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ABSTRACT
Recently, functional decomposition has been adopted for LUT
based FPGA technology mapping with good results. In this
paper, we propose a novel method for functional multiple-
output decomposition. We first address a compatible class en-
coding method to minimize the compatible classes in the image
function. After the encoding algorithm is applied, the decom-
posability will be improved in the subsequent decomposition of
the image function. The above encoding algorithm is then ex-
tended to encode multiple-output functions through the con-
struction of a hyper-function. Common sub-expressions among
these multiple-output functions can be extracted during the
decomposition of the hyper-function. Therefore, we can handle
the multiple-output decomposition in the same manner as the
single-output decomposition. Experimental results show that
our algorithms are very promising.

1. INTRODUCTION
Field Programmable Gate Arrays (FPGA’s) can provide program-
mability for users to implement their own logic in a short turn-
around time. FPGA’s become increasingly popular in rapid system
prototyping. Look-up table (LUT) based architecture is a prevalent
one among many FPGA architectures. LUT-based FPGA’s consist
of an array of LUT’s, each of which can implement any Boolean
function with up to k (typically 4 or 5) inputs. A Boolean network
can be directly realized by a one-to-one mapping between nodes
and LUT’s if every node in the network has up to k supports.

Functional decomposition [13,14] is a pivotal decomposition
technique for LUT-based FPGA logic synthesis. Three interesting
problems in functional decomposition should be noticed:

1. How to select the bound set variables?

2. How to encode the compatible classes?

3. How to extract adequate sub-expressions among multi-
ple-output functions?

Algorithms proposed in [1,2] provide solutions to choose good
bound set variables. On the other hand, approaches suggested in

[3-7] deal with the second problem. These encoding algorithms can
be classified into three classes according to their objectives. The
first kind of encoding algorithm such as [3] simplifies the image
function (g-function). The second kind such as [4,5] makes some
decomposition functions (α-functions) be able to be shared among
multiple-output functions. The third kind such as [6,7] minimizes
the supports of the decomposition functions. As Problem 3 is con-
sidered, approaches proposed in [4,5,8] extract common sub-
expressions among multiple-output functions. Extracting common
decomposition functions via compatible class encoding was sug-
gested in [4,5], while the authors of [8] tried to resubstitute decom-
position functions into other functions to reduce their supports.

In this paper, we adopt the variable partitioning algorithm
proposed in [2], which takes advantage of Binary Decision Dia-
grams (BDD’s) [4,10] to conduct functional decomposition, to
solve Problem 1. We will thus focus on solving Problems 2 and 3 in
this paper. A new encoding algorithm is proposed to simplify the
image function. Instead of reducing the number of cubes or literals
in the image function as suggested in [3], our encoding algorithm
aims at reducing the compatible class count. To deal with Problem
3, we transform multiple-output functions into a single-output
function by introducing the hyper-function approach. Conse-
quently, multiple-output decomposition can be reduced to an
equivalent single-output decomposition. It unifies the solutions of
single-output and multiple-output decomposition. Besides, the
extracted common sub-expression can be large.

The rest of this paper is organized as follows. Section 2 intro-
duces the preliminaries. In Section 3, the compatible class encod-
ing algorithm is proposed. Hyper-function decomposition is then
discussed in Section 4. After experimental results are shown in
Section 5, concluding remarks will be given in Section 6.

2. PRELIMINARIES
Let B = {0,1}. A single-output function f with n input variables
b0,...,bn−1 is denoted as f : Bn → B. A function f(b0,...,bn−1), is de-
composable if it can be represented by another function
g(

*α (b0,...,bi−1),bj,...,bn−1) = g(α0(b0,...,bi−1),...,αt−1(b0,...,bi−1),
bj,...,bn−1), where 0 < t < j ≤ i. The decomposition is disjoint if j = i.
When j = i, {b0,...,bi−1} is called the bound (λ) set and {bj,...,bn−1}
is called the free (µ) set. In this paper, only the disjoint decompo-
sition is considered.

Definition 2.1 Let X and Y be two sets of binary variables, X ∩
Y = ∅. Given a completely specified function f: BX×BY → B,
with X being the λ set and Y being the µ set. We say that x1, x2 ∈
BX are compatible with respect to f, denoted as x1 ~ x2, if ∀  y ∈
BY, (x1,y) and (x2,y) ∈ BX×BY such that f(x1,y) = f(x2,y).�

All mutually compatible elements form a compatible class.
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Theorem 2.1 ∀ (x,y) ∈ BX×BY, f: BX×BY→B, 
*α :

BX→W, g: W×BY→B,
f(x,y) = g(

*α (x),y) (1)
holds if and only if
∀  x1, x2 ∈ BX, 

*α (x1) = 
*α (x2) ⇒ x1 ~ x2 (2) �

*α  is a function with binary inputs and a symbolic output. The
number of the admissible values in W, W, must be not less than
the number of compatible classes. To implement 

*α  by binary
logic, at least t =  ³

log W  binary functions, α0,..., αt−1, are required

to encode 
*α . When t =  ³

log W , we say that this encoding is

rigid . Otherwise when t >  ³
log W , the encoding is pliable. Eq.

(1) can be rewritten as f(x,y) = g(α0(x),...,αt−1(x),y). For a single-
output function, if each compatible class is assigned just one code,
then this encoding is strict  and Eq. (2) can be redefined as

∀  x1, x2 ∈ BX, 
*α (x1) = 

*α (x2) ⇔ x1 ~ x2.

In contrast, if there exists any compatible class encoded with more
than one code, then the encoding is non-strict.

3. COMPATIBLE CLASS MINIMIZATION
Two important factors affect the decomposition quality: one is the
variable partitioning and the other is the compatible class encoding.
We solve the variable partitioning problem by using the algorithm
proposed in [2]. Moreover, we intend to encode compatible classes
to reduce the number of compatible classes in the next decomposi-
tion of the image function. Before our discussing the encoding
technique in Subsection 3.2, don’t care assignment that is used in
the encoding is introduced first in Subsection 3.1.

3.1 Don’t  Care Assignment
The authors of [8] used the don’t care assignment to minimize the
supports of an incompletely specified function. However, we for-
mulate the don’t care assignment as the clique partitioning problem
in order to reduce the number of compatible classes instead of
minimizing the number of supports.

We record the compatible relationship among λ set vertices by
using the compatibility graph. Each λ set vertex corresponds to a
vertex in the graph. A pair of vertices are connected by an edge if
and only if these two vertices cab be compatible under certain don’t
care assignments. After constructing the graph, we want to find the
least number of cliques such that each vertex is covered by exactly
one clique; thus the number of cliques equals to the number of
compatible classes. Because the clique partitioning problem is
NP-complete, we adopt the heuristics appeared in [9] to have a
polynomial time solution.

3.2 Compatible Class Encoding
The authors of [3] assumed that the fewer cubes or literals in the
image function, the better decomposition quality could be ob-
tained. Hence, the compatible class encoding problem was mod-
eled as the symbolic-input encoding problem to minimize the
number of cubes or literals of the image function. However, those
counts may not be a good cost function for LUT-based FPGA
synthesis. In this paper, we formulate the encoding problem as
minimizing the number of compatible classes generated at the
subsequent decomposition of the image function. The new cost
function has better meaning for LUT architecture.

After λ set selection and don’t care assignment, compatible
classes are fixed. The next step is to encode these compatible
classes. In order to exploit more don’t care set, we take the strict
encoding policy. Example 3.1 illustrates why an encoding is rele-

vant to the number of compatible classes in the decomposition of
the image function.

Example 3.1 Assume that the targeted LUT can implement any
4-input functions. We want to decompose the function f in Figure
1(a) with {a,b,c} as the λ set selection.
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Figure 1: (a)Decomposition Chart of f (b)Compatible Class Func-
tions (c)Symbolic Notations of Column Patterns
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Figure 2: Encoding Chart and Decomposition Chart

In the decomposition of f if a, b and c are selected as the λ set
variables, there are three compatible classes with functions as
shown in Figure 1(b). Two α-functions, α0(a,b,c) and α1(a,b,c), are
needed to encode three compatible classes. Suppose we choose α0,
x, and y as the λ set variables in the decomposition of g(α0,α1,x,y,z).
Examining the two encoding cases in Figure 2, we can see that the
encoding may affect the number of compatible classes in the de-
composition of the g-function. Note that “-” represents don’t care.

Theorem 3.1 The encoding does not affect the number of
compatible classes in the subsequent decomposition of the image
function if all of the α-functions are selected together in the λ set or
in the µ set of the subsequent decomposition of the image function.

�

Theorem 3.2 After the λ set variables used in the decomposi-
tion of an image function have been selected, to reduce the number
of compatible classes of the image function, we only have to deter-
mine which compatible class functions should belong to the same
column or the same row in the encoding chart. The exact codes of
these columns and rows do not influence the number of compatible
classes of the image function. �



In the rest of this paper, we use symbolic notations (decimal num-
bers) to represent column patterns.

Definition 3.1 A partition  Π, <s0,..,sn−1>, is a symbolic notation
of n column patterns. Elements si equals to sj if and only if ith col-
umn pattern equals to j th column pattern. �

For example in Figure 1, Π0, Π1 and Π2 in (c) are symbolic nota-
tions of column patterns in the charts of fc0, fc1 and fc2 in (b) re-
spectively. A conjunction partition  Πc (disjunction partition
Πd) of a set of partitions is a new partition which is a symbolic
notation of column patterns formed by stacking these partitions
vertically in the same column (horizontally in the same row) of the
encoding chart. The multiplicity  of a partition is the number of
different symbols in this partition.
Algorithm : Encoding
Input :     Compatible Class Functions fc’s
Output :       Image Function with its λ Set Variables
begin
1        g′ ← Encode compatible classes at random;
2        if ( g′ is κ−feasible ) return  {g′,∅};
3        {λ′,#compatible_classes} ← Variable_Partitioning (g′);
          /*From g′,λ′ and fc’s,  we can derive the # of rows, #R, the # of
          columns, #C, in the encoding chart and the partitions of fc’s, Πfc’s.*/
4        if ( #R==1 or #C==1 ) return  {g′,λ′}; /* According to Theorem 3.1*/
          /*Each Πfc occupies a distinct row set and a distinct column set initially.*/
5        CSet’s ← CombineColumnSets (Πfc’s);
6        while ( RSet’s> #R or CSet’s> #C )
7    {RSet’s,CSet’s} ← CombineRowSets (RSet’s,CSet’s);
8        if ( random encoding has less compatible classes )    return  {g′,λ′};
9        return  ( {g,λ′} ← Encoding according to RSet’s and CSet’s );
end

Figure 3: The Encoding Procedure
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The encoding draft is shown in Figure 3. We explain Steps 5 and 7
in detail with Example 3.2.

Example 3.2 Assume we have ten compatible class functions,
fc0,..., fc9, with their partitions Π0,..., Π9 respectively as follows.
Π0=<0,1,2,3>  Π1=<0,2,1,3>  Π2=<3,0,1,3>  Π3=<2,1,0,1>  Π4=<0,1,3,1>
Π5=<0,1,0,2>  Π6=<1,0,0,0>  Π7=<1,1,2,1>  Π8=<1,2,1,2>  Π9=<3,2,1,0>

Suppose we want to place these partitions (or these compatible class
functions) in the encoding chart with #R = 4 and #C = 4.
Step 5  in Figure 3: Evaluate which compatible classes should be
bounded in the same column of the encoding chart.

We represent position i in a partition as pi for convenience. Since
the contents of p1 and p3 in Π4 are the same, we say that positions
with the same content of Π4 is p1p3. For the above ten partitions,
Figure 4(a) records the information. Positions with the same con-
tent such as p0p3, we denote it as Psc03. Psc03= 2 because there
are two positions, p0 and p3, in Psc03. As there are two partitions Π2

and Π7 having Psc03, #Partitions(Psc03) = 2 and Partitions(Psc03)
= {Π2,Π7}. Therefore, the conjunction partition of Π2 and Π7 has
the same content in p0 and p3. For all Psc’s in Figure 4(a) (Psc03,
Psc13, Psc02, Psc123, or Psc013) with #Partitions(Psc) ≥ 2, we list
them in Figure 4(b). We then build a column-graph Gc(Vc,Uc,Ec)
as depicted in Figure 5, which is a bipartite graph. For each parti-
tion, there is a corresponding vertex in Vc; for each Psc in Figure
4(b), there are (#Partitions(Psc)−1)/#R corresponding vertices,
uPsc’s, in Uc. (It is because that Partitions(Psc) may be collected in
more than one column set.) A vertex in Uc corresponding to a Psc
has #Partitions(Psc) edges connecting this vertex with vertices in
Vc which are corresponding to Partitions(Psc). The weight of an
edge connecting to uPsc equals to (|Psc|+the number of edges con-
necting to uPsc). We then find a b-matching [12], Mc, of maximum
weight for Gc. For this b-matching, each vertex in Vc is connected
by at most one edge; each vertex in Uc is connected by at most #R
edges. After matching, the corresponding partitions of vertices ∈
Vc connected with the same uPsc are grouped in the same column
set. According to the matching result in Figure 5, we have six
column sets, {Π3,Π4,Π6,Π8}, { Π2,Π7}, { Π0}, { Π1}, { Π5} and
{ Π9}. After applying the above algorithm, we can reduce the
multiplicity of the Πc of partitions in the same column set.

Step 7  in Figure 3: Evaluate which compatible classes should be
bounded in the same row and in adjacent columns of the encoding
chart.

Assume each partition initially occupies a separate row set. We
calculate the benefits of merging pairs of row sets. For Πi and Πj in
different column sets, we calculate the benefit of merging them as
σ×Brij+τ×Bcij; otherwise their merging benefit is calculated as
σ×Brij+τ×Bcij−the weight of the edge connecting the vertex corre-
sponding to Πi in Vc of Gc. Because when Πi and Πj are in the same
column set, we don’t want to tear them into different columns. The
detailed calculations of σ, Brij, τ, and Bcij are as follows.

Brij = n−(nij−ni)−(nij−nj)

Bcij = ((the # of  in  and ) k) 2

every symbol  in all 's
6

6

Π Π
Π

i j −∑

σ = (# of row sets so far) − #R (if σ < 0 ⇒ σ = 0)
τ = (# of column sets so far) − #C (if τ < 0 ⇒ τ = 0)
k = m/n
m: There are m positions in the Πd of Πi and Πj.
n: There are totally n kinds of symbols in all partitions.
nij: There are totally nij kinds of symbols in the Πd of Πi and Πj.
ni, nj: There are ni and nj kinds of symbols in Πi and Πj respectively.

 According to the calculated benefits, we construct a row-graph
Gr(Vr,Er). Each partition Πi has a corresponding vertex vi ∈ Vr;
each pair of vertices (vi,vj) is connected by an undirected edge
whose weight is the benefit of merging Πi and Πj in the same row
set. We then find the maximum-cardinality matching [12], Mr, of
Gr. For each edge ∈ Mr, the corresponding partitions of its two end
vertices are hopefully to be combined together in a row set. We



combine these pairs of partitions iteratively with benefits from high
to low until the number of current row sets is not greater than #R or
all edges ∈ Mr have been selected. In this example, {Π7,Π8},
{ Π5,Π6}, { Π2,Π4}, { Π0,Π9} and {Π1,Π3} are therefore selected in
succession. According to column sets derived in Step 5, we stack
these pairs of partitions properly. If there are some conflicts be-
tween Step 5 and Step 7, we assume that the decisions of Step 7
have higher priority than those of Step 5. So far we have 5 row sets
{ Π7,Π8}, { Π5,Π6}, { Π2,Π4}, { Π0,Π9}, { Π1,Π3} and 4 column sets
{ Π3,Π4,Π6,Π8}, { Π1,Π2,Π5,Π7}, { Π0}, { Π9}. We have row-
column relation as illustrated in Figure 6(a).
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Figure 6: Row-Column Relation

(a)

Π7
<1,1 ,2 ,1>

Π8
<1,2 ,1,2>

Π5
<0,1 ,0 ,2>

Π6
<1,0 ,0,0>

Π2
<3,0 ,1 ,3>

Π4
<0,1 ,3,1>

Π1
<0,2 ,1 ,3>

Π3
<2,1 ,0,1>

− −

− −

− −
Π0

<0,1 ,2 ,3>

Π9
<3,2 ,1 ,0>

fc7 fc8

fc5

-fc4

fc6

fc2

fc9fc3fc1

00

01

100100 11

10

11 fc0

-

- -

-

-

α0α1

α2α3

(b)

Figure 7: (a)Final Row-Column Relation (b)Final Encoding

Step 7 must be repeated until the number of row sets ≤ #R and the
number of column sets ≤ #C. In this example so far, since there are
5 row sets, 5 > #R, we thus iterate Step 7 to calculate the benefits of
combining pairs of row sets. For each row set, we represent it by the
disjunction partition of the partitions in this row set as shown in
Figure 6(b). After constructing the new Gr’ (Vr’ ,Er’ ) and finding
the Mr’  for it, we combine the pair of row sets with maximum
benefits ({Π1,Π3},{ Π0,Π9}) into a row set {Π1,Π3,Π0,Π9}. Since
the number of row sets becomes 4 (< #R), we don’t have to com-
bine row sets further. Finally as shown in Figure 7(a), we have 4
row sets and 4 column sets. According to Theorem 3.2, we know
that the codes of columns and rows do not affect the number of
compatible classes in the decomposition of the image function. So
we can encode these compatible classes as that indicated in Figure
7(b). After encoding, we can derive the real image function. In the
decomposition of this image function, we will select α0, α1 and
some original bound set variables in the previous decomposition as
the bound set variables according to Step 3 in Figure 3. Conse-
quently, we will have 4 compatible classes in the decomposition of
the image function.

4. HYPER-FUNCTION DECOMPOSITION
To solve multiple-output decomposition in the same manner as
single-output decomposition, we propose a solution, which is
called hyper-function decomposition.

Definition 4.1 A set of distinct Boolean functions {f0,...,fn−1},
called ingredients, can be combined together to form a single-
output hyper-function by using additional i =  ³

log n  binary bits

η0,...,ηi−1, called pseudo primary inputs, to encode these ingredi-
ents. The supports of a hyper-function include pseudo primary
inputs and the union of supports of its ingredients. �

Hyper-function transforms multiple-output functions into a single-
output function. It can perform the function of any individual
ingredient by assigning the corresponding code to the pseudo
primary inputs. In Subsection 4.1, we discuss how to encode the
ingredients to form a hyper-function with better decomposability.

4.1 Encoding of Ingredients
Actually, a hyper-function can be considered as an image function
and its ingredients can be viewed as compatible class functions.
Consequently, Theorem 3.1 and Theorem 3.2 can be extended as
follows.

Theorem 4.1 The encoding does not affect the number of
compatible classes in the subsequent decomposition of the hyper-
function if all of the pseudo primary inputs are selected together in
the λ set or in the µ set of the subsequent decomposition of the
hyper-function. �

Theorem 4.2 After the λ set variables used in the decomposi-
tion of a hyper-function have been selected, to reduce the number
of compatible classes of the hyper-function, we only have to deter-
mine which ingredients should belong to the same column or the
same row in the encoding chart. The exact codes of these columns
and rows do not influence the number of compatible classes of the
hyper-function. �

We thus use the same encoding strategy to encode these ingredients
as that used in the compatible class encoding.

4.2 The Decomposition of Hyper-Function
Single-output decomposition can be easily applied to the decompo-
sition of a hyper-function. Via hyper-function decomposition, any
algorithm that is proposed for single-output decomposition can be
applied to multiple-output decomposition.

Definition 4.2 The transitive fanout of a node j, denoted as
TFOj, is defined as TFOj = {node ii = j or ∃ path from j to i}.�

Definition 4.3 The duplication source (DS) after a hyper-
function decomposition is the set of nodes which have at least one
pseudo primary input as their direct fanin. �

Note that after we have decomposed a hyper-function, every node
∉ DS must be k-feasible. However, every node ∈ DS with t pseudo
primary inputs as its direct fanins must be (t+k)-feasible.

Definition 4.4 The duplication cone (DC) after a hyper-
function decomposition is defined as DC = {∪j TFOjj∈DS}. �

Definition 4.5 The mth layer duplication set (DSetm) after a
hyper-function decomposition is defined as DSetm = {node jj is in
TFO’s of m pseudo primary inputs}. �

After we have decomposed a hyper-function, the DC should be
duplicated to implement the ingredients. Assume that the hyper-
function has n pseudo primary inputs and i ingredients. A node ∈
DSetm (m < n) must be duplicated (2m − 1) additional copies; a node
∈ DSetn must be duplicated to have additional (i − 1) copies. To
implement each ingredient, we then assign its corresponding code
to the pseudo primary inputs. These pseudo primary inputs, as-
signed with constant values, can be collapsed into their fanout
nodes. Nodes ∈ DS are thus reduced by eliminating the extra
pseudo primary inputs. After a hyper-function decomposition, all
new generated nodes ∉ DC can be shared by these ingredients.

Example 4.1 Assume that four distinct Boolean functions,
f0(i0,i1,i2,i3,i4,i5,i7,i8), f1(i0,i1,i2,i3,i4,i5,i6), f2(i0,i1,i2,i3,i4,i5) and
f3(i0,i1,i2,i3,i4,i5), form a hyper-function F: B11 → B. Suppose the
coding of each ingredient is derived by applying our compatible
classes encoding algorithm and is shown in Figure 8(a). To imple-



ment F with 5-input LUT’s, assume that F is decomposed as what
is depicted in Figure 8(b), in which nodes ∈ duplication cone are
filled with gray. After duplicating the duplication cone, as demon-
strated in Figure 9(a), we assign (0,0) to (η0,η1) to recover f0, (1,0)
to recover f1, (0,1) to recover f2 and (1,1) to recover f3.
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Figure 8: (a)Hyper-Function and Ingredients (b)Decomposition of F
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Figure 9: (a)Duplication for Ingredients (b)Further Reductions

After our collapsing these constant input signals in Figure 9(a) into
their fanout nodes, the resultant network as is indicated in Figure
9(b) will be independent of these pseudo primary inputs. Since f2
and f3 are independent of i6, i7 and i8 according to their original
function expressions, we can further simplify the network by col-
lapsing nodes a1 and b1 into f2 and f3 as shown in Figure 9(b).
Nodes ∉ duplication cone can be shared by the ingredients of F.

4.3 Properties of Hyper-Function Decomposition
Because nodes in the duplication cone must be duplicated, fewer
nodes in the cone are preferred. Consequently, we should keep the
pseudo primary inputs as close to the output as possible during the
decomposition process. In other words, pseudo primary inputs are
preferred to be kept in the µ set during decomposition. In the ex-
treme case, if we always select the pseudo primary inputs in the µ
set, hyper-function decomposition can be considered as the column
encoding method in [4]. Hence, the column encoding approach in
[4] is a special case of our hyper-function decomposition. Hyper-
function decomposition provides a more generic and flexible
means to extract common sub-logic than column encoding. Since
multiple-output functions can be decomposed as easily as a sin-
gle-output function, the λ set size doesn’t have to be restricted to a
small value. Moreover, the shared logic can cross many levels; the
extracted common sub-expressions can be large.

Although a hyper-function is decomposed by applying single-
output decomposition, two differences exist between hyper-
function decomposition and single-output decomposition. First,
strict encoding for a single-output decomposition may become
non-strict for a hyper-function decomposition. Because for each
ingredient of the hyper-function, a compatible class can be encoded
with more than one code. (When a hyper-function is constructed,
conjunction partitions may be performed on the partitions of ingre-
dients. Hence a pattern in a partition may be broken into several
patterns in a conjunction partition.) Secondly, an encoding that is

rigid for a single-output decomposition may become pliable for a
hyper-function decomposition. Because the compatible classes of
an ingredient may be encoded by more bits than necessary.
IMODEC [5] provides a good approach to guarantee that each
function is rigidly encoded. However, pliable encoding can save
more areas than rigid one in the cases discussed below.

Definition 4.6 A partition � is contained by another partition �
if the multiplicity of � equals to the multiplicity of the conjunction
partition of {�,�}. �

Theorem 4.3 Given two partitions � of function fa and � of
function fb with respect to the same λ set selection and both of

 ³
log multiplicity of �  and  ³

log multiplicity of �  are less than the λ set

size. � is contained by � if and only if the decomposition functions
of fb (which identify the column patterns in � by strict encoding)
can be used as the decomposition functions of fa. �

Theorem 4.4 Given two partitions � of function fa and � of
function fb with respect to the same λ set selection and both of

 ³
log multiplicity of �  and  ³

log multiplicity of �  are less than the λ set

size. If � is contained by �, then the decomposition functions of fb
can be used as the decomposition functions of fa. �

Example 4.2 Given three functions f0(x0,x1,x2,x3,y0,y1),
f1(x0,x1,x2,x3,y2,y3) and f2(x0,x1,x2,x3,y3,y4) with λ set selection as
{ x0,x1,x2,x3}, assume therefore we have three partitions:
Π0 = <0,0,1,0,1,2,2,0,3,2,0,0,0,0,0,2> of f0,
Π1 = <0,1,2,0,2,3,3,2,4,3,0,2,1,5,1,3> of f1, and
Π2 = <0,1,1,0,1,2,2,3,3,2,0,3,1,4,5,2> of f2.
If f1 and f2 are combined to construct a hyper-function h12 with λ set
{ x0,x1,x2,x3}, then the hyper-function has partition Πc of {Π1,Π2},
Πc12. Because Πc of {Π0,Π1,Π2}, Πc012, has the same multiplicity
as Πc12, Π0 is contained by Πc12 by Definition 4.6. According to
Theorem 4.3 or Theorem 4.4, the decomposition functions of h12

can be used as the decomposition functions of f0. Therefore, if f0, f1
and f2 are combined to form a hyper-function with λ set
{ x0,x1,x2,x3}, there are three decomposition functions (because of
the multiplicity of Πc012 = 8) shared by the three functions as
shown in Figure 10(a). Because f0 uses three decomposition func-
tions instead of two decomposition functions to encode four com-
patible classes, the encoding becomes pliable. On the other hand, if
the encoding is restricted to being rigid, such as [5], it may derive
the result as shown in Figure 10(b). In this case, two more LUT’s
are consumed.

f 2f 0 f 1

(a)

f 2f 1f 0

(b)

y0y1

x 0 x 1 x 2 x 3 x 0 x1 x 2 x 3 x 0 x 1 x 2 x 3

y0y1y2y3 y2y3y3y4 y3y4

x 0 x 1 x 2 x 3 x 0 x 1 x 2 x 3 x 0 x 1 x 2 x 3 x 0 x 1 x 2 x 3 x 0 x1 x 2 x 3

Figure 10: (a)Pliable (b)Rigid Encoding of f0

5. EXPERIMENTAL RESULTS
Our algorithm, HYDE, has been implemented in SIS environment
[11]. Experiments are conducted over a set of benchmark circuits.
To prepare the initial circuits for the following technology map-
ping, small circuits are collapsed, while large circuits are optimized
by applying SIS algebraic script. (The benchmark circuit des is, in
addition, partially collapsed such that several nodes can share the
same supports.) After the initial circuits are derived, the technology
mapping script used for 2-level circuits is: our decomposition,
xl_partition -tm, xl_cover and the script for multi-level circuits is:
(full_)simplify, our decomposition, xl_partition -tm, xl_cover. For



multi-level circuits, the script are applied several times to improve
the results by taking advantage of extracting the local don’t care
set. The experiments are run under SUN SPARC 20 workstation.
We compare these results with other state-of-the-art FPGA synthe-
sis techniques [4,5,8] in Table 1 and Table 2.

Table 1: Experimental Results for XC3000 Device
Circuit IMODEC[5]

CLB
FGSyn[4]

CLB
HYDE
CLB

CPU Time
sec.

5xp1
9sym
alu2
alu4
apex6
apex7
clip
count
des
duke2
e64
f51m
misex1
misex2
rd73
rd84
rot
sao2
vg2
z4ml
C499
C880

9
7
46
168
129
41
12
26
489
122
55
8
9
21
5
8
127
17
19
4
50
81

9
7
55
56
181
43
18
23
-
85
44
8
8
22
5
8
136
25
17
4
54
87

10
6
43
140
135
39
11
24
408
75
48
8
9
22
5
7
125
17
18
4
50
68

1. 3
22.8
554. 4
911.7
108. 7
9.6
407. 2
1.6
236.6
28.0
0.0
10.4
11.8
3.3
3.0
16.0
132.7
117.5
3.6
2.7
2.9
69.8

Total
Subtotal

1453
964 895

1272
864

Table 2: Experimental Results for 5-input 1-output LUT’s
Circuit without re-

sub. [8]
LUT

with resub.
[8]

LUT

resub. PO[8]

LUT

HYDE

LUT
5xp1
9sym
alu2
alu4
apex4
apex6
apex7
b9
clip
count
des
duke2
e64
f51m
misex1
misex2
misex3
rd73
rd84
rot
sao2
vg2
z4ml
C499
C880

15
7
48
172
374
192
120
53
18
52
-
175
-
12
12
40
195
8
12
-
23
44
6
-
-

11
7
48
90
374
161
61
39
11
31
-
155
-
10
10
36
213
6
7
-
21
21
5
-
-

10
7
48
56
374
155
54
37
14
31
-
150
-
8
10
36
120
6
8
-
21
17
4
-
-

13
6
50
206
354
186
54
36
14
31
561
116
80
12
13
29
131
6
9
185
22
18
5
70
81

Total
Subtotal(-alu4)

1578
1406

1317
1227

1166
1110

1311
1105

In Table 1, the target architecture is the Xilinx XC3000 FPGA. Our
algorithm is compared with IMODEC [5] and FGSyn [4]. In Table
2, the resultant circuits are constructed by 5-input 1-output LUT.
Without much difference in the consumed CPU time, it is not
shown in Table 2. In column 2, 3 and 4 of Table 2, we repeat the
results reported in [8]. Although not mapping alu4 well, HYDE

still outperforms IMODEC and FGSyn. Excluding alu4, our algo-
rithm produces slightly better results than those in column 4 of
Table 2. Due to the disability of handling large circuits such as
C880 in [8], our algorithm is considered more practical to handle
large circuits.

6. CONCLUSIONS
Compatible class encoding and hyper-function decomposition
techniques have been proposed. The former improves the decom-
posability of the image function and the hyper-function, while the
latter extracts common sub-expressions among multiple-output
functions. By transforming these multiple-output functions into a
single-output hyper-function, the problem of multiple-output de-
composition can thus be reduced to that of single-output decompo-
sition. As a result, previous algorithms intended for single-output
decomposition can be easily extended to solve multiple-output
decomposition. Experimental results show that our approach is
practical and promising. We believe that hyper-function decompo-
sition can be not only used for FPGA synthesis but also exploited to
identify common sub-logic in the technology-independent optimi-
zation phase of logic synthesis. Another possibility of application is
the time-multiplexed reconfigurable computing. For time-
multiplexed functions, we can combine them together as a hyper-
function. After decomposition, we don’t have to duplicate the
duplication cone at all. Instead, we can use the pseudo primary
inputs to recover the time-multiplexed functions. More applica-
tions and theoretical works need to be explored in the future.
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