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ABSTRACT

Recently, functional decomposition has been adopted for LUT
based FPGA technology mapping with good results. In this
paper, we propose a novel method for functional multiple-

output decomposition. We first address a compatible class en-
coding method to minimize the compatible classes in the image
function. After the encoding algorithm is applied, the decom-

posability will be improved in the subsequent decomposition of
the image function. The above encoding algorithm is then ex-
tended to encode multiple-output functions through the con-

struction of a hyper-function. Common sub-expressions among
these multiple-output functions can be extracted during the

decomposition of the hyper-function. Therefore, we can handle
the multiple-output decomposition in the same manner as the
single-output decomposition. Experimental results show that

our algorithms are very promising.

1. INTRODUCTION

jylou@bestmap.ee.nctu.edu.tw

jdhuang@ee.nctu.edu.tw

[3-7] deal with the second problem. These encoding algorithms can
be classified into three classes according to their objectives. The
first kind of encoding algorithm such as [3] simplifies thege
function (g-function). The second kind such as [4,5] makes some
decomposition functiong(a-functions) be able to be shared among
multiple-output functions. The third kind such as [6,7] minimizes
the supports of the decomposition functions. As Problem 3 is con-
sidered, approaches proposed in [4,5,8] extract common sub-
expressions among multiple-output functions. Extracting common
decomposition functions via compatible class encoding was sug-
gested in [4,5], while the authors of [8] tried to resubstitute decom-
position functions into other functions to reduce their supports.

In this paper, we adopt the variable partitioning algorithm
proposed in [2], which takes advantage of Binary Decision Dia-
grams (BDD’s) [4,10] to conduct functional decomposition, to
solve Problem 1. We will thus focus on solving Problems 2 and 3 in
this paper. A new encoding algorithm is proposed to simplify the
image function. Instead of reducing the number of cubes or literals

Field Programmable Gate Arrays (FPGA's) can provide program- in the image function as suggested in [3], our encoding algorithm
mability for users to implement their own logic in a short turn- aims at reducing the compatible class count. To deal with Problem
around time. FPGA'’s become increasingly popular in rapid system3, we transform multiple-output functions into a single-output
prototyping. Look-up table (LUT) based architecture is a prevalent function by introducing the hyper-function approach. Conse-
one among many FPGA architectures. LUT-based FPGA's consistquently, multiple-output decomposition can be reduced to an
of an array of LUT's, each of which can implement any Boolean equivalent single-output decomposition. It unifies the solutions of
function with up tdk (typically 4 or 5) inputs. A Boolean network  single-output and multiple-output decomposition. Besides, the
can be directly realized by a one-to-one mapping between nodesxtracted common sub-expression can be large.
and LUT's if every node in the network has ugktsupports. The rest of this paper is organized as follows. Section 2 intro-
Functional decomposition [13,14] is a pivotal decomposition duces the preliminaries. In Section 3, the compatible class encod-
technique for LUT-based FPGA logic synthesis. Three interesting ing algorithm is proposed. Hyper-function decomposition is then
problems in functional decomposition should be noticed: discussed in Section 4. After experimental results are shown in
1.  How to select the bound set variables? Section 5, concluding remarks will be given in Section 6.

2. How to encode the compatible classes? 2. PRELIMINARIES

3. How to extract adequate sub-expressions among multi- Let B = {0,1}. A single-output functiorf with n input variables
ple-output functions? bo,... b1 is denoted ag: B" - B. A functionf(ly,...b,4), is de-
Algorithms proposed in [1,2] provide solutions to choose good cOmposable if it can be represented by another function
bound set variables. On the other hand, approaches suggested #{& (Do....0i-2).b;,...0n1) - = g(ao(Bo,... 0i-1),.... A2 (o, Bi-1),
Bj,...Pn-1), where 0 € <j <i. The decomposition is disjointjif=i.
Whenj =i, {by,... b1} is called thebound Q) setand {o,... b, 1}
is called thefree () set In this paper, only the disjoint decompo-
sition is considered.
Definition 2.1  Let X andY be two sets of binary variable$,n
Y = 0. Given a completely specified functiénB™"xB™" _, B,
with X being the\ set andyY being theu set. We say that;, x, O
B™" arecompatible with respect td, denoted ag; ~x,, if 0 y [
B (x,y) and &,y) O BB such thaf(x,,y) = f(x,,y).0
All mutually compatible elements formcampatible class
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Theorem 2.1 [O(xy) O BXxB™E 1 BXxBM_ B, ¢: vant to the number of compatible classes in the decomposition of

BX"_ W, g: WxB™_, B, the image function.
fxy) =9(a (x),y) 1) Example 3.1  Assume that the targeted LUT can implement any
holds if and only if 4-input functions. We want to decompose the functiomFigure
O X1, X OB @ (X)) = @ (%) O X1 ~ X% 2) a 1(a) with {a,b,c} as theA set selection.
a is a function with binary inputs and a symbolic output. The fab Xy feo(x,y,2)
number of the admissible valueswWw, OWC, must be not less than - abc (a.b.cxy.z) Z\ 00 01 10 1
the number of compatible classes. To impleméntby binary yooo 030 Oi“’f’ Oi“go 181 110 111 oo 010 5010
logic, at least = [jog, || binary functionsgy,..., a4, are required worloTiToToToToTa o] L2120

_ _ . o w  fea(xy.2)
to encoded . Whent = fjog |w|[J, We say that this encoding is 000100111010 J0 L1 Yo 1p 1

2 0110 |1/0[0]0|0[1]0
iqi ; ing iwli o1 0 1 1
rigid. Otherwise whet > [log, W[} the encoding ipliable. Eq. wlilT 1ttt 11 1100 m,=<1,233>
(1) can be rewritten &$x,y) = g(ao(x),...,0r-1(X),y). For a single- 01111011 )1]1]01 fe.(xy.2)
output function, if each compatible class is assigned just one code, 10{0|1]0/0/0|0 |10 ZXYOO 012 13/ 9
then this encoding istrict and Eq. (2) can be redefined as 1110|101 |1|0|0|01 ol1 1 1 0
A _ n,=
0 Xy, X2 0B, @ (x1) = @ (x2) = X1~ %o o o 1 1) BTEME
In contrast, if there exists any compatible class encoded with more (a) (b) (c)
than one code, then the encodingas-strict. Figure 1: (a)Decomposition Chart of f (b)Compatible Class Func-
3. COMPATIBLE CLASS MINIMIZATION tions (c)Symbolic Notations of Column Patterns
Two important factors affect the decomposition quality: one is the Y g(ay,0,,%,y,2)
variable partitioning and the other is the compatible class encoding. a, 0.z N\ 000 001 010 011 100 101 110 111
. " . . . 1

We solve the variable partitioning problem by using the algorithm a, 0o 1 00 0 1 0|1 0 1 1
proposed in [2]. Moreover, we intend to encode compatible classes 0| fe, | fe, /0 0 1 0/1 1 0 0
to reduce the number of compatible classes in the next decomposi©35€ 1 w1 1 1 0
tion of the image function. Before our discussing the encoding 1jfe, | - 1o 0 1 1
technique in Subsection 3.2, don’t care assignment that is used in The D -'t'- C-h -t
the encoding is introduced first in Subsection 3.1. The Encoding Chart € Decomposition vhar

(at least 5 compatible classes)

3.1 Don't Care Assignment

a,,a.,x,y,z
The authors of [8] used the don’t care assignment to minimize the doxy 0(0p 0, %y.2)

supports of an incompletely specified function. However, we for- % 0 1 o,z "\,000 001 010 011 100 101 110 111
mulate the don’t care assignment as the clique partitioning problem & 0101 1/1 110
in order to reduce the number of compatible classes instead ofcase 2 0l fe, | fe, /1 1 0 0j0 0 1 1
minimizing the number of supports. 1 - | f, 10] - 0010

We record the compatible relationship amarggt vertices by . - - - 0 010
using the compatibility graph. Eadhset vertex corresponds to a The Encoding Chart The Decomposition Chart
vertex in the graph. A pair of vertices are connected by an edge if (at least 3 compatible classes)
and only if these two vertices cab be compatible under certain don't Figure 2: Encoding Chart and Decomposition Chart

care assignments. After constructing the graph, we want to find thejn the decomposition ofif a, b andc are selected as theset

least number of cliques such that each vertex is covered by exactlyariables, there are three compatible classes with functions as
one clique; thus the number of cliques equals to the number ofshown in Figure 1(b). Twa-functions,ao(a,b,c) andas(a,b,c), are
compatible classes. Because the clique partitioning problem iSpeeded to encode three compatible classes. Suppose we ahoose
NP-compIett_a, we ad_opt the heuristics appeared in [9] to have A, andy as the\ set variables in the decompositiorgtfio,a1,x,y,2).
polynomial time solution. Examining the two encoding cases in Figure 2, we can see that the
3.2 Compatible Class Encoding encoding may affect the number of compatible classes in the de-

The authors of [3] assumed that the fewer cubes or literals in theCOMPOSition of they-function. Note that *-” represents don’t care.

image function, the better decomposition quality could be ob- Theorem 3.1 The encoding does not affect the number of
tained. Hence, the compatible class encoding problem was mod-compatible classes in the subsequent decomposition of the image
eled as the symbolic-input encoding problem to minimize the function if all of thea-functions are selected together in hset or
number of cubes or literals of the image function. However, thosein thep set of the subsequent decomposition of the image function.
counts may not be a good cost function for LUT-based FPGA Q

synthesis. In this paper, we formulate the encoding problem asthegrem 3.2 After the A set variables used in the decomposi-
minimizing the number of compatible classes generated at thejon of an image function have been selected, to reduce the number
subsequent decomposition of the image function. The new costyt compatible classes of the image function, we only have to deter-
function has better meaning for LUT architecture. mine which compatible class functions should belong to the same

After A set selection and don't care assignment, compatible column or the same row in the encoding chart. The exact codes of
classes are fixed. The next step is to encode these compatibléhese columns and rows do not influence the number of compatible
classes. In order to exploit more don't care set, we take the strictclasses of the image function. a
encoding policy. Example 3.1 illustrates why an encoding is rele-



In the rest of this paper, we use symbolic notations (decimal hum-Supposave want to place these partitions (or these compatible class
bers) to represent column patterns.

Definition 3.1 A partition M, <sg,..,S,-1>, iS @ symbolic notation
of n column patterns. Elemergsequals tc if and only ifi'" col-

umn pattern equals §§ column pattern.

For example in Figure I]q, M, andl, in (c) are symbolic nota-
tions of column patterns in the chartsfgf fc; andfc, in (b) re-
spectively. Aconjunction partition Mc (disjunction partition

a

functions) in the encoding chart with #R = 4 and #C = 4.

Step 5 in Figure 3: Evaluate which compatible classes should be
bounded in the same column of the encoding chart

We represent positioinin a partition ag; for convenience. Since
the contents o, andps in N, are the same, we say that positions
with the same content &1, is p;ps. For the above ten partitions,
Figure 4(a) records the information. Positions with the same con-

Md) of a set of partitions is a new partition which is a symbolic | tent such apgps, we denote it aBsgs [Psgal= 2 because there
notation of column patterns formed by stacking these partitions are two positionsgy, andps, in Psgg. As there are two partitioris,
vertically in the same column (horizontally in the same row) of the andl; havingPsgs, #Partitions(Psgz) = 2 andPartitions(PsGz)

encoding chart. Thenultiplicity of a partition is the number of

different symbols in this partition.

Algorithm :

Input :
Output:
begin

Encoding

Compatible Class Functions fc's
Image Function with its A Set Variables

1 g — Encode compatible classes at random;

2 if (d is k—feasible )

return {g',0};

3 {\' #compatible_classes} — Variable_Partitioning(d);
/From ¢ ,A' and fc's, we can derive the # of rows, #R, the # of
columns, #C, in the encoding chart and the partitions of fc's, M's.*/

4 if (#R==1 or #C==1) return {g' \'};

* According to Theorem 3.1*/

IEach My, occupies a distinct row set and a distinct column set initially.*/

5  CSet's — CombineColumnSe(§l,'s);
6 while (ORSet's[>#R or ICSet's[I> #C )
7 {RSet’s,CSet's} — CombineRowSe{&Set's,CSet’s);
8 if (random encoding has less compatible classes ) return {g'A'};
9 return ({g,A'} — Encoding according to RSet's and CSet’s );
end
Figure 3: The Encoding Procedure
. Positions with . Positions with
Partition Partition
the same content the same content
n, pops3 Mc of 003
n p1p3 n,n;} PP
n 1p3
|_|4 pOpZ e of 1p3
5 P27 {Ny,M,,Ng, 1M, Mg} pip
I'I6 pip2p3
|_|7 p0p1p3 chl(_)lf pgpz
n, pop2, pip3 {Ng,Ng}

(@)

Assume after matching,
Gc becomes

(b)
Figure 4: Partitions and Positions with the Same Contents

Figure 5: Graph Formulation of Column-Set Combination

The encoding draft is shown in Figure 3. We explain Steps 5 and 7
in detail with Example 3.2.

Example 3.2

Assume we have ten compatible class functions,
fco,..., fcg, With their partitiond,,..., Mg respectively as follows.
My=<0,1,2,3>M,=<0,2,1,3>MM,=<3,0,1,3>M3=<2,1,0,1>M,=<0,1,3,1>
Ms=<0,1,0,2>M=<1,0,0,0>M7;=<1,1,2,1>Mg=<1,2,1,2>M¢=<3,2,1,0>

= {M,,N}. Therefore, the conjunction partition bf, andl; has
the same content ipy andps. For allPscs in Figure 4(a) RPsGa,
PsGs, PSGo, PSG,s Or Psgia with #PartitiongPsg = 2, we list
them in Figure 4(b). We then builccalumn-graph G¢(Vc,Uc,Ec)

as depicted in Figure 5, which is a bipartite graph. For each parti-
tion, there is a corresponding vertexMg for eachPscin Figure
4(b), there aré(#PartitiongPsq-1)/#R]corresponding vertices,
UpscS, inUc. (It is because th&artitiongPsg may be collected in
more than one column set.) A vertexdn corresponding to Bsc
has #PartitiongPsg edges connecting this vertex with vertices in
V¢ which are corresponding artitiongPsg. The weight of an
edge connecting taps. equals to Bsd+the number of edges con-
necting toups). We then find d&-matching[12], Mc, of maximum
weight forGc. For thisb-matching, each vertex Wc is connected

by at most one edge; each verteXJnis connected by at most #R
edges. After matching, the corresponding partitions of verfices
Vc connected with the samp. are grouped in the same column
set. According to the matching result in Figure 5, we have six
column sets, Ki3,M4Me Mg}, {MoM7}, {Mo}, {MN4}, {Ms} and
{Mg}. After applying the above algorithm, we can reduce the
multiplicity of thellc of partitions in the same column set.

Step 7 in Figure 3: Evaluate which compatible classes should be
bounded in the same row and in adjacent columns of the encoding
chart

Assume each partition initially occupies a separate row set. We
calculate the benefits of merging pairs of row setsI'Fandrl; in
different column sets, we calculate the benefit of merging them as
0xBrj+1xBg;; otherwise their merging benefit is calculated as
0xBrj+1xBg;—the weight of the edge connecting the vertex corre-
sponding td1; in Vcof Ge. Because whefi; andr; are in the same
column set, we don’t want to tear them into different columns. The
detailed calculations af, Brj, T, andBg; are as follows.

Brij = n—(n;—n)—(n;—n)

Bc = Z((Fhe#(l)fSin Niand Nj) - k)2

Il every symbol Sinall M's

0 = (# of row sets so far) #R (ifo<00O 0=0)

T = (# of column sets so fap#C (ift<00 1=0)

k=m/n

m: There arem positions in thé1d of [M; and.

n: There are totally kinds of symbols in all partitions.

n;: There are totally; kinds of symbols in thEld of I; andrT;.

n;, ni: There arey; andn; kinds of symbols iffl; andl; respectively.
According to the calculated benefits, we construotnagraph

Gr(Vr,Er). Each partitior1; has a corresponding vertex( Vr;

each pair of verticesv(v) is connected by an undirected edge

whose weight is the benefit of mergifigand[; in the same row

set. We then find thmaximum-cardinality matchinfl2], Mr, of

Gr. For each edg€é Mr, the corresponding partitions of its two end

vertices are hopefully to be combined together in a row set. We



combine these pairs of partitions iteratively with benefits from high Hyper-function transforms multiple-output functions into a single-
to low until the number of current row sets is not greater than #R oroutput function.It can perform the function of any individual

all edgesl] Mr have been selected. In this exampl8;,[lg}, ingredient by assigning the corresponding code to the pseudo
{Ns,Mg}, { My,M4}, {No,Mg} and {My,M3} are therefore selected in ~ primary inputs. In Subsection 4.1, we discuss how to encode the
succession. According to column sets derived in Step 5, we stackngredients to form a hyper-function with better decomposability.
these pairs of partitions properly. If there are some conflicts be- .1 Encoding of Ingredients

tween Step 5 and Step 7, we assume that the decisions of Step ctually, a hyper-function can be considered as an image function

have higher priority than those of Step 5. So far we have 5 row setsand its ingredients can be viewed as compatible class functions
{N,Ng}, { Ns,Me} { Mo,M4}, { Moo}, { M4,M3} and 4 column sets 9 P .

Consequently, Theorem 3.1 and Theorem 3.2 can be extended as
{M3,M4,M6 Mg}, {My,M,,MNs5M7}, {Mo}, {Mg}. We have row-

follows.
column relation as illustrated in Figure 6(a). .
9 @) Theorem 4.1 The encoding does not affect the number of

<1,I1—,|27,1> <1,|2_,|f2> ? ? <1,1,2I,—J.(,jl7,82,l,2> ? compatible classes in the subsequent decomposition of the hyper-
n, n, ” ” Md,, - function if all of the pseudo primary inputs are selected together in
<0‘|1_,|0,2> <1,|0_‘|0‘0> ) : <0‘1‘0|“f81'0'0'0> i the A set or in theu set of the subsequent decomposition of the
<3‘0,12,3> <0,1‘§‘1> ? ? <3‘0‘1‘3'02j_13'1> ? hyper'functlon. a
n, n, 2 2 MNd,, 2 Theorem 4.2 After theA set variables used in the decomposi-
<02.1.3> | <2.1.0.1> <02.1.32.1,01> tion of a hyper-function have been selected, to reduce the number
57 of compatible classes of the hyper-function, we only have to deter-
<0123>[<3210> <0.123,3,2,1,0> mine which ingredients should belong to the same column or the
(a) (b) same row in the encoding chart. The exact codes of these columns
Figure 6: Row-Column Relation and rows do not influence the number of compatible classes of the
m; m, - - - hyper-function. . D _
<1125 [<121.2> o203\ 00 01 10 11 We thus use the same encoding strategy to encode these ingredients
" |1—I5’2> " Ong ol - - 00|fc, |feg| - | - as that used in the compatible class encoding.
AR - 2; ;25 ;zﬁ 4.2 The Decomposition of Hyper-Function
'|—'|1' '|—'|3' m, M, 2| >4 S_lr_]gle-output decomp_osmor_\ can be easﬂy applied to thg_decompo-
<0213>[<2101>[<0123>[<3210> 11 fe, [fey [feq | feq sition of a hyper-function. Via hyper-function decomposition, any
(a) (b) algorithm that is proposed for single-output decomposition can be
Figure 7: (a)Final Row-Column Relation (b)Final Encoding applied to multiple-output decomposition.

Step 7 must be repeated until the number of rowss#® and the Definition 4.2  The transitive fanout of a nodej, denoted as
number of column sets#C. In this example so far, since there are TFO], is defined a3FOj = {nodeilli = or Opath fromj toi}.0d

5 row sets, 5 > #R, we thus iterate Step 7 to calculate the benefits obefinition 4.3 The duplication source (DS) after a hyper-
combining pairs of row sets. For each row set, we represent it by thefunction decomposition is the set of nodes which have at least one

disjunction partition of the partitions in this row set as shown in pseudo primary input as their direct fanin. a

Flgurev 6(b). After constructing the ne@r' (Vr',Er’) and finding Note that after we have decomposed a hyper-function, every node
the Mr for it, we combine the pair of row sets with maximum  r psmyst bek-feasible. However, every no@eDS with t pseudo
benefits ({11,M3}{ MoMg}) into a row set {1,,M5,Mo,Me}. Since primary inputs as its direct fanins must bek]-feasible.

the number of row sets becomes 4 (< #R), we don’t have to com-

bine row sets further. Finally as shown in Figure 7(a), we have 4Def|n|t|on 4.4 The duplication cone (DC) after a hyper-

row sets and 4 column sets. According to Theorem 3.2, we knowfunctlon decomposition is defined BE = {LJ; TFOIJUDS}. O

that the codes of columns and rows do not affect the number ofDefinition 45  The m” layer duplication set (DSet,) after a
compatible classes in the decomposition of the image function. Sohyper-function decomposition is definedSet, = {nodejLj is in

we can encode these compatible classes as that indicated in FigurFO's of m pseudo primary inputs}. a

7(b). After encoding, we can derive the real image function. In the After we have decomposed a hyper-function, Ei@ should be
decomposition of this image function, we will selegt a; and duplicated to implement the ingredients. Assume that the hyper-
some original bound set variables in the previous decomposition agunction has pseudo primary inputs andngredients. A nodél

the bound set variablesccording to Step 3 in Figure 3. Conse- DSet, (m<n) must be duplicated {2- 1) additional copies; a node
quently, we will have 4 compatible classes in the decomposition of ] DSef, must be duplicated to have additioniat-(1) copies. To

the image function. implement each ingredient, we then assign its cporeding code

4. HYPER-EUNCTION DECOMPOSITION to the pseudo primary inputs. These pseudo primary inputs, as-

) - signed with constant values, can be collapsed into their fanout
To solve multiple-output decomposition in the same manner as

inal d ” luti hich i nodes. Nodegs] DS are thus reduced by eliminating the extra
single-output ec_omposmon, We propose a so ution, which Is pseudo primary inputs. After a hyper-function decomposition, all
called hyper-function decomposition.

o o ] new generated nodésDC can be shared by these ingredients.
Definition 4.1 A set of distinct Boolean functiondf... f-1},

called ingredients, can be combined together to form a single- E’?""T“P'? 41 . Assume that four distinct Boolean functions,

outputhyper-function by using additionail = [jog, n[] binary bits felolvizislaisinia), Tillolulaisiaisie) - Blloivizlaials) and

No.---Ni-1, calledpseudo primary inputs, to encode these ingredi- | coding of each ingredient is derived by applying our compeztible
ents. The supports of a hyper-function include pseudo primary classes encoding algorithm and is shown in Figure 8(a). To imple-
inputs and the union of supports of its ingredients. a



mentF with 5-input LUT’s, assume th&t is decomposed as what  rigid for a single-output decomposition may become pliable for a
is depicted in Figure 8(b), in which nodésduplication cone are  hyper-function decomposition. Because the compatible classes of
filled with gray. After duplicating the duplication cone, as demon- an ingredient may be encoded by more bits than necessary.

strated in Figure 9(a), we assign (0,0)rigr{4) to recoveff,, (1,0) IMODEC [5] provides a good approach to guarantee #aah
to recoveify, (0,1) to recovef, and (1,1) to recovds. function is rigidly encoded. However, pliable encoding can save
more areas than rigid one in the cases discussed below.
ne Definition 4.6 A partitionA is contained by another partitioB
F(NoMusiod1i 20 3b 4lsivgirdog ) i if th(_a_multlpllcny of B equals to the multiplicity of the conjunction
= - _ a Jem | b Jem partition of {A,B}. a
_nonlfo+_n°_n_1f1_+_n°‘n1_f2_+‘n°n1f3 iéis o Theorem 4.3  Given two partitionsA of functionf, andB of
fo =F(0.0i0i1i2i3l4isi,d,7.8) 5 ‘ function f, with respect to the sanie set selection and both of
f1=F (10igi1i 2l 3i 4l sl d 7 8) | I | | rlog, |multplicity of aj[]and [log, |multiplicity of B[] are less than theset
fa =F(0Liolaizi i 4lslid dus) i3 7 h | s size.A is contained b if and only if the decomposition functions
f3 =F (LLigi1i 2 3l 4l5i,d+7 .5 ) | | of fy (which identify the column patterns B by strict encoding)
(@) T3It ) 48l can be used as the decomposition functiorig of a

oL i2i oL 12 Theorem 4.4  Given two partitionsA of functionf, andB of

Figure 8: (a)Hyper-Function and Ingredients (b)Decomposition of F function f, with respect to the same set selection and both of
| f: Leo] 1: Lo1] fz Leof 12 Lot f: I[ ft Il 12 Il 12 ] Mog,|muttiplicity of Al[jand [jog, |muttiplicity of Bj7j are less than theset
: : : : = : : : size. IfA is contained by, then the decomposition functionsfef
[ a oo b‘a‘ Feof al“F'll 'M‘ il a0 bu‘ | can be used as the decomposition functiorig of a
‘ 128 M}'” “ = ‘ |2 ‘ | “G'SYMM'ST r Example 4.2 Given three functions fo(XoXe,Xe:XaYo.Y1)s
\ | | | \ | I \ (X0 X0 X2 Xa,Y2Ya) and fo(Xo, Xy, X, Xa,Ya,Ya) With A set selection &s
A s Iy 5 1 it {Xo:X1,%2,%3}, @assume therefore we have three partitions:
ny, =<0,0,1,0,1,2,2,0,3,2,0,0,0,0,0,2>fgf
sl (@ AASA gese o gide n,=<0,1,2,0,2,3,3,2,4,3,0,2,1,5,1,3>fgfand
Figure 9: (a)Duplication for Ingredients (b)Further Reductions n,=<o0,1,1,0,1,2,2,3,3,2,0,3,1,4,5,2>fpf

After our collapsing these constant input signals in Figure 9(a) into ! 1 andf, are combined to construct a hyper-functigswith A set
their fanout nodes, the resultant network as is indicated in FigurefXoX1.Xe.s}, then the hyper-function has partitiétc of {11,115},
9(b) will be independent of these pseudo primary inputs. $jnce | Mci2 Becausélc of {Mo,My,M2}, Mcorp has the same multiplicity
andf; are independent 6§, i, andig according to their original  asflciy, Mg is contained bylc;, by Definition 4.6. According to
function expressions, we can further simplify the network by col-| Theorem 4.3 or Theorem 4.4, the decomposition functiorgof
lapsing nodes, andb, into f, andf; as shown in Figure 9(b). | can be used as the decomposition functiorig Gherefore, ify, f;

Nodes[J duplication cone can be shared by the ingredierfis of ~ and f, are combined to form a hyper-function with set
{Xo:X1,%2,X3}, there are three decomposition functions (because of

4.3 Properties of Hyper-Function Decomposition the multiplicity of Mcg;, = 8) shared by the three functions as
Becausenodes in the duplication cone must be duplicated, fewer shown in Figure 10(a). Becaukeuses three decomposition func-
nodes in the cone are preferred. Consequently, we should keep thgons instead of two decomposition functions to encode four com-
pseudo primary inputs as close to the output as possible during thgatible classes, the encoding becomes pliable. On the other hand, if
decomposition process. In other words, pseudo primary inputs argthe encoding is restricted to being rigid, such as [5], it may derive
preferred to be kept in the set during decomposition. In the ex- | the result as shown in Figure 10(b). In this case, two more LUT’s
treme case, if we always select the pseudo primary inputs jn the | are consumed.

set, hyper-function decomposition can be considered a®hbiman ? ? ! ? ?

encoding methoth [4]. Hence, the column encoding approachin | [ & | [ & | [ & | [ & | [ & | fy
[4] is a special case of our hyper-function decomposition. Hyper- ‘ ‘y‘nyﬁ sz*s ‘ A J I s ‘ -
function decomposition provides a more generic and flexible . — . r—
means to extract common sub-logic than column encoding. Since | . I . I . | \“ - | ‘H - | - | . |
multiple-output functions can be decomposed as easily as a sin-  xxixx s o IR D SO o 0R
gle-output function, tha set size doesn_’t have to be restricted to a Figure 10: (a)Pliable (b)Rigid Encoding of fo

small value. Moreover, the shared logic can cross many levels; the

extracted common sub-expressions can be large. 5. EXPERIMENTAL RESULTS

Although a hyper-function is decomposed by applying single- Our algorithm, HYDE, has been implemented in SIS environment
output decomposition, two differences exist between hyper-[11]. Experiments are conducted over a set of benchmark circuits.
function decomposition and single-output decomposition. First, To prepare the initial circuits for the following technology map-
strict encoding for a single-output decomposition may become ping, small circuits are collapsed, while large circuits are optimized
non-strict for a hyper-function decompositionedduse for each by applying SIS algebraic script. (The benchmark cidestis, in
ingredient of the hyper-function, a compatible class can be encodedaddition, partially collapsed such that several nodes can share the
with more than one code. (When a hyper-function is constructed, same supports.) After the initial circuits are derived, the technology
conjunction partitions may be performed on the partitions of ingre-mapping script used for 2-level circuits is: our decomposition,
dients. Hence a pattern in a partition may be broken into severalxl_partition -tm, xI_cover and the script for multi-level circuits is:
patterns in a conjunction partition.) Secondly, an encoding that is(full_)simplify, our decomposition, xI_partition -tm, x|_cover. For



multi-level circuits, the script are applied several times to improve still outperforms IMODEC and FGSyn. Excludiatu4, our algo-

the results by taking advantage of extracting the local don’t carerithm produces slightly better results than those in column 4 of
set. The experiments are run under SUN SPARC 20 workstation.Table 2. Due to the disability of handling large circuits such as
We compare these results with other state-of-the-art FPGA synthe€880 in [8], our algorithm is considered more practical to handle

sis techniques [4,5,8] in Table 1 and Table 2. large circuits.
Table 1: Experimental Results for XC3000 Device
Circuit  IMODEC[5] FGSyn[4] HYDE CPU Time 6. CO.NCLUSIONS . ) .
CLB CLB CLB — Compatible class encoding and hyper-function decomposition
5xpl 9 9 10 13 techniques have been proposed. The former improves the decom-
9sym 7 7 6 22.8 posability of the image function and the hyper-function, while the
alu2 46 55 43 554.4 latter extracts common sub-expressions among multiple-output
alu4 168 56 140 911.7 functions. By transforming these multiple-output functions into a
apex? ‘1&9 igl égS 3068.7 single-output hyper-function, the problem of multiple-output de-
gl?pex 12 18 11 207.2 composition can thus be reduced to that of single-output decompo-
count 26 23 24 1.6 sition. As a result, previous algorithms intended for single-output
des 489 - 408 236.6 decomposition can be easily extended to solve multiple-output
duke2 122 85 75 28.0 decomposition. Experimental results show that our approach is
e64 55 44 48 0.0 practical and promising. We believe that hyper-function decompo-
Eilsrgxl g g g ﬂg sition can be not only used for FPGA synthesis but also exploited to
T 21 22 22 33 identify common sub-logic in the technology-independent optimi-
rd73 5 5 5 3.0 zation phase of logic synthesis. Another possibility of application is
rd84 8 8 7 16.0 the time-multiplexed reconfigurable computing. For time-
rot 127 136 125 132.7 multiplexed functions, we can combine them together as a hyper-
sao2 17 25 17 117.5 function. After decomposition, we don’t have to duplicate the
\ZI?HZT“ ‘119 17 ‘118 g? duplication cone at all. Instead, we can use the pseudo primary
C499 50 54 50 29 inputs to recover the time-multiplexed functions. More applica-
C880 81 87 68 69.8 tions and theoretical works need to be explored in the future.
Total 1453 1272
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