Optimizations for a Highly Cost-Efficient
Programmable Logic Architecture

Kerry Veenstra, Bruce Pedersen, Jay Schleicher, Chiakang Sung
Altera Corporation, 101 Innovation Drive, San Jose, CA 95134

kerry @altera.com

1. ABSTRACT .
Architects of programmable logic devices
(PLDs) face several challenges when

optimizing a new device family for low
manufacturing cost. When given an aggressive
die-size goal, functional blocks that seem
otherwise insignificant become targets for area
reduction. Once low die cost is achieved, it is
seen that testing and packaging costs must be
considered. Interactions among these three
cost contributors pose trade-offs that prevent
independent optimization. This paper
discusses solutions discovered by the architects
optimizing the Altera FLEX 6000 architecture.

2. OVERVIEW

‘The FLEX 6000 family of devices is optimized for low
manufacturing cost while maintaining target levels of
performance and usability. Reminiscent of the FLEX 8000
architecture [1}], the FLEX 6000 architecture provides
better cost efficiency in the interconnect, Logic-Array
Blocks (LABs), and /O Elements (IOEs). FLEX 6000
capacity ranges from 800 LEs to 1,960 LEs.

The configuration bit in FLEX 6000 is not a traditional
RAM (random-access memory) cell but a smaller,
sequential-access memory cell, providing further cost
reduction. It was discovered that in addition to smaller die
area, a sequential-access memory cell provides an
opportunity for faster configuration times during testing,
thereby lower testing cost.

Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee.

FPGA 98 Monterey CA USA
Copyright 1998 ACM 0-89791-978-5/98/ 01..$5.00

20

10Es

Row
Interconnect

Local
Interconnect

nooooppoobog

gooooooDoaoan

Golumn
Interconnect

10Es

Figure 1: The FLEX 6000 Architecture Block Diagram

Finally, IC packaging, which normally does not affect PLD
architectures, had an unexpectedly strong impact on die
cost. We discovered that by focusing on the packaging
requirements of our industrial partners’ future products,
rather than looking at PLD shipments supporting their
current products, we could eliminate costly support for out-
of-date package technologies.

3. INTERCONNECT

FLEX 6000 interconnect improves on the interconnect of
the FLEX 8000 architecture. FLEX-style interconnect is
organized into three hierarchies: local, row, and column
(figure 1). Local interconnect provides communication
among the 8 or 10 LEs (FLEX Logic Elements) that
constitute a LAB. LABs communicate with other LABs as
necessary using the row (GH) and column (GV) hierarchies
of interconnect.

This LAB-based approach makes it possible to support
fitting through well-known partitioning algorithms
[3]1{4]1[5]. With appropriate extensions, these algorithms can
assist in the fitting of commercial PLDs [6].

3.1 Local Interconnect

FLEX 6000 interconnect differs from that of FLEX 8000
devices primarily in the local interconnect. In FLEX
8000 devices, local interconnect provides communication
for the LAB on one side of the local interconnect region.
But in the FLEX 6000 family, each local interconnect
region communicates with LABs on both sides (figure 2).
Within a row, the LABs and local interconnect regions are
interleaved. This change provides die-size savings through
two different effects.

First, each LAB can access twice as many local signals. For
a given placement, this change results in a greater number
of local interconnections and reduces the architecture’s need
for GH lines, thereby saving die size.

Second, with interleaved LABs, it is not necessary for a
partitioning algorithm to equalize the number of cuts
leading into each partition from the row interconnect.
During placement, partitions with above-average fan-in are
paired with partitions that have below-average fan-in,
thereby equalizing the fan-in requirements of the partition
pairs. Where the FLLEX 8000 architecture provides each
LAB with sufficient row-to-LAB interconnect for the
maximum partition fan-in, the FLEX 6000 architecture can
providle a more efficient amount of row-to-LAB

interconnect, closer to the average partition fan-in
(figure 3.)
3.2 Row Interconnect

In the FLEX 8000 architecture, which was designed on a
0.8-um process, partially populated crossbar switches route
row signals onto local interconnect. SPICE simulations of
crossbar switches on a 0.5-um process showed that
capacitance reductions of two process generations would
allow the FLEX 6000 crossbar switches not only to route a
row signal onto local interconnect:but to allow some local
signals to be routed onto row interconnect.

As a result, FLEX 6000 row interconnect is more flexible
than FLEX 8000 row interconnect. In FLEX 8000 devices,
each LE can drive a selected row line. But in the FLEX
6000 architecture, each LE can drive any of ten selected
row lines. This added flexibility helps avoid routing
blockages.

3.3 Column Interconnect

For performance and fitting reasons, FLEX architectures do
not enforce strict boundaries between the interconnect
hierarchies; ¢.g., an LE can drive directly up to the top of
the interconnect hierarchy (GV) rather than being required
to first route its signal through the local and GH
interconnect layers. Connections between pairs of

21

GH Interconnect

is bidirectionally connected LEs can directly drive GH

GH Interc\onnecf to local intercomzect. and GV interconnect.
\ \

7
/ /
Local The 10 LEs in the LAB are driven by two GV interconnect
Interconnect local interconnect areas. The LAB can drive
two local interconnect areas.
Figure 2: FLEX 6000 interleaves LABs
and local interconnect regions
3 —&—interleaved
Q
§ -—O— Non-interleaved
£
L3
-]
™
@
a
E
3
4

0 10

20
Partition Fan-in

30

Figure 3: Improvement in partition fan-in
resulting from interleaving LABs

interconnect hierarchies are provided in the architecture
based on fitting experiments using designs from industrial
partners.

Analysis of these designs’ performance revealed a need for
a direct route from GH to GV lines, complementing the
existing connections from GV to GH lines found in FLEX
8000 devices. Such a GH->GV connection was added to
the architecture of the FLEX 6000 family.

During fitting trials, a second, and perhaps more interesting,
use for this new feature was seen occasionally by software
engineers analyzing fitting results. It was discovered that
when the fitter routed non-critical lines, it would sometimes
specify multiplexer patterns that connected two GV lines
together through a GV->GH connection and a GH>GV
connection in series. Other times, the multiplexer patterns

would connect two GH lines of the same row in a similar
way through a series GH>GV connection and GV->GH
connection. Analysis showed that in these cases the fitter
was taking the "easy way out,” using circuitous routes
rather than adjusting the placement to allow a more direct
approach,

4. LOGIC-ARRAY BLOCK

Based on the analysis of industrial-partner designs, the
FLEX 6000 LAB improves on the efficiency of the FLEX
8000 LAB.

41 LE

In the FLEX 8000 architecture, all 8 LEs in a LAB are
identical. To improve the area efficiency of the family, each
FLEX 6000 LAB contains 8 identical general-purpose LEs
and two enhanced LEs. The first of the enhanced LEs
participates in the generation of LAB control signals. The
second improves synchronous counter speed.

4.2 LAB Control Signals

Design analysis revealed that signals such as register clears
and counter loads tend to act on LAB-size groups of LEs,
questioning the need to provide all LEs of a LAB with
independent control signals. The architectural change that
we selected allowed us to add to the LAB the first enhanced
LE mentioned above with little effect on die cost.

The FLEX 8000 architecture supports LAB-wide clocks
and asynchronous clears, but in FLEX 6000 devices the
LAB-wide signals also include synchronous clear,
synchronous load, and clock enable. Removing the local
generation of these three signals from the general-purpose
LE reduced its die area and allowed 9 LEs to exist where
previously there had been only 8.

Then, to generate the LAB-wide control signals, LE 1 was
modified (figure 4). Although this change added complexity
to LE 1, it saved area by allowing removal of local
interconnect formerly dedicated to the LAB-wide signals.

When a LAB requires one or more non-global control
signals, it uses inputs of LE 1. Then, if possible, the fitter
places logic in LE 1 that uses the same control signals. In
the case where no logic can be found for LE 1, the fitter
chooses logic requiring fewer inputs.

A slight impact on fitting was expected for designs that
used a large number of independent controls, since logic of
these designs would be more limited in its placement. But
fitting trials confirmed an overall improvement in device
logic capacity relative to FLEX 8000.

Since LE 1 is treated specially, and can have its fan-in
reduced, the carry and cascade chains of the LAB do not
pass through this LE.

4.3 Counter Sneak Path

A second enhanced LE was added to the LAB to improve
counter performance. All FLEX 8000 LEs have a fast
register feedback. But only the LSB of the counter, the bit
that starts the carry chain, is in the critical path. Therefore
in FLEX 6000, only LE2 has a fast register feedback.
Counters requiring the highest performance are placed with
their LSBs in this location. Other counters are allowed to
shift within the LAB during fitting to provide flexibility.

5. /0 ELEMENT

The choice to interleave LLABs and local interconnect
regions within a FLEX 6000 row required us to choose a
structure for the end of the row. In addition, an aggressive
goal for support of the PCI 1l-ns tco and 7-ns tgy
specifications [7] needed to be met.

The row architecture was balanced so that each
interconnect region was exactly sufficient to support the
input requirements of the two LABs on either side. Our
options for the structure at the end of the row and the
consequences of choosing each are listed on the next page.

The dedicated input signals
can drive the clock and
asynchronous clear signals.

R
K

LABCTRLY/ LABCTRL2

SYNCLR

CLK1/SYNLOAD CLK2
__V_d
LAB-wida control signals

Figure 4: Enhanced LE 1 generates LAB Control Signals

LAB. A full LAB on the end of a row would be starved for
interconnect.

Half-LAB. Ending a row with a special half-size 5-LE
"LAB-ette" would have complicated the fitter unacceptably.

Full interconnect region. Leaving a full interconnect
region on the end of a row to support a single LAB would
waste die area since it would provide an unnecessarily
abundant amount of interconnect to the LAB.

Half interconnect region. Designing and laying out a
special half-size "end-cap” region that provided signals to
only one LAB would save die area, but the added design
complexity would push out the schedule and complicate the
fitter.

IOEs. Replacing the outermost LABs with blocks that
require local interconnect signals from only one side would
allow us to use the same interconnect region throughout the
device. Since each side of a local interconnect region
generates 20 outputs, it was strongly suggested that the
outermost interconnect regions be connected to 10 tri-state
/O buffers, each of which normally has 2 inputs: data and
enable (figure 5). This choice would not affect the design
schedule because the IOE needed to be designed anyway.

Our decision to use this last alternative—and simply attach
the IOEs to the existing outermost local interconnect
regions—provided three benefits. First, the IOEs' position
allowed FLEX 6000 devices to comply with the PCI 11-ns
tco and 7-ns tgy specifications. Since the IOEs communicate
using the same local interconnect region as the LEs of the
adjacent LAB, delays were sufficient to achieve the goal of
a 33 MHz PCI target.

Second, by providing independent output enables for every
IOE, it is possible to emulate open-drain outputs by holding
an IOE’s data input low and toggling the output enable.

Third, fitting with pin assignments is improved. Rather than
providing flexibility between LEs and IOEs through a ring
of dedicated multiplexers, as is done in the FLEX 8000
architecture, the FLEX 6000 family uses existing local
interconnect. In this way, the fitter can trade-off
interconnect used for routing and interconnect used for pin
assignments.

A final interesting consequence of the FLEX 6000 IOE
interconnect architecture is that in some future device, IOEs
could be placed anywhere in the middle of the die by
replacing any LAB with a set of 20 IOEs. This alternative
could be used if area-array bonding becomes more
prominent in low-cost devices.

Row Interconnect

F—P» I0E

Local interconnect: The logic cell can
drive a pin through it for faster clock-to-output times.

Figure 5: FLEX 6000 IOEs and outermost

LAB connect to local interconnect
(N

Bit Line
Figure 6a: RAM

6. CONFIGURATION BIT

FLEX 6000 devices are manufactured
on a basic CMOS logic process. A
traditional means for creating memory
with such a process is to construct
static RAM cells from two cross-
coupled inverters, an access transistor,
a word line, and a bit line (figure 6a).

®

Word Li
'ord me\

FLEX 6000 configuration memory is
not RAM. Instead it uses a smaller,
sequential-access memory (SAM) cell
(figure 6b). A SAM array has no bit
lines, but instead uses a word line and
a single access transistor to gate the
data of each cell onto its neighbor.
This organization saves one metal line
per column of memory cells.

Word Lines

Y/

One way to program a SAM array is to
turn on all address lines and then feed
the data for the bottommost word into
the top of the array. This data
propagates to the bottom row of cells,
which is then write-protected by
turning off its address line. Then the
inverse of the next word's data is fed
into the top of the array. This inverse
data propagates down to the second
row from the bottom. At this point, the
next address line up is turned off, write
protecting the second word.

Figure 6b: SAM

This process continues, driving the ‘top of the array with
successive words (inverting alternate words) and turning off
the address lines one at a time from the bottom of the array
to the top, until the array is fully configured. Reading the
array for testing purposes is accomplished in a similar way,
turning on successive address lines starting at the bottom,
and reading successive words as they emerge from the
bottom of the array.

Notice that pairs of cells in a column form the master and
slave latches of a shift register’s flip-flops. A high-speed
SAM-array test mode creates virtual shift registers through
which data can propagate downwards rapidly by alternately
turning on all even address lines, followed by turning on all
odd address lines. The massive configuration-stream
bandwidth provided by this technique precludes using a
serial data input pin with a CRC check, and so in this mode,
configuration data is provided.in parallel from the topmost
pins of the device. Although the mode lacks the safety of a
CRC check, thereby rendering it unsuitable for customer
use, it nonetheless provides faster configuration during
testing and therefore lowers test costs.

Note that a SAM array lacks true random access since each
cell must program its lower neighbor before it can be
programmed itself. But since true random-access
configuration complicates or makes impossible the CRC
checks found in PLD configuration streams, random-access
configuration was not made a requirement of the FLEX
6000 architecture. The alternative to a CRC, adding
circuitry .in the device to allow it to tolerate configuration
data errors, was deemed inappropriate for a low-cost
architecture.

7. PACKAGING TRADE-OFFS

PLCCs (plastic leaded chip carriers) are very popular
semiconductor ‘packages. However, if the FLEX 6000
architecture had attempted to support PLCCs, the die would
have needed to use the 4-to-6 mil bond-pad pitch that is
required for PLCC wire bonders [2].

Instead, the architecture was based on an internal analysis
of new, high-volume design wins which determined that
PQFP (plastic quad flat pack), TQFP (thin quad flat pack),
and BGA (ball grid array) packages are the most popular
packages for new, high-volume designs. New QFP wire
bonders allow a die bond-pad pitch of 3.2 mils, which is
20% to 47% denser than the 4-to-6 mil pitch required by
PLCC wire bonders.

As a result, we gave the FLEX 6000 family a quantity of
IOEs sufficient to support pads placed on a 3.2-mil pitch
around the die. In this way, the cost per I/0 is reduced by
between 20% and 47% compared to dice with 4-to-6 mil
bond-pad pitches. We found that the small die-size increase

24

necessary to provide drivers for the additional /O pads was
more than justified by the value of the additional I/Os.
Specifically, the EPF6016 with a 3.2-mil bond-pad pitch
has sufficient /O to support 208-pin PQFPs, 240-pin
PQFPs, and 256-ball BGAs. But if the die had used the
4-mil bond-pad pitch required by PLCC packaging vendors,
it would have had only enough I/Os to support the 208-pin
PQFP.

8. CONCLUSION

During the development of the FLEX 6000 device family, it
was necessary to question all previous assumptions. For
instance, the size of the control block became a cost factor
in the low-cost FLEX 6000 devices while it had been given
relatively less attention in the higher-density FLEX 10K
devices.

It was learned that designers will not find single, simple
solutions when optimizing an architecture for high cost
efficiency. Traditional approaches, which expect to identify
and reduce just the top cost contributors, fail when silicon,
packaging, and testing all contribute nontrivial portions of
total product cost.

9. ACKNOWLEDGEMENTS

The authors wish to thank those who contributed to the
success of the Botticelli architecture development: Andrew,
Bahram, Bonnie, Bruce, Cameron, Chris, Clive, Craig,
David, Dustin, Frank, Fung Fung, Jay, John, Joseph, Peter,
Richard, Robert, Srinivas, Susan, Tim, and Xiaobao.

10. REFERENCES
[1] Altera, Data Book, 1996, pp. 91-153.

[2] Amkor Electronics, Quad Product
December 1996, p.16.

Fiduccia, C. M. and R. M. Mattheyses, "A Linear-Time

Heuristic for Improving Network Partitions,” 19th
Design Automation Conference, 1982, pp. 241-247.

Kernighan, B. W. and S. Lin, "An Efficient Heuristic
Procedure for Partitioning Graphs," The Bell System
Technical Journal, Feb. 1970, pp. 291-307.

Krishnamurthy, B., "An Improved Min-Cut Algorithm
for Partitioning VLSI Networks," IEEE Transactions
on Computers, vol. C-33, No. 5, May 1984, pp. 438-
446.

Mendel, D. W., “Methods for allocating , circuit
elements between circuit groups,” United States Patent
no. 5,341,308, Issued Aug. 23, 1994.

PCI Special Interest Group, PCI Local
Specification, Revision 2.1, June 1995.

Inc, Guide,

3]

(4]

(5]

(6]

(7] Bus

	Main Page
	FPGA98
	Front Matter
	Table of Contents
	Session Index

