fault coverage estimation will
become more widely used, especially for relieving the high
cost of full fault simulation in large circuits.

Traditionally, statistical methods have been used for fault
coverage estimation; these include statistical fault analysis
techniques [1, 2], fault-sampling methods [3, 4], as well as
vector-sampling techniques [5]. Fault analysis techniques
[1, 2] are based on detection probabilities of faults via fault-
free simulation. Though fast, this technique is useful only
to combinational circuits for ensuring reliable estimates,
since most faults in sequential circuits frequently require
propagation of several time frames before detection. Sta-
tistical vector-sampling [5] is based on a similar idea of
detection probabilities, except that the total number of
vectors simulated is reduced. Again, only combinational
circuits will bene�t from sampling vectors because sequen-
tial circuits place considerable constraints on the traversal
of the state space to ensure detection of a fault. Statistical
fault sampling [3, 4], unlike the previous two techniques,
can be applied to both combinational and sequential cir-
cuits with good con�dence of accuracy when the sample
size is su�ciently large.

While the previous fault coverage estimation methods [1-
5] attempted to reduce the execution time by statistically
reducing the work involved, the approach presented in this
paper is not based on statistical analysis or sampling. In-
stead, it avoids simulation of faults that are unlikely to be
detected. Since fault simulators spend most of their time in
evaluating sporadic events [6], it would be extremely ben-
e�cial if the sporadic events that never lead to detections
could be avoided. We observed that much of the simula-
tion time is wasted on evaluating faulty-circuit events that
never propagate to a primary output (PO) or 
ip-
op (FF).
This large amount of activity is due to faults that are never
detected at all by the test set. Based on this observation,
we propose a fast fault coverage estimation technique that
achieves high degrees of accuracy by dynamically reducing
injection of active but unlikely to be detected faults. Fur-
thermore, unlike the sampling techniques where the fault
coverage estimates may either exceed or fall below the ac-
tual fault coverage, our estimate will always be equal to or
slightly less than the actual fault coverage, as we will at
most miss detection of few faults. Finally, our approach
can be combined with the sampling technique to obtain
speedups equivalent of small sample sizes while retaining
high estimation accuracy of large fault samples.

The single stuck-at fault model is considered in this paper
since this fault model has been widely used in many of
today's fault simulators. However, our technique can be
applied to other fault models as well.

The remainder of the paper is organized as follows: Sec-
tion II further explains the motivation and terminology
used in this work. Section III describes the technique for
avoiding injection of hyperactive faults. Section IV ex-
plains avoidance of injecting unactivated faults. Experi-
mental results are discussed in Section V. Finally, Section
VI concludes the paper.

II Motivation and Terminology

During fault simulation, each fault injected into the circuit
causes a certain number of circuit elements to be evalu-
ated, these evaluations are termed faulty-circuit event eval-

uations. Because the execution time during fault simula-
tion is directly proportional to the number of faulty-circuit
event evaluations, parallel-fault simulation [7] is frequently
used to reduce execution costs by injecting a group of faults
simultaneously. Execution time can be reduced further by
avoiding injection of all the undetected faults. Tradition-
ally, a fault does not need to be injected if we know a

1



priori that the given fault cannot be detected at a PO or
propagated to a FF. The Star-Algorithm [8] presented sev-
eral methods for identifying unexcitable and unpropagat-
able faults in combinational circuits. Other techniques of
fault-injection removal were proposed in [9] in which 1 and
2-level fault-e�ect blocking was proposed for sequential cir-
cuits. In their approach, a fault is not injected if either it
cannot be excited (i.e., the fault-free circuit value on the
fault site is identical to the faulty stuck-at value), or if its
fault e�ects cannot propagate beyond two levels of succes-
sor gates. We will call this scheme the lookahead scheme.
In this paper, an inactive fault is one that is not excited

by the current input and state vectors. On the other hand,
if a fault has its e�ects propagated to at least one FF in the
previous time-frame, it is called an activated fault. Finally,
an active fault is one that is either excited or activated in
the current time frame. Thus, an activated fault is always
an active fault, but an active fault may not be an activated
fault.
Inactive faults can easily be prevented from injection by

the lookahead technique, since they are not excited in the
given time frame. On the contrary, only a small portion
of active faults which are never detected can be prevented
from injection by the lookahead technique, because looka-
head techniques always injects faults whose fault-e�ects
propagate beyond one or two levels of successive logic. Fur-
thermore, hyperactive faults which never get detected will
always be injected since they cause a lot of activity.
Signi�cantly more reductions than the lookahead schemes

in fault injection can be achieved if we are willing to allow
for loss of a little accuracy on the fault coverage. Instead of
having merely three categories of faults (inactive, blocked
active, and active) as used in [9], we divide the faults in
each time-frame into seven categories to account for hy-
peractivity. A fault is hyperactive if the number of faulty
events exceeds a certain percentage of the total number of
nodes in the circuit. The user may set the hyperactivity
threshold at any level. The seven categories of faults for
further fault injection reduction are as follows:

1. Inactive faults

2. Active faults that are detected quickly

3. Active faults that require long sequence for detection

4. Active faults that are never detected

5. Hyperactive faults that are detected quickly

6. Hyperactive faults requiring long sequence to detect

7. Hyperactive faults that are never detected

The cost of fault simulation can be greatly reduced if
most of the hyperactive faults and faults whose e�ects never
propagate to a FF or PO can be prevented from being
injected. Unlike the static propagation technique in [8] and
the lookahead in [9], we use dynamic techniques to reduce
injection of both undetected hyperactive and unactivated
faults for fast and accurate fault coverage estimation.

By avoiding faults that either require long subsequence
for detection or are never detected, signi�cant speedups
in simulation can be obtained. However, slight inaccura-
cies in our fault coverage estimate may result from under-
detections of a few active and/or hyperactive faults that
require long sequences for detection. The amount of sav-
ings in faulty-event evaluations will be determined by how
much we are willing to tolerate for hyperactivity during
simulation. Tolerance level is de�ned as the number of
consecutive time-frames an activated fault can be injected.
The notion of tolerance level requires us to de�ne prop-

agation and detection subsequences associated with each
fault. A propagation subsequence T

f

prop
for a particular

fault f is a subsequence T [vi, vi+1, ..., vj] such that the
fault-e�ects of f , starting from state at vector vi, are prop-
agated through all time-frames within the subsequence via
FF's. A detection subsequence T

f

det
for fault f is a prop-

agation subsequence T [vi, vi+1, ..., vj�1, vj] such that f
is detected in time-frame j. Computing the exact propa-
gation and detection subsequences requires backtracing of
fault-e�ects through the circuit, and this may be compu-
tationally prohibitive for all faults. Instead, a continuous
sequence of time-frames in which fault-e�ects are propa-
gated is taken as the propagation subsequence.

III Avoiding Hyperactive Faults
Most hyperactive faults are never detected (but may be
potentially detected). These faults cause exceedingly long
propagation and/or detection subsequences and are respon-
sible for generating signi�cant amount of activity during
fault simulation.
Table 1 shows the maximum and average lengths for

detection and propagation subsequences using STRATE-
GATE [14] vectors on ISCAS89 [11] and several synthesized
circuits. STRATEGATE [14] is a state-of-the-art genetic-
based sequential test generator that achieves very high fault
coverages in short execution times. In this table, the to-
tal number of faults, test set length, number of detected
faults by the test set are �rst given for each circuit. Then,
maximum and average detection subsequence lengths are
reported for all (100%) of detected faults and 99% of de-
tected faults that require shorter detection subsequences.
Propagation subsequence lengths for the undetected faults
are reported also in terms of maximumand average lengths.
The ratio between the average propagation subsequence
lengths to the average 99% detection subsequence lengths
is shown in the right-most column.
As indicated in Table 1, the average detection subse-

quence lengths are generally very short compared to the
test set sizes. If we neglect the 1% of faults that require
longest detection subsequences, the maximum subsequence
lengths drop signi�cantly. For instance, the maximum
length for circuit s5378 drops from 1629 to only 7! But
the average subsequence length only dropped 0.48, indi-
cating that the number of faults requiring long detection
subsequences is very small.



Table 1: Maximum and Average Lengths for Propagation & Detection Subsequences
Detection Subsequences Propagation Subsequences

for Detected Faults for Undetected Faults

Ckt Total Vec Det All Faults 99% Faults All Undetected

Faults Max Avg Max Avg Max Avg Ratio

s298 308 194 265 141 2.43 2 1.87 194 36.1 19.3

s344 342 86 329 8 1.18 2 1.14 86 39.5 34.6

s382 399 1486 364 163 16.6 89 15.7 1486 636.9 40.6

s400 426 2424 384 94 14.7 38 14.3 2424 865.7 60.5

s444 474 1945 424 93 12.2 12 11.8 1945 583.5 49.4
s526 555 2642 454 132 15.5 41 14.9 2642 313.9 21.1

s641 467 166 404 18 0.81 1 0.77 166 16.0 20.8

s713 581 176 476 21 1.12 3 1.04 176 10.1 9.7

s820 850 590 814 7 0.90 2 0.88 590 16.4 18.6

s832 870 701 818 8 0.83 1 0.81 701 13.5 16.7
s1196 1242 574 1239 23 0.44 1 0.41 48 23.0 56.1

s1238 1355 625 1282 94 0.49 1 0.40 9 0.32 0.80

s1423 1515 3943 1414 204 23.4 45 23.0 3943 2303.4 100.1

s1488 1486 593 1444 4 0.49 1 0.48 593 28.2 58.9

s1494 1506 540 1453 3 0.49 1 0.49 540 20.4 41.6
s5378 4603 11481 3639 1629 4.17 7 3.69 11481 407.3 110.4

s35932 39094 257 35100 51 3.82 27 3.82 257 0.64 0.17

am2910 2391 2509 2198 136 4.47 5 4.36 2509 178.4 40.9

mult16 1708 1696 1665 184 2.97 34 2.52 1696 868.3 344.6

div16 2147 1008 1815 275 6.73 7 6.59 1098 62.8 9.5

Average 4.96 4.75 280.5 48.1

Det: # of faults detected without fault sampling Vec: Test set length
Max: Maximum length of subsequence Avg: Average length of subsequences

Ratio: Ratio of average prop. seq. lengths to average dest. seq. lengths for 99% detected faults

Let us now turn to the propagation subsequence lengths
for the undetected faults. Most of the undetected faults
are activated throughout the test set. Some of the un-
detected faults are activated in every time-frame, as indi-
cated by the maximum propagation subsequence lengths.
There are two circuits in which propagation subsequences
for the undetected faults are shorter: s1238 and s35932.
In these two circuits, the majority of the undetected faults
are combinationally redundant faults; these faults cannot be
excited at all and can easily be identi�ed by the lookahead
technique. In particular, of the 3994 undetected faults in
s35932, 3984 faults are untestable faults! Across all twenty
circuits, the average propagation subsequence lengths are
48.1 times longer than the average detection subsequences
for the 99% detected faults, and the long sequences often
suggest hyperactivity. Similar results using test sets gener-
ated by other test generators such as HITEC [13] have also
been obtained, although not shown here.

By avoiding injection of hyperactive faults that have been
activated over a long time, we may miss detections of a few
faults that require a long sequence for detection. Never-
theless, as shown in Table 1 and also supported by our ex-
periments, the number of detected faults that require long
detection subsequences is very small. Furthermore, we will
never over-estimate the fault coverage as in the sampling
techniques, since we will only miss detections of a few hy-
peractive faults.

IV Avoiding Unactivated Faults

Lookahead techniques fail to prevent injection of a fault if
the fault e�ects are not blocked in one or two levels of suc-
cessor logic. More levels into the circuit can be checked
for fault-e�ect blocking; however, this may be counter-
productive because the time and e�ort needed to check
many levels may be more expensive than simply injecting
the fault and simulate.

We propose an unpropagatability propagation algorithm
in which previously learned nodes through which no fault-
e�ects can propagate are dynamically propagated back-
ward. Consider a fanout-free circuit fragment illustrated
in Figure 1. The input value of 0 to the AND gate G es-
sentially forces any fault-e�ects to be unable to propagate
through the other input of gate G. If we had foreknown this
information, faults associated with gates H and I would
not have to be injected for this time frame.

There is one problem: if there are too many predeces-
sors, marking of fault-e�ect-unpropagatable nodes can be
costly, eventually defeating the bene�ts of unpropagatabil-

G

0

UNPROP
UNPROP

UNPROP

UNPROP

UNPROP

H

I

Figure 1: Backward Unpropagatability Propagation.



ity propagation. To avoid this, marking of unpropagatabil-
ity is done concurrently with fault injection. For example,
using the same circuit fragment of Figure 1, when we check
whether the �rst input fault of gate G needs to be injected,
we discover that its fault-e�ect is blocked by the controlling
value (0) of the second input. Thus, we mark this node to
be unpropagatable (UNPROP). Next, we also mark the
inputs of its predecessor gate, H, to be unpropagatable as
well, since the cost of marking the immediate predecessor
is small. By the time we come to determine whether faults
associated with gate H need to be injected, indication of
UNPROP on this node tells us that no fault-e�ects on
this node will be able to propagate to a PO or FF. There-
fore, we refrain from injecting these faults and propagate
the unpropagatability to its predecessor gate I. This pro-
cess continues until all faults have been considered for each
time frame.

For non-fanout-free regions of the circuit, propagation
of unpropagatability should halt when a fanout stem is
reached because the fault-e�ect may propagate via the al-
ternate path. However, if we knew that the alternate path
is also unpropagatable, we can mark the fanout stem to be
unpropagatable, with the following exception: the fanouts
must not lead to the same gate. If the alternate unprop-
agatable path leads to the same gate, the combined path
may allow the fault-e�ect to propagate through. Figure 2
illustrates two cases of marking fanout stems.

UNPROP

UNPROP

1

Fault effects here can still propagate across the OR gate

(b) Fanouts lead to the same gate

UNPROP
UNPROP

UNPROP

1

0

(a) Fanouts that lead to different unpropagatable gates

Figure 2: Marking Unpropagatability on Fanout Stems.

Since we are only marking nodes as we encounter them,
we may miss marking some nodes in the circuit from which
fault-e�ect could also be blocked. It is a trade-o� between
marking more nodes and saving time for marking fewer
nodes. Finding the optimal point where the maximal ben-
e�t is gained is di�cult and is very circuit dependent, be-
cause the circuit structure dictates how unpropagatability
can be propagated. When the number of levels the unprop-
agatability information can be propagated is small, the re-
sults are similar to those of the lookahead methods. Thus,
little gain can be achieved by this technique. However, if

the number of levels of propagation is great, the number of
faults injected may be reduced signi�cantly.
For this technique to be e�ectively applied, unpropagata-

bility information needs to be discovered from the nodes
furthest from the primary inputs so that the faults closer
may bene�t from the unpropagatability information. This
implies that the ordering of faults should be such that the
faults closest to the PO's and/or FF's be ordered �rst.

V Experimental Results
The fault simulator was implemented in C++. A basic
algorithm based on PROOFS [10] was used, and the new
features of avoidance of hyperactive and undetectable un-
activated faults were added on top of the basic fault simu-
lator. To evaluate the e�ectiveness of the fault simulator,
results for fault sampling and our technique are compared
in terms of fault coverage estimates and execution times.
The basic fault simulator without the added features is used
to evaluate fault coverages using sampled faults.
The results based on fault sampling shown in Table 2 us-

ing STRATEGATE [14] vectors are �rst discussed. The
original STRATEGATE test set sizes are given in paren-
thesis under circuit names. Then, the full fault simulation
(without any fault sampling) results are given. Next, fault
coverage estimates and execution times for various sam-
pling sizes, ranging from 2% to 30%, are reported for each
circuit. Averages of ten runs are reported for each circuit,
with the standard deviations shown in parentheses.
Variation in the results were the greatest in the smallest

sample sizes. Up to 10% di�erence in standard deviation
were observed for the 2% fault sample size. Under the as-
sumption of normal distribution, the di�erence from the
average estimate can be as much as 20% with a con�dence
of 95%! A 20% marginal error in fault coverage estimate is
unacceptable for many designs. To reduce variation, larger
samples are needed, however, at a higher computation cost.
In terms of execution times, there is always an overhead
simulation cost due to the fault-free simulation; thus, with
sample size of 2%, the speedup is less than 50. Speedup
is de�ned as T imefull simulation=T imeestimate and depends
on the fault-free simulation cost, fault sample size, and the
characteristics of the fault sample. Although the execu-
tion times for most circuits are short for all benchmark
circuits with or without sampling, they can be signi�cant
in large production circuits, for which fault coverage esti-
mation techniques can be very helpful.
Fault coverage estimation accuracy from our approach de-

pends on how much we are willing to tolerate hyperactivity.
Tolerance level of x% allows for injection of a fault consec-
utively for at most x% of original test sequence length. Be-
yond the tolerance level, the given fault is withdrawn from
being injected for the remainder of the test set. Therefore,
more accurate estimates can be obtained with greater tol-
erance, but at a higher cost of simulation. The results are
shown in Table 3. Again, the results for full fault simula-
tion are �rst given for each circuit. Next, the estimates and



Table 2: Fault-Sampling Based Fault Coverage Estimations
Ckt No Sampling Sampling Size

(Vec) 100% 2% 5% 10% 20% 30%

Det Time Est Time Est Time Est Time Est Time Est Time

s298 265 0.20 268.5 0.06 269.8 0.08 271.3 0.07 269.2 0.10 267.0 0.11
(196) (38.2) (0.01) (29.4) (0.04) (22.9) (0.02) (16.1) (0.03) (10.4) (0.03)

s344 329 0.15 327.6 0.05 328.7 0.05 327.5 0.06 329.3 0.06 328.7 0.07
(88) (24.7) (0.02) (15.7) (0.03) (12.1) (0.02) (5.9) (0.02) (3.6) (0.01)

s382 364 1.88 363.3 0.32 369.2 0.49 369.2 0.71 369.3 0.83 366.6 0.97
(1488) (27.3) (0.25) (14.3) 0.26) (8.0) (0.14) (8.6) (0.10) (6.2) (0.14)

s400 384 2.93 376.7 0.46 379.7 0.86 381.8 0.91 383.2 1.20 382.2 1.39
(2426) (50.0) (0.42) (13.1) (0.34) (15.4) (0.34) (14.9) (0.21) (11.0) (0.19)

s444 424 2.98 396.2 0.58 407.9 0.77 419.2 0.80 420.5 1.12 422.1 1.38
(1947) (39.9) (0.39) (33.0) (0.36) (18.9) (0.33) (15.3) (0.31) (11.1) (0.20)

s526 454 3.58 464.0 0.64 457.7 1.10 443.6 1.45 447.4 1.92 447.0 2.27

(2644) (48.9) (0.28) (45.1) (0.54) (32.1) (0.35) (14.9) (0.29) (12.2) (0.33)

s641 404 0.28 395.9 0.11 396.3 0.13 395.4 0.13 391.8 0.15 399.1 0.18
(168) (60.6) (0.02) (28.3) (0.01) (30.3) (0.02) (17.5) (0.04) (14.7) (0.03)

s713 476 0.38 518.4 0.14 492.7 0.15 474.4 0.17 474.4 0.17 475.0 0.22
(178) (44.9) (0.02) (22.9) (0.03) (17.5) (0.04) (15.8) (0.04) (16.4) (0.07)

s820 814 1.01 825.8 0.31 813.5 0.38 816.9 0.45 816.7 0.50 815.3 0.54
(592) (26.5) (0.19) (22.7) (0.18) (12.7) (0.16) (12.0) (0.16) (9.6) (0.16)

s832 818 1.13 816.4 0.31 815.1 0.38 818.7 0.39 824.1 0.46 822.4 0.65
(703) (32.7) (0.03) (31.5) (0.15) (15.5) (0.13) (11.5) (0.19) (10.0) (0.27)

s1196 1239 0.90 1229.6 0.34 1233.5 0.36 1237.9 0.39 1240.0 0.45 1239.0 0.50

(576) (26.2) (0.07) (11.1) (0.05) (5.3) (0.03) (2.6) 0.04) (2.5) (0.04)

s1238 1282 1.01 1277.9 0.39 1289.3 0.44 1285.2 0.44 1278.8 0.54 1277.2 0.62
(627) (61.0) (0.03) (29.3) (0.01) (26.0) (0.02) (16.7) (0.07) (15.1) (0.08)

s1423 1414 28.7 1420.1 3.74 1423.2 4.83 1421.2 6.77 1421.0 8.79 1420.1 11.0

(3945) (73.0) (2.18) (45.4) (1.88) (28.4) (0.88) (20.3) (1.19) (13.9) (1.24)

s1488 1444 1.89 1440.8 0.47 1444.7 0.66 1439.7 0.71 1440.0 0.93 1442.3 1.16
(595) (53.4) (0.09) (35.0) (0.30) (21.0) (0.22) (10.6) (0.36) (8.8) (0.37)

s1494 1453 2.00 1448.9 0.48 1452.9 0.60 1459.5 0.65 1455.5 0.85 1454.3 1.05

(542) (44.3) (0.08) (27.2) (0.25) (10.0) (0.21) (14.1) (0.33) (10.0) (0.31)

s5378 3639 158 3746.0 26.2 3687.4 36.4 3656.5 44.0 3657.2 57.9 3652.7 70.3
(11483) (158.7) (6.18) (95.0) 14.2) (72.5) (12.6) (30.4) (14.5) (27.9) (18.7)

s35932 35100 47.5 34783.7 7.11 34914.9 9.75 35073.1 12.4 35080.6 15.8 35072.3 19.8

(259) (334.5) (1.22) (268.9) (3.55) (180.3) (3.39) (93.0) (3.44) (92.5) (4.33)

am2910 2198 11.5 2164.5 2.04 2214.6 2.31 2210.4 3.17 2200.5 4.13 2199.7 5.86
(2511) (121.8) (0.24) (43.7) (0.51) (34.0) (0.68) (26.2) (1.06) (15.5) (0.95)

mult16 1665 7.41 1656.8 1.63 1655.4 2.66 1664.4 3.35 1668.0 3.74 1667.0 4.26

(1698) (63.4) (1.50) (31.6) (1.27) (15.7) (0.65) (10.3) (0.48) (8.3) (0.41)

div16 1815 5.20 1846.0 0.93 1811.1 1.28 1810.5 1.76 1830.5 1.91 1819.8 2.52
(1100) (128.7) (0.09) (88.7) (0.65) (43.6) (0.87) (33.7) (0.91) (23.5) (0.92)

Vec: # of vectors in the test set Det: # of faults detected without fault sampling
Time: Execution time in seconds Est: Avg # of estimated detected faults (standard deviation in parentheses)

execution times are listed for tolerance levels ranging from
2% to 10%. The fault coverage estimates that are within
one standard deviation of the 30% sample size are high-
lighted in bold, while those that are within one standard
deviation of the 2% sample are italicized. Please note that
our technique never over-estimates the fault coverage.

In our approach, signi�cant reductions have been re-
ported for most circuits without much loss in estimation ac-
curacy. For instance, speedup of over 5.50 was achieved in
circuit s1423 with 2% hyperactivity tolerance level; only 32
faults were missed. In fault sampling, all estimates were o�
by at least 32 faults from the actual fault coverage for sam-
ple sizes of 10% or less. In the sample size of 20%, speedup
of only 3.26 was obtained. Similarly, for circuits s5378 and
mult16, our estimation approach achieved speedups of 2.90
and 4.28, respectively, for these two circuits with very ac-
curate estimates, while fault sampling techniques achieved

speedups of only 2.27 and 1.74 if the same error margin
was to be achieved. In circuit div16, with 2% tolerance,
we have achieved a very accurate estimate (o� the actual
coverage by 16 faults); no sampling size could o�er similar
results. Great speedups with very accurate estimates were
also obtained by our approach for the smaller circuits as
well, such as s298, s344, s382, s400, s444, s526.

Most importantly, we can combine our technique with
sampling to further reduce the execution times without
additional loss of accuracy. Table 4 shows the results of
using 10% tolerance on 30% and 10% sample sizes. The
fault coverage estimates (standard deviations in parenthe-
ses) and speedups are reported for both the original fault
sample (from Table 2) and the combined approach for each
circuit. Greatest speedups are highlighted in the table.

In all of the circuits, the combination of sampling and tol-
erance gave accuracies (in terms of estimate average and



Table 3: Tolerance-Based Fault Coverage Estimations
Ckt Full Tolerance Level

Simulation 2% 3% 4% 5% 10%

Det Time Est Time Est Time Est Time Est Time Est Time

s298 265 0.20 249 0.06 254 0.07 258 0.07 259 0.09 265 0.09

s344 329 0.15 209 0.08 281 0.06 310 0.07 329 0.06 329 0.06
s382 364 1.88 358 0.48 360 0.52 362 0.49 364 0.53 364 0.53

s400 384 2.93 380 0.67 381 0.75 383 0.70 383 0.77 384 0.86

s444 424 2.98 422 0.53 424 0.61 424 0.56 424 0.65 424 0.65

s526 454 3.58 443 1.08 445 1.06 446 1.04 446 1.10 451 1.55
s641 404 0.28 358 0.16 381 0.16 389 0.16 391 0.18 400 0.16

s713 476 0.38 405 0.17 443 0.19 449 0.20 457 0.21 463 0.23

s820 814 1.01 681 0.55 730 0.51 753 0.60 768 0.61 798 0.60

s832 818 1.13 707 0.62 741 0.57 756 0.61 771 0.65 804 0.67

s1196 1239 0.90 1040 0.68 1106 0.68 1131 0.73 1153 0.70 1216 0.70

s1238 1282 1.01 1079 0.75 1148 0.75 1178 0.88 1197 0.91 1249 0.88

s1423 1414 28.7 1382 5.16 1390 5.58 1402 6.15 1407 6.95 1414 10.5

s1488 1444 1.89 1249 0.95 1317 1.03 1355 1.03 1390 0.99 1435 1.13

s1494 1453 2.00 1240 0.85 1320 0.98 1368 1.02 1385 1.02 1438 0.98

s5378 3639 158 3590 54.5 3602 55.8 3607 57.9 3609 57.9 3621 65.9

s35932 35100 47.5 27614 16.2 30858 19.5 31976 21.5 32904 23.7 35058 30.8

am2910 2198 11.5 2137 4.16 2157 4.39 2174 4.72 2184 4.68 2197 5.26

mult16 1665 7.41 1648 1.73 1654 1.83 1654 1.89 1654 2.03 1663 2.24

div16 1815 5.20 1799 1.77 1804 1.73 1804 1.80 1805 1.93 1813 2.04

Det: # of faults detected without fault sampling Time: Execution time in seconds Est: # of estimated detected faults

Estimates for which di�erences from the actual fault coverage are smaller than standard deviation of 30% sample size in
fault-sampling are highlighted in bold, while those smaller than the standard deviation of 2% are italicized

standard deviations) similar to those obtained using the
sampling technique alone. The additional speedups ob-
tained from the combination makes our technique very at-
tractive. Typically, speedups from sampling alone would
never exceed the ideal speedup of 3.33 with 30% fault sam-
ple, However, by combining sampling with tolerance meth-
ods, we often achieved speedups greater than 3.33! For
instance, in circuit s1423, a 30% fault sample gave us a
speedup of only 2.61; after combining with our technique,
we achieved a new speedup of 5.23 with no sacri�ce in es-
timation accuracy! Similarly, the speedups went from 2.25
to 4.31 and from 1.74 to 5.22 for circuits s5378 and mult16,
respectively. For small circuits such as s382, s400, s444, and
s526, great speedups were obtained using the combination
approach without loss of fault coverage estimate accura-
cies. Speedups have nearly tripled in the 30% sample size,
and they have more than doubled in the 10% sample size.

In general, the combination of 30% fault sample with 10%
tolerance gave us speedups similar to the sampling tech-
nique using 10% sample size alone while retaining small
deviations of the 30% sample size. Likewise, the combina-
tion of 10% fault sample with 10% tolerance frequently gave
us speedups of using 2% fault sample, and retain smaller
standard deviations of the 10% sample size. In short, the
combination approach achieves speedups similar to that of
a smaller sample size but still retain small variance in large
samples. The bene�t of adding tolerance to pure sampling
is illustrated in Figure 3, where the speedup curve is raised
substantially by the combined approach.

In circuits such as s820, s832, s1196, s1238, etc., because
the pure sampling technique already underestimated the
fault coverage, addition of tolerance-based technique fur-
ther under-estimates the coverage. However, the di�er-
ences in the estimates are generally less than 0.2%.

100

Speedup

1

2

3

4

5

6

7

8

50 30 20 10

Sampling Size

Combined

Fault sampling alone

Figure 3: Bene�t of Combining Both Techniques.

VI Conclusions
A dynamic technique for fault coverage estimation has been
proposed in which very accurate fault coverage estimates
have been obtained with signi�cantly reduced execution
time. Tolerance-based fault-injection technique is used to
prevent injection of hyperactive faults, and unpropagata-
bility information is propagated dynamically in the circuit



Table 4: Combining Sampling and Tolerance Methods

Ckt Orig. 30% Sample Combination Orig. 10% Sample Combination

Est Spdup Est Spdup Est Spdup Est Spdup

s298 267.0 (10.4) 1.82 263.5 (9.3) 2.70 271.3 (22.9) 2.87 269.4 (25.2) 3.28

s344 328.7 (3.6) 2.14 327.2 (4.5) 2.73 327.5 (12.1) 2.50 325.3 (11.4) 3.26

s382 366.6 (6.2) 1.94 366.6 (6.2) 5.22 369.2 (8.0) 2.65 369.2 (8.0) 6.27

s400 382.2 (11.0) 2.11 383.2 (11.0) 5.33 381.8 (15.4) 3.22 381.8 (15.4) 6.81

s444 422.1 (11.1) 2.16 423.9 (11.1) 6.77 419.2 (18.9) 3.73 421.0 (18.9) 7.64

s526 447.0 (12.2) 1.58 443.9 (12.3) 3.93 443.6 (32.1) 2.47 439.4 (29.0) 5.26

s641 399.1 (14.7) 1.56 395.8 (15.2) 2.00 395.4 (30.3) 2.15 394.3 (30.2) 2.00

s713 475.0 (16.4) 1.73 461.6 (14.8) 2.38 474.4 (17.5) 2.24 463.4 (20.0) 2.71

s820 815.3 (9.6) 1.87 801.2 (11.5) 2.53 816.9 (12.7) 2.24 804.9 (16.8) 3.16

s832 822.4 (10.0) 1.74 810.4 (10.5) 2.51 818.7 (15.5) 2.90 807.3 (14.4) 2.97

s1196 1239.0 (2.5) 1.80 1213.4 (6.8) 1.91 1237.9 (5.3) 2.31 1218.0 (11.4) 2.20
s1238 1277.2 (15.1) 1.63 1247.2 (18.4) 1.83 1285.2 (26.0) 2.30 1257.1 (28.1) 2.30

s1423 1420.1 (13.9) 2.61 1420.1 (13.9) 5.23 1421.2 (28.4) 4.24 1421.2 (28.4) 8.49

s1488 1442.3 (8.8) 1.63 1434.5 (11.7) 2.49 1439.7 (21.0) 2.66 1427.9 (22.6) 3.00

s1494 1454.3 (10.0) 1.90 1436.5 (11.9) 2.78 1459.5 (10.0) 3.07 1427.7 (12.2) 3.02

s5378 3652.7 (27.9) 2.25 3632.7 (27.6) 4.31 3656.5 (72.5) 3.59 3632.7 (78.6) 5.70

s35932 35072.3 (92.5) 2.40 35027.8 (92.4) 3.32 35073.1 (180.3) 3.83 35034.0 (172.9) 5.06

am2910 2199.7 (15.5) 1.96 2199.3 (15.2) 3.70 2210.4 (34.0) 3.63 2210.4 (34.0) 4.98

mult16 1667.0 (8.3) 1.74 1664.3 (8.4) 5.22 1664.4 (15.7) 2.21 1660.3 (14.1) 6.50

div16 1819.8 (23.5) 2.06 1817.2 (23.2) 4.16 1810.5 (43.6) 2.95 1808.5 (44.3) 4.48

Spdup: Speedup of estimation over full fault simulation
Greatest speedups for each sample size are highlighted in bold

to avoid injection of excited but undetectable faults. As a
result, great speedups were obtained by using the proposed
approach; very accurate fault coverages were achieved com-
pared with the sampling technique alone. Combination of
our technique with the sampling method can further im-
prove the speedup without sacri�cing the estimation accu-
racy, which makes our technique very attractive. By this
combination, we are able to achieve speedups of small sam-
ple sizes while retaining small variances in large samples.
Speedups have nearly tripled for some circuits and more
than doubled for most other circuits.

References

[1] S. K. Jain and V. D. Agrawal, \Statistical fault analysis,"

IEEE Design & Test of Computers, vol. 2, no. 1, pp. 38-44,

Feb., 1985.
[2] S. K. Jain and D. M. Singer, \Characteristics of statis-

tical fault analysis," Proc. Int'l Conf. Computer Design,
pp. 24-30, 1986.

[3] V. D. Agrawal, \Sampling techniques for determining fault
coverage in LSI circuits," Journal of Digital Systems, vol.

5, no. 3, pp. 189-202, Fall, 1981.

[4] R. L. Wadsack, \Design veri�cation and testing of the

WE32100 CPUs," IEEE Design & Test of Computers, vol.
1, no. 3, pp. 66-75, Aug. 1984.

[5] K. Heragu, V. D. Agrawal, and M. Bushnell, \Fault cov-

erage estimation by test vector sampling," IEEE Trans.

CAD, vol. 14, May, 1995.
[6] C. R. Graham, E. M. Rudnick, and J. H. Patel, \Dynamic

fault grouping for PROOFS: a win for large sequential cir-

cuits," Proc. Int. Conf. VLSI Design, pp. 495-501, 1997.

[7] M. Abramovici, M. A. Breuer, and A. D. Friedman, Dig-
ital Systems Testing and Testable Design. New York, NY:

Computer Science Press, 1990.

[8] S. B. Akers, B. Krishnamurthy, S. Park, and A. Swami-

nathan, \Why is less information from logic simulation
more useful in fault simulation?" Proc. Int. Test Conf.,

pp. 786-800, 1990.

[9] E. M. Rudnick, T. M. Niermann, and J. H. Patel, \Meth-
ods for reducing events in sequential circuit fault simula-

tion," Proc. IEEE Intl. Conf. on CAD, pp.546-549, 1991.

[10] T. Niermann, W. T. Cheng, and J. H. Patel, \PROOFS: A

fast, memory-e�cient sequential circuit fault simulator,"
IEEE Trans. on CAD, vol. 11, no. 2, pp. 198-207, Feb.

1992.

[11] F. Brglez, D. Bryan, and K. Kozminski, \Combinational
pro�les of sequential benchmark circuits," Int. Symp. Cir-

cuits and Systems, pp. 1929-1934, 1989.

[12] M. S. Hsiao, E. M. Rudnick, and J. H. Patel, \Automatic

test generation using genetically-engineered distinguishing

sequences," Proc. VLSI Test Symp., pp. 216-223, 1996.

[13] T. M. Niermann and J. H. Patel, \HITEC: A test genera-

tion package for sequential circuits," Proc. European Conf.
Design Automation (EDAC), pp. 214-218, 1991.

[14] M. S. Hsiao, E. M. Rudnick, and J. H. Patel, \Sequen-

tial circuit test generation using dynamic state traversal,"
Proc. European Design and Test Conf., pp. 22-28, 1997.


	CDROM Home Page
	ICCAD98
	Front Matter
	Table of Contents
	Session Index
	Author Index


