
Circuit Partitioning with Complex Resource Constraints in FPGAs�

Huiqun Liu1, Kai Zhu2 and D. F. Wong1

1 Department of Computer Sciences

University of Texas at Austin, TX 78712

Email: hqliu@cs.utexas.edu, wong@cs.utexas.edu

2Actel Corporation

955 East Arques Avenue, Sunnyvale, CA 94086

Email: zhu@actel.com

Abstract

In this paper, we present an algorithm for circuit partition-
ing with complex resource constraints in large FPGAs. Tra-
ditional partitioning methods estimate the capacity of an
FPGA device by counting the number of logic blocks, how-
ever this is not accurate with the increasing capacity and
diverse resource types in the new FPGA architectures. We
propose a network ow based method to optimally check
whether a circuit or a sub-circuit is feasible for a set of avail-
able heterogeneous resources. The feasibility checking pro-
cedure is integrated in the FM-based algorithm for circuit
partitioning. Incremental ow technique is employed for ef-
�cient implementation. Experimental results on the MCNC
benchmark circuits show that our partitioning algorithm not
only yields good results, but also is e�cient. Our algorithm
for partitioning with complex resource constraints is appli-
cable for both multiple FPGA designs (e.g. logic emulation
systems) and partitioning-based placement algorithms for a
single large hierarchical FPGA (e.g. Actel's ES6500 FPGA
family).

1 Introduction

The new generation of large FPGAs are targeted at greater
logic capacity and higher system performance. Partitioning
heuristics play a fundamental role in addressing the increas-
ing complexity both in multi-FPGA circuit implementation
as well as placement on a single large hierarchical FPGA.
For example, for placement on a large FPGA of hierarchical
architecture such as Actel's ES6500 family, it is necessary
to partition the circuit into separate hierarchical blocks �rst
and then do placement on the individual hierarchical blocks.

A popular formulation of the circuit partitioning prob-
lem is to minimize the number of cut nets between parti-
tions while satisfying the resource capacity constraints in
each partition. Normally the resource constraint is simply

�The work of Liu and Wong was partially supported by the Texas
Advanced Research Program under Grant No. 003658288.

calculated as the area or gate count available on the chip in
order to avoid overow of resource usage during placement.

However, for circuit partitioning in FPGAs, measuring
resource capacity by simply using area or gate count is inac-
curate and is no longer adequate for practical purposes. One
major reason is due to the increasing number of di�erent re-
sources available in the new generation of FPGAs. Driven by
the demand of supporting system level applications, FPGAs
are getting larger in terms of capacity and at the same time
are also getting more heterogeneous in terms of types of re-
sources available. For example, it is not uncommon to �nd
a commercial FPGA that contains di�erent logic modules
(e.g. LUTs of di�erent sizes), complex IO modules, vari-
ous speed grade clocks, embedded SRAM memory arrays,
and dedicated architecture resources designed for support-
ing special functions (e.g. wide input gates). This trend
of increasing number of di�erent resources will continue as
various intellectual property (IP) blocks are integrated with
FPGAs. Another major reason for the inaccuracy of simple
capacity metric is that normally a node in a netlist can be
implemented using di�erent resources in FPGAs. For exam-
ple, Actel ES6500 FPGA family contains LUT2 and LUT3
[18,19]. A 2-input gate can be implemented using either a
LUT2 or a LUT3. Similarly, a resource on FPGA can be
used to implement di�erent types of nodes in a netlist. Such
multiple choices of implementation of a netlist on an FPGA
can not be accurately captured by a simple area or gate
count capacity metric.

Though many algorithms have been proposed for circuit
partitioning problems [1,2,3,4,5,7,8,9,10,11,12,13], the mul-
tiple resource types in an FPGA are not taken into con-
sideration. A partitioning algorithm with simple resource
capacity metric may produce partitioning results that actu-
ally violate resource constraints and thus render the results
unusable. For a partitioning algorithm to be useful for solv-
ing practical FPGA partitioning problems, especially for the
netlists with high FPGA utilization, it is necessary to em-
ploy an accurate resource capacity metric and incorporate it
in the partitioning algorithm. None of the published parti-
tioning algorithms that we are aware of meet these require-
ments.

The above analysis motivates our work in the circuit par-
titioning problem with complex resource constraints. In this
paper, we �rst give a network ow based feasibility checking
algorithm to optimally check whether the amount of logic
in a circuit can be implemented by the given set of available
resources. Then the feasibility checking method is embed-

ded in the FM-based partitioning method to �nd a partition
that satis�es the resource constraints. For e�ciency, incre-
mental ow computation is employed. When moving a node
from one subset to another, the constructed ow networks
are maintained dynamically and e�ciently by the insertion
and deletion operations. Our approach can also be applied
to hierarchical partitioning and multi-way partitioning algo-
rithms.

Our algorithm is applicable for circuit implementation in
multi-FPGAs (e.g. logic emulation) and partitioning-based
placement algorithms for a single large hierarchical FPGA
(e.g Actel's ES6500 FPGA family). The organization of the
following sections is as follows. We present the problem for-
mulation of partitioning with complex resource constraints
in section 2. A network ow based method is proposed for
feasibility checking in section 3.1 and an algorithm which
integrates the feasibility checking method with an iterative
improvement based partitioning is proposed in section 3.2.
Section 3.3 discusses the incremental ow computation tech-
nique used to make our approach e�cient. Section 4 shows
the experimental results on the MCNC benchmark circuits.

2 Problem Formulation

We consider the problem of partitioning with complex re-
source constraints for FPGAs. It is di�erent from the pre-
vious published algorithms that we are aware of in the fol-
lowing two aspects. First, a target device, such as FPGA,
contains multiple types of resources. Secondly, each node in
the circuit has multiple choices of implementation by di�er-
ent types of resources. For example, a design system may
get an ASIC-like library from FPGA vendors and output
the netlist in terms of library cells instead of LUTs. For Ac-
tel's ES6500 family, the library cells are classi�ed into one of
three categories: basic, hard and soft library cells. A hard
or a soft library cell can be decomposed into multiple basic
cells. A basic cell can not be further decomposed and rep-
resents a distinct logic function which can not be \covered"
by any other basic cells. A basic cell can be implemented
by one of a few optional resources.

For a device such as FPGA, let R = fr1; :::; rkg be a
set of k resource types and let n(ri) be the capacity for
resource type ri (1 � i � k). Let C be a set of types of
basic cells in the library. Each c in C maps to Rc, where
Rc = fri1 ; :::; risg is a subset of resources such that a basic
cell of type c can be implemented by one of the s alternative
resources in Rc.

A circuit can be represented by a netlist G = (V;E)
where V is the set of nodes and E is the set of nets. Each
net nt 2 E connects two or more nodes together. Each node
v in V corresponds to a functional or library cell that can
be further decomposed into a set of basic cells, represented
as v = (cv1 ; cv2; :::; cvp) where cvj 2 C for 1 � j � p. Note
that cv1 ; :::; cvp are not necessarily di�erent, and p = 1 if v
is a basic cell. The decomposition of a functional node v
into the basic cells depends on the function of the node. v is
implemented only when each cvj (1 � j � p) is implemented
by the available resources.

A circuit G is de�ned to be feasible for a set of resources R
if the amount of logic in G can be implemented by the given
resources, that is, there exists at least one resource allocation
scheme such that

P
v2V

u(v; i) � n(ri) for 1 � i � k, where

u(v; i) is the number of resource ri utilized by node v.

resource needed to
implement the cell

3

4

 implement the cell

4

1

 cell type
resource needed to

X X Y Y
cut 1 cut 2

r

r

3r

c

c

c

c

1

3

4

resource capacity
per partition

r

 r

r

r4

2

1

3

 r 2

3

3

3

3

2

Figure 1: A special case of the partitioning with complex
resource constraints problem. Each basic cell in the circuit
can be implemented by exactly one type of resource.

Given two sets of resources R1 and R2, the problem of
two-way partitioning with complex resource constraints is
to partition a netlist G into two non-overlapping subsets V1
and V2, subject to

1. V = V1 [V2;
2. V1 is feasible for R1 and V2 is feasible for R2;

with the objective of minimizing the total number of cut
nets jNcutj, where Ncut = fnt 2 E j 9u; v 2 nt; s:t u 2
V1; v 2 V2g.

We refer to the above partitioning problem as partition-
ing with complex resource constraints. The objective is to
minimize the number of cut nets while satisfying the re-
source constraints simultaneously. A special case of this
problem is when there is only one type of resource in both
R1 and R2. This is the traditional problem of min-cut bi-
partitioning when the two partitioned subsets are balanced
by the total area of each subset, where the area of each cell
is the number of resources (e:g LUTs) used. Many heuristic
approaches have been proposed to solve this problem, such
as the iterative improvement method (K&L, FM)[1,2,8,9],
simulated annealing[3], spectral-based method[4,7,11] and
network ow-based method (FBB)[10]. Even this special
case is well known to be a NP-complete problem, so is the
general problem stated above. This leads to Lemma 1.

Lemma 1: The problem of two-way circuit partitioning
with complex resource constraints is NP-complete.

Another special case is when each of the basic cells only
maps to one type of resource (i:e: jRcj = 1 for each c). The
objective of the partitioning problem is to balance the dif-
ferent types of nodes in each subset. In the example shown
in Figure 1, each cell can be implemented by one type of
resource and the capacity for each resource is given in the
table. Cut 2 is a feasible partitioning solution since each
type of resources used in each subset does not exceed the ca-
pacity. Cut 1 is not a feasible partitioning solution, though
it has a smaller cut-size than that of cut 2. This is because
there are four cells of type c4 in X, which require four r4
type of resources. Since the capacity for resource type r4 is
only 3, there is not enough resource to implement the four
cells of type c4.

Figure 2 illustrates an example of the partitioning prob-
lem with complex resource constraints. Each node in the
circuit maps to one basic cell and each basic cell can be im-
plemented by one of the optional resources. For example,
c1 can be implemented by either resource r1 or r2, c2 can
be implemented by either r1 or r3 and so on. The capacity
for each of the three resource types is 4. The cut shown
in Figure 2(a) is a feasible partitioning solution as one re-
source allocation scheme is shown in �gure 2(c) to satisfy
the resource constraints.

r

r

r

r

r

r

r

r

r

r

r

r

r r

r

r

r

r

r

r

r

1

1

1

1

1

33

3

3 3

(a)

(c)

1 3

3

2

2

2
1

1

2

2

3

cut

One possible resource assignment

cut

(b)
 cell type

optional resources
to implement the cell

resource capacity
 per partition

r

r

r

1

2

3

4

4

4

r

r

r2

r r

r

3

r

3

31

1 2
c

c

c

c4

3

2

1

Figure 2: An example of the problem of partitioning with
complex resource constraints. Each node in the circuit can
be implemented by more than one type of resource.

Note that R1 and R2 can be two di�erent sets of re-
sources, which happens when we hierarchically partition a
circuit for placement inside an FPGA device, and the avail-
able resources in di�erent blocks of the device may be dif-
ferent. For example, the block near the border of the FPGA
device usually has more I/O modules than a block in the
middle of the device.

3 Partitioning with Network Flow Based Feasibility
Checking

3.1 Network Flow Based Feasibility Checking

With multiple types of resources and multiple choices to im-
plement a basic cell, it is not obvious to see whether there
exists a resource allocation for a feasible partitioning so-
lution. In this section, we present a network ow based
method to check whether a circuit or a subcircuit is feasible
with respect to the resource constraints. In the next sec-
tion, we will embed this feasibility checking method in the
FM-based partitioning algorithm.

In a circuit G = (V;E), each node can be decomposed
into a set of basic cells according to its function and the
circuit can be implemented only when each of the basic cells
is implemented by a resource. Note that the decomposition
of a node into basic cells is stored in the library and can
be retrieved in O(1) time. Let C 0 = fc1; :::; cmg be a set
of m types of basic cells decomposed from V and let n(ci)
denote the total number of basic cells of type ci (1 � i �

m) decomposed from V . Typically it is unlikely that every
type of basic cell in the library will be used in a circuit,
so C 0

� C and jC 0
j is usually less than jCj where C is

the set of basic cell types in the library. Given a set of
resources R = fr1; :::; rkg, let Rc (Rc � R) be the subset
of optional resources to implement basic cell of type c for
each c 2 C 0. We construct the ow network F = (V 0; E0) as
follows (shown in Figure 3):

 Types of
 basic cells

Types of
resources

1

k

2

m

3

2

1n(r)

n(r)

kn(r)

 n(c)

1n(c)

n(c)

n(c)

c

s t

1

c2

c3

cm

r

r2

r

Figure 3: A ow network is constructed for feasibility check-
ing

1. V 0 = fsg [C 0
[R [ftg, where s and t are the source

and sink of the ow network.

2. For each c 2 C 0, add an edge s! c with capacity n(c),
where n(c) is the total number of basic cells of type c
in the decomposed circuit.

3. For each c 2 C 0, add an edge c ! r with capacity 1
for each r 2 Rc.

4. For each r 2 R, add an edge r ! t with capacity n(r),
where n(r) is the capacity of resource type r.

After the ow network is built, every directed edge is
assigned a capacity and initially the ows on all the edges
are zero. We can check the feasibility of a circuit by a maxi-
mum ow computation on the network. The maximum ow
computation pushes ow from the source to the sink until
no more ows can be added. Let cap(v; u) and flow(v;u)
denote the capacity and ow on edge v ! u respectively.
For every edge v ! u, 0 � flow(v;u) � cap(v; u). Ex-
cept the source and sink, for each of the other nodes,
the sum of incoming ow is equal to the sum of outgoing
ow, i.e. for all v 2 V 0

� fs; tg,
P

u (u;v)2E0
flow(u;v) =

P
u (v;u)2E0

flow(v;u). An edge v ! u is saturated if its

capacity is equal to the ow (i:e cap(v; u) = flow(v;u)).
After the maximum ow computation, if every edge s! ci
is saturated, then the circuit is feasible in that each cell can
�nd the available resource to implement it.

Lemma 2: A circuit G is feasible if and only if by the
maximum ow computation in F , all the out-going edges
from the source (i:e s ! ci for 1 � i � m) are saturated,
i:e:
P

i
cap(s; ci) =

P
i
flow(s; ci).

Proof If circuit G is feasible, then there exists at least
one resource allocation scheme such that each cell can be
assigned with an available resource. If a cell of type c

is assigned with resource r, then add a ow on the path:
s ! c ! r ! t. Since each cell is successfully assigned
with a resource, it contributes exactly one ow through the
network. Thus for each edge s! ci, flow(s; ci) = cap(s; ci)
and therefore

P
i
cap(s; ci) =

P
i
flow(s; ci).

On the other hand, if after the max-ow computation,
every edge s ! c (c 2 C 0) is saturated, then one ow on
a path s ! c ! r ! t corresponds to an assignment of
resource r to a cell of type c. Since each edge s ! c is

/1

/3

/3

3/3

10/6

8/6

4/4

/0

 /0
4/4

/0

c1

c

c

c3

4

c5

c6

2

s t

r

r

r

r

1

2

3

4

3/3

6/6

3/3

2/2

3/3

/3
/0

/1

/3

/0
/6

(a) (b)

capacity/flow

/1

/3

/3

3/3

10/6

8/6

4/4

/0

 /0
4/4

/0

c1

c

c

c3

4

c5

c6

2

s t
r

r

r

2

3

4

3/3

6/6

3/3

3/3

/3
/0

/1

/3

/0
/6

4/2

r1

Figure 4: The circuit is feasible if and only if every edge
starting from the source is saturated in the ow network.
The circuit corresponds to (a) is feasible. (b) shows an ex-
ample that even if the total number of cells is less than the
total number of resources, the circuit is still not feasible.

saturated and the capacity on the edge is the total number
of basic cells of type c, all the basic cells in the circuit must
be assigned with the corresponding resources, therefore the
circuit is feasible. From the above analysis, Lemma 2 holds.
2

Figure 4 shows two examples. In Figure 4(a), there are 6
types of basic cells and 4 types of resources. Rc1 = fr1; r2g,
such that there are two edges c1 ! r1 and c1 ! r2. Af-
ter the max-ow computation, every out-going edge from
the source s is saturated, which means all the cells can be
implemented by the available resources. Figure 4(b) is an
example showing that even if the total number of basic cells
in the circuit (22) is less than the total number of resources
(26), the circuit is still not feasible. When the capacity on
edge s! c5 is changed to four, edge s! c5 is not saturated
after the max-ow computation (flow(s; c5) < cap(s; c5)).
By Lemma 2, the circuit is not feasible and can not possibly
be implemented by the available resources. This is because
cell type c3 and c5 can be implemented by resource r3 or r4,
and c6 can only be implemented by r4. Besides the three
resources of type r4 used for c6, there is one resource of type
r4 and four resources of type r3 left that can be used for cell
type c3 and c5. However, a total of seven cells of type c3
and c5 need to be implemented. Hence, there is not enough
resource to implement the logic.

The total number of nodes in the ow network F is jC 0
j+

jRj+ 2 and the number of edges in the network is O(jC 0
j+

jC 0
j � jRj + jRj) = O(jC 0

j � jRj). Note that jC 0
j is usually

much smaller than jV j, because C 0 only contains the types
of basic cells decomposed from the circuit, rather than all
the nodes in V . C 0 depends on the size of the library. In
practice, many nodes in V are of the same type, and the total
number of basic cells of type ci is reected on the capacity
of the edge s ! ci (1 � i � m). For the Actel's ES6500
family of FPGA, the number of basic cells in the library is
around 300 and the average number of resource types is 5.
Since the size of the ow network is independent of the size
of a circuit, the feasibility checking method is scalable to
large circuits.

To make the feasibility checking more e�cient, we can
further group the basic cells which have the same resource
requirement into one class. It is observed that some basic
cells, regardless of their logic functions, map to the same
subset of resources. We de�ne ci and cj to be equivalent
(denoted by ci � cj) if Rci = Rcj . Thus we merge all the
equivalent basic cells into one node in the ow network, and

r 1

r 2

r 3

r 2

r 3

r 2

r 1

r 3

F

/0

/0
4/4

4/4

2

/2

/2

/0

 2/2

2/2

2/2

4/4

4/2

Two flow networks to check the feasibility for each subset

V V1 2

cut

/4

capacity/flow

 cell type
optional resources

to implement the cell
resource capacity
 per partition

1

s t s t

r3

2r

r

r

r

r

1

2

3

4

4

4

c
c

c

c

1

2

3

4

2r1

3r1 r

3r2r

3r

r

F 1

 3/3

3/3

3/3

2/2

/3

/0

/1

/2

/0

4/3

4/4

4/4

/2

/3 /2

Figure 5: Two ow networks F1 and F2 are built for the
feasibility checking of subsets V1 and V2 respectively.

let C 00 be the set of newly merged nodes. We can build
the ow network in the same way as before by replacing
C 0 by C 00. Note that each node in C 00 uniquely maps to
one subset of resources. For jRj resource types, the number

of non-empty subset is at most 2jRj
� 1, so the number of

nodes in C 00 is at most min(2jRj
� 1; jC 0

j). In practice, jRj
is usually around 5, so jC 00

j is at most 31. If jRj is 6, then
jC 00
j is at most 63. Therefore, the size of the network can

be further reduced.

A two-way partitioning solution is feasible only when
each partitioned subset is feasible. To check the feasibil-
ity of a partitioning solution, we build two networks F1 and
F2 to check the feasibility of the two subsets V1 and V2 re-
spectively. If both subsets are feasible, then the partitioning
solution is feasible. Figure 5 shows the two networks which
are used to check the feasibility of each subset for the exam-
ple in Figure 2. Detail is discussed in the next two sections.

3.2 Two Way Partitioning with Feasibility Checking

In this section, we propose a partitioning algorithm by inte-
grating the network ow based feasibility checking in a two
way iterative improvement circuit partitioning algorithm.
The partitioned subsets satisfy the resource constraints.

Since the two-way balanced circuit partitioning problem
is NP-complete, a number of iterative improvement schemes
have been proposed [1,2,4,5,8,9,16,17]. In iterative improve-
ment methods, we start with a random two-way partitioning

of the circuit, and iteratively improve it by either swapping
pairs of nodes between the subsets or moving one node at a
time so that the net cut size is reduced.

The FM iterative partitioning process repeatedly move
a node from one subset to the other in order to reduce the
min cut size. It determines the next best node ui to move
in the ith step as follows. The \unlocked" cell (initially
all nodes are unlocked) with the maximum gain in either
subset is determined. If the balance criterion on the two
subsets can be maintained after moving this node from its
current subset to the other one, it is chosen as the node
ui. Otherwise, the unlocked node with the maximum gain
in the other subset is chosen as ui. Node ui is then moved
to the other subset and \locked", and the gains of all its
neighbors are updated if a net becomes critical when ui is
moved. The node gain gain(ui) is inserted in an ordered
set S. After all nodes are moved and locked, all pre�x sum

Sk =
Pk

t=1
gain(ut) are computed (1 � k � n), and a p is

determined for which the partial sum Sp is the maximum.
The set of nodes that are actually moved are then fu1; :::upg.
This whole process is called a pass. A number of passes are
made until the maximum partial sum is zero or negative.
The resulting cutset cost is a local minima with respect to
the initial partitions V1 and V2.

In order to meet the resource constraints, network ow-
based feasibility checking discussed in section 3.1 can be
integrated in each iteration of the FM partitioning method.
Two ow networks F1 and F2 (as illustrated in Figure 5) are
built for the feasibility checking for each of the two subsets
V1 and V2.

In each iterative step, when a node with the maximum
gain is selected, it is checked whether the subset to which
the node is to be moved is still feasible. This is done by the
insertion operation (more details are given in section 3.3) on
the corresponding ow network as follows. The candidate
node to be moved is decomposed into a set of basic cells
(ci1 ; ci2 ; :::; cip), and the capacity on edge s ! cij for 1 �
j � p is incremented. Then maximum ow is computed.
There are two cases according to the result of the max-ow
computation.

Case 1: If all the edges going out of the source s are
saturated, by Lemma 2, the subset is still feasible when
the node is moved to it. Next, the network of the node's
original subset will be modi�ed by the deletion operation
which deletes the corresponding capacity from edge s! cij
for 1 � j � p and deletes the same amount of ow through
the network.

Case 2: If after the maximum ow computation, not ev-
ery edge out-going from the source is saturated, by Lemma
2, the subset will not be feasible if the node is moved to it.
The network is recovered to its previous state by the dele-
tion operation which deletes the added capacity and ow on
the modi�ed edges. Then another node with the maximum
gain will be selected as the new candidate and the feasibil-
ity checking is applied again until a node is found which can
keep both subsets feasible when it is moved.

We designed the FFC-fm algorithm, which combines the
network ow-based feasibility checking method with the FM
method for circuit partitioning with complex resource con-
straints. First, two networks are constructed, one for each
subset in the partition. The capacity on the edges from a
resource node to the sink (i.e. ri ! t) is set to be equal
to the capacity of the corresponding resource. Next, a fea-
sible initial partition is found. This is done by randomly

distribute all the cells belonging to the same type of basic
cells into two subsets according to the resource capacity in
each subset. After the initial partition, the capacity on the
edges s ! ci (1 � i � m) is set to be the number of basic
cells of type ci decomposed from the subset. Then nodes are
iteratively moved from one subset to another while trying
to reduce the total cut-size, and the feasibility of the two
subsets is checked by the max-ow computation on the two
ow networks in each iteration.

3.3 Incremental Flow Computation for E�cient Imple-
mentation

The e�ciency of the feasibility checking process is of great
concern for the practical use of our FFC-fm algorithm. In-
cremental ow technique is employed to make the max-ow
computation e�cient. In each feasibility checking process,
it is not necessary to compute the max-ow from scratch,
only additional ow is added to saturate the edges.

After the initial partitioning, maximum ow is computed
on the two networks F1 and F2. The two networks keep
the current status of the resource assignment for each of
the subsets, and are dynamically and incrementally changed
when a node is moved. In each step, when a node is moved
to a subset Vi, the capacity on the related edges in Fi is
incremented and additional ow is added in the network. If
a node is removed from a subset Vi, then the capacity on
the related edges in Fi is decremented and ow is deleted.

Two operations, insertion and deletion operations, are
designed to dynamically maintain the two ow networks
(Figure 6). The insertion operation is used to check if a
subset is still feasible if a node v is moved to it. It works as
follows.

Procedure insertion(v, F):

1. Decompose v into a set of basic cells v = (ci1 ; ci2 :::cip),
then the capacity on edge s ! cij (1 � j � p) is in-
creased by 1 (i:e cap(s; cij) is increased by 1). Let �c
be the total number of capacities added to these edges.

2. Additional ows are pushed from the source to the sink
by the maximum ow computation in F . Let �f be
the total amount of ow added through the network.

3. If �c = �f , then every edge going out of the source
is saturated. By Lemma 2, the subset is still feasible
when node v is moved to it. Otherwise, if �f < �c,
then the subset is not feasible when node v is moved
to it.

Lemma 3: When a node v is added to a feasible subset
V1, the new subset V1 [fvg is still feasible if and only if the
newly pushed ow �f by the max-ow computation is equal
to the newly added capacity �c in F1.

Proof If V1 is feasible and F1 is the corresponding check-
ing network, then

Pm

i=1
flow(s;ci) =

Pm

i=1
cap(s; ci) in F1.

Since V1 [fvg is also feasible, then every edge s ! ci is
still saturated after the max-ow computation. Therefore,
�f = �c. On the other hand, if �f = �c, then the edges
going out of the source are saturated both before and after
v is moved, so V1 [fvg is feasible. 2

The time complexity for one insertion is O(1) in the best
case and O(jC 0

j � jRj) in the worst case, where jC 0
j is the

number of types of basic cells and jRj is the number of re-
source types. However, the average time for insertion is
usually much less than the worst case, which will be shown
in our experiments.

The deletion operation is used under two situations: (1)
If insertion operation shows that the subset Vi is feasible
when a node v is moved to it, then v is moved to Vi but the
capacity and ows should be deleted from the network of its
original subset. (2) If after insertion, it is found that the
subset will become infeasible if the node is moved to it, the
inserted capacity and ow should be deleted and the network
Fi is restored to its previous state as before insertion. The
deletion operation works as follows.

Procedure deletion(v, F):

1. Let v be decomposed into a set of basic cells:
v = (cv1; cv2 :::cvp);

2. for each cvj (1 � j � p) do
begin

cap(s; cvj) cap(s; cvj)� 1;
select r incident on cvj such that flow(cvj ; r) > 0;
flow(s; cvj) flow(s; cvj)� 1;
flow(cvj ; r) flow(cvj; r)� 1;
flow(r; t) flow(r; t)� 1;

end

In step 1, the node v to be deleted is decomposed into
a set of basic cells v = (cv1; cv2:::cvp). This can be done in
O(1) time since the information for the decomposition can
be directly retrieved from the library. In step 2, for each cvj ,
the capacity on edge s ! cvj is decremented. Then node r
incident on cvj is selected such that flow(cvj; r) > 0, and
ow is deleted from each edge on the path s! cvj ! r ! t.
After the deletion operation, every edge outgoing from the
source is saturated, and the feature holds that for any node
rather than the source and sink, the sum of incoming ow
is equal to the sum of the out-going ow.

Lemma 4: If a node is removed from a feasible subset
V1 and the corresponding capacity and ow are deleted from
the ow network F1 by the deletion operation, the resulting
circuit is still feasible and

P
i
flow(s; ci) =

P
i
cap(s; ci).

The time complexity for one deletion operation is O(jC 0
j�

jRj). Let p be the average number of basic cells that can be
decomposed from a node and let t be the average number
of optional resources for a basic cell, then the average time
complexity for one deletion operation is O(p �t). For the Ac-
tel's ES6500 family of FPGA, p is around 2 and t is around
1:5, therefore the average time complexity for one deletion
operation is O(p � t) = O(1).

In the FFC-fm algorithm, for one feasibility checking,
no matter a node is moved successfully or not, it needs
one insertion and one deletion operation on the ow net-
works, thus the time complexity for one feasibility check-
ing is O(jC 0

j � jRj) + O(jC 0
j � jRj) = O(jC 0

j � jRj). In each
iteration of FFC-fm, to �nd a node to be moved so that
the target subset is feasible takes time O(jC 0

j � jRj � jV j),
since in the worst case jV j nodes may be tried. Since the

x

V V1 2

cut

capacity/flow

The flow networks before x is moved

The flow networks after x is moved from V2 to V1.

Step 1: check if V1 is feasible if x is

an edge on which the capacity or the flow is changed.

and flow for x in F2 is deleted by
Step 2: x is moved to V1. The capacity

moved to it by the insertion
operation on F1. the deletion operation.

F 1

/1

/2

/0
4/4

F

/0
4/4

2

/2

/0
2/2

2/2

4/4

/2

4/3
/1

4/3s t

r

r

r

s t

r

r

r

1

2

3

1

2

3

3/3

3/3

2/2

 3/3
/1

4/4

 2/2

/1

4/3

F 1

/0

/1

/2

/0

F

/0

2

/2

/2

/0
2/2

2/2

4/4

/2

 3/3
/1

s t

r

r

r

s t

r

r

r

1

2

3

1

2

3

 2/2

3/3

3/3

2/2

/2

4/4

4/3

4/3

/4

4/4

4/3

4/4

/2 /4

/3 /2

/3 /2

Figure 6: An example of the insertion and deletion opera-
tion. Step 1: if x is the node with the maximum gain, the
insertion operation checks if x can be moved to V1. The
capacity on edge s ! c1 is incremented and max-ow is
computed on the network F1. Step 2: since V1[fxg is feasi-
ble, x can be successfully moved to V1. The capacity on edge
s! c1 in F2 is decremented and ow is deleted through the
network.

time complexity for one pass of the FM method is O(P),
where P is the number of pins of all the nets in the circuit,
the time complexity for one pass of FFC-fm algorithm is
O(jC 0

j � jRj � jV j
2) + O(P). For Actel's ES6500 family, jC 0

j

is less than 300 and jRj is around 5, so the time complexity
of FFC-fm is O(jV j2) +O(P) = O(jV j2).

Our feasibility checking algorithm can be applied to other
iterative improvement partitioning methods, such as varia-
tions of FM-based method with di�erent tie-breaking strate-
gies, ratio-cut partitioning or simulated annealing method.
It can also be applied to hierarchical partitioning and multi-
way partitioning methods. For hierarchical partitioning,
each cluster can be treated as a single node and decomposed
into a set of basic cells when modifying the capacities on the
edges of the ow network. Insertion and deletion operations
can be applied in the same way. For multi-way partition-
ing, k networks will be built for each of the k partitions.
The ow network corresponding to each subset will be incre-
mentally changed by the insertion and deletion operations
when nodes are moved among the subsets, and feasibility is

Table 1: Comparison of the min-cut size

Min-cut (jC 0
j = 150; jRj = 5) Min-cut (jC 0

j = 250; jRj = 5)
Circuit #nodes #nets Static FFC-fm impr.% Static FFC-fm impr.%

c5315 1778 1655 89 61 31.4 63 41 34.9
c7552 2247 2140 67 39 41.8 59 30 49.1
c6288 2856 2824 98 67 31.6 86 56 34.8
s5378 3225 3176 90 73 18.9 81 62 23.4
s9234 6098 6076 112 87 22.3 93 71 26.7
s13207 9445 9324 101 85 15.2 109 84 23.0
s15850 11071 10984 112 89 20.5 107 81 24.3
s35932 19882 19560 123 101 17.8 133 99 25.6
s38584 22451 20719 107 91 15.0 111 87 21.6
s38417 25589 25483 98 77 21.4 107 82 23.3

checked according to Lemma 3.

4 Experiments and Discussions

We implemented the network ow based feasibility checking
algorithm in C language on IBM RS6000 workstation and
integrated it into the FM-based partitioning method. We
conducted the experiments on the MCNC Partitioning93
benchmark circuits which are shown in Table 1, and with
parameters consistent with Actel's ES6500 FPGA family.
The library contains around 300 cells. Each library cell is
classi�ed into one of three categories: basic, hard and soft
cell. A basic cell can not be further decomposed and it rep-
resents a distinct logic function which can not be \covered"
by any other basic cells. A hard or a soft library cell can be
decomposed into multiple basic cells. The average number
of basic cells that a library cell consists of is 2 and the aver-
age number of resource types that can be used to implement
a basic cell is 1.5.

In order to test our algorithm under complex resource
constraints, we designed the experiments by using the struc-
ture of the netlists in the MCNC benchmark, rather than
their actual logic functions. This is because each node in
the benchmark circuits is only a simple gate type and each
circuit has no more than twelve types of nodes, which is
not enough for our purpose. To generate netlists with more
types of basic cells, each node in the circuit is randomly
mapped to the basic cells in the library.

Since no previous published partitioning algorithms have
addressed the same partitioning problem with diverse re-
sources constraints, the comparison of the min-cut size of
FFC-fm with that of other papers is not available here. In
Table 1, we compare the min-cut size of the FFC-fm algo-
rithm with the static partitioning result when the resource
allocation for each basic cell is pre-determined before the
partitioning. For the static partitioning process, a basic cell
only maps to one type of resource. In the FFC-fm partition-
ing process, a basic cell maps to multiple resources and it is
necessary to apply the ow-based feasibility checking. In our
experiments, both algorithms are run ten times to get the
min-cut. The min-cut size closely depends on how tight the
resource constraints are. The experimental results not only
prove our analysis that the cut size can be substantially re-
duced, but also show when the resource constraints are tight,
the FFC-fm method still produces feasible solutions even
when the static algorithm fails. Network ow based feasibil-

Table 2: Average running time vs. feasibility checking time
(second)

jC 0
j = 100; jRj = 5 jC 0

j = 150; jRj = 5

Circuit Ttt Tck %=
Tck

Ttt
Ttt Tck %=

Tck

Ttt

c5315 0.52 0.26 45.8 0.45 0.20 45.5
c7552 0.61 0.28 41.9 0.62 0.27 44.2
c6288 0.70 0.31 40.9 0.89 0.44 49.2
s5378 0.80 0.38 42.5 0.81 0.34 42.3
s9234 1.61 0.757 42.8 1.92 0.96 50.2
s13207 2.49 1.19 43.5 3.01 1.41 47.0
s15850 3.03 1.45 43.5 3.11 1.40 44.9
s35932 5.16 2.23 39.4 5.40 2.18 40.5
s38584 7.81 3.51 44.0 6.39 2.63 41.1
s38417 7.44 3.32 45.1 8.20 3.89 47.5

jC 0
j = 200; jRj = 5 jC 0

j = 250; jRj = 5

Circuit Ttt Tck %=
Tck

Ttt
Ttt Tck %=

Tck

Ttt

c5315 0.51 0.23 46.4 0.84 0.50 59.2
c7552 0.65 0.31 48.7 1.07 0.57 51.4
c6288 0.79 0.36 45.1 0.92 0.47 50.9
s5378 0.89 0.41 45.7 1.53 0.78 50.8
s9234 1.73 0.79 45.9 2.03 1.05 51.7
s13207 2.71 1.23 45.2 3.37 1.78 52.7
s15850 3.46 1.60 46.3 5.26 3.07 57.3
s35932 6.28 2.73 43.4 9.59 5.56 57.9
s38584 7.32 3.15 43.1 11.19 6.53 58.1
s38417 7.84 3.45 44.1 8.45 4.16 49.3

ity checking has the advantage of dynamically adjusting the
resource allocation for a subset when each subset is incre-
mentally changed within each iteration of the partitioning
process. This gives a node more chance to be moved from
one subset to another, thus produces higher probability to
reduce the cut size.

E�ciency is also of great concern for practical applica-
tion of our algorithm. The feasibility checking is kept ef-
�cient by the incremental ow computation. As we merge
all the equivalent basic cells as discussed in 3.1, the size of
the network is almost constant for di�erent netlists since
it only depends on the number of types of basic cells and
types of diverse resource, regardless of the size of a circuit.

We tested our algorithm by assuming there are 5 resource
types with varying capacity for each resource type, and a
netlist contains 100, 150, 200 and 250 types of basic cells.

Table 2 shows the average total running time (Ttt) and
the average time for feasibility checking (Tck) in one pass
of the FFC-fm algorithm. Recall that one pass in our par-
titioning method starts with a feasible initial partition and
iteratively moves a node from one subset to another until
all nodes are locked or no node can be moved. Feasibility
checking is employed in each iteration to guarantee that the
partitioning solution satis�es the resource constraints. We
obtained the running time by running the algorithm with 20
di�erent initial partitions and calculated the average time.
The time for �nding a feasible initial partition is not counted
in Ttt in Table 2. From the experiments, the time for feasi-
bility checking ranges from 40% to 60% of the total running
time.

Compared with the FM-based method with simple area
metric for balancing the two subsets, our algorithm increases
the total running time by a reasonable amount, yet yields
feasible partitioning results which meet the resource con-
straints.

5 Conclusion

In this paper, we propose a general problem formulation
for circuit partitioning with complex resource constraints in
FPGAs. With the emerging new FPGA architectures with
diverse resources, the problem formulation for partitioning
with complex resource constraint is more accurate than the
simple gate count or area metric to estimate both the capac-
ity of an FPGA (or part of an FPGA for a hierarchical parti-
tioning inside one FPGA chip) and the resource requirement
of a circuit.

We present a network ow based method for feasibil-
ity checking and then integrate the feasibility checking into
the FM-based iterative improvement partitioning method,
so that the partitioning results satisfy the complex resource
constraints. We employ e�cient implementation by using
the incremental ow technique. Experiments show that our
feasibility checking approach is e�cient.

Recently, many improvements to the FM-based method
have been proposed [8,9,16,17]. Our network ow based
checking method can be integrated into those approaches.
In our future research, we will explore the strategy of tem-
porarily relaxing the resource constraints to bene�t the min-
cut objective. A node can be moved even if it fails the fea-
sibility checking, and the violations can be corrected in the
future moves so that the �nal solution satis�es the resource
constraints.

References

[1] B. W. Kernighan and S. Lin, \An E�cient Heuristic
Procedure for Partitioning Graphs", Bell System Tech.
Journal, vol. 49, Feb. 1970, pp. 291-307.

[2] C. M. Fiduccia and R. M. Mattheyses, \A linear-
time Heuristic for improving network partitions", Proc.
ACM/IEEE Design Automation Conference, 1982, pp.
175-181.

[3] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, Jr. \Opti-
mization by Simulated Annealing", Science, pp.671-680,
1983.

[4] Y. C. Wei and C. K. Cheng, \Towards E�cient Hierar-
chical Designs by Ratio Cut Partitioning", Proc. Inter-
national Conference on Computer-Aided Design, 1989,
pp.298-301.

[5] Y. C. Wei and C. K. Cheng, \An Improved Two-way
Partitioning Algorithm with Stable Performance", IEEE
Trans. on Computer-Aided Design, 1990, pp.1502-1511.

[6] C. J. Alpert and A. B. Kahng, \Recent Directions in
Netlist Partitioning: a Survey", the VLSI Journal, pp.1-
81, 1995.

[7] C. J. Alpert and S. Z. Yao, \Spectral Partitioning: The
More Eigenvectors, the Better", Proc. ACM/IEEE De-
sign Automation Conference, pp.195-200, 1995.

[8] S. Dutt and W. Deng, \VLSI Circuit Partitioning
by Cluster-Removal Using Iterative Improvement Tech-
niques", Proc. ACM/SIGDA Physical Design Workshop,
pp.92-99, 1996.

[9] S. Dutt and W. Deng, \A Probability-based Approach
to VLSI Circuit Partitioning", Proc. Design Automation
Conference, 1996.

[10] Honghua Yang and D.F. Wong, \E�cient Network
Flow Based Min-Cut Balanced Partitioning", Proc. IC-
CAD 1994, pp50-55.

[11] Jianmin Li, John Lillis and Chung-Kuan Cheng, \Lin-
ear Decomposition Algorithm for VLSI Design Applica-
tions", ICCAD'95, pp223-228.

[12] Pak K. Chan, Martin D.F Schlag and Jason Y.
Zien, \Spectral-Based Multi-Way FPGA Partitioning",
FPGA'95, pp133-139, Monterey, CA.

[13] N.C. Chou, L.T. Liu, C.K. Cheung, W.J. Dai and R.
Lindelof, \Circuit Partitioning for Huge Logic Emulation
Systems", 31th ACM/IEEE Design Automation Confer-
ence, pp244-249, CA, June 19 94.

[14] C. Sechen, VLSI Placement and Global Routing Us-
ing Simulated Annealing, Kluwer, B.V., Deventer, the
Netherlands.

[15] J.R. Ford and D.R. Fulkerson, Flows in Networks,
Princeton University Press, 1962.

[16] Jason Cong, Honching Peter Li, Sung Kyu Lim,
Toshiyuki Shibuya and Dongmin Xu, \Large Scale Cir-
cuit Partitioning with Loose/Stable Net Removal and
Signal Flow Based Clustering", International Conference
on Computer-Aided Design, 1997.

[17] Shantanu Dutt and Halim Theny, \Partitioning Around
Roadblocks: Tackling Constraints with Intermediate
Relaxations", International Conference on Computer-
Aided Design, 1997.

[18] Actel FPGA Data Book and Design Guide, Actel Cor-
poration, 1996.

[19] Actel's Reprogrammable SPGAs, Preliminary Advance
Information, Actel Corporation, October 10, 1996.

	Main Page
	FPGA98
	Front Matter
	Table of Contents
	Session Index

