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Abstract

We presen a techrique for syrtheszing power- as well as
areaoptimized circuits from hierarchicd daa flow graphs under
throughpu congraints. We all ow for the use of complex RTL mod-
ules, such as FFTs and filters, as building blocks for the RTL cir-
cuit, in addition to simple RTL modues such as addes and mul-
tipliers. Unlike pag technquesin the areg we also cugomize the
complex RTL moduesto match the environmert in which they find
themsdves We presen afad and efficiert algorithm for mapgng
multiple behaviors onto the same RTL modue during the couse
of syrthess, thus alowing our syrthess sysem to explore previ-
oudy unexplored regions of the desgn space Thestechriquesare
at the core of an iterative improvement base approad which can
accep temporary degraddion in sdution qudity in its quest for a
globally optimal solution. The mowvesin our iterative improvement
procedue explore optimizations along differert dimensons such
as fundiond unit sdedion, resouce allocaion, resouce shaing,
resource splitting, and seledion and resynthesis of complex RTL
modues Thesinter-related optimizations are dynamicdly traded
off with ead other during the course of syrthess, thus exploiting
the benefits that arise from their interadion. The synthesis frame-
work also tacKes other related high-level syrnthess tasks suc as
schedling, clock sdedion, andV;; sdedion. Expaimental re-
suts demondrate tha our algorithm produces circuits whos area
ard power consumption are comparaldeto or better than those pro-
duced using flattened synthesis, within much shorter CPU times.
The efficacy of our algorithm in the power-optimizaion modeisil-
lugrated by the fad that it produces circuits tha consune upto 6.7
times less power than area-optimized circuitsworking at 5 Volts at
areaoverheadnot exceedng50%.

1 Introduction

Hightlevel syrthess is the proces of deriving an optimized
register-trander level (RTL) architecure from a belaviora de-
saiption, usudly spedfied as a daa flow graph (DFG) for daa-
dominaed circuits. In this pape, we presen a techrique for syn-
theszing power- as well as areaoptimized daa-dominated cir-
cuits from hierarchicd DFGs unde throughpu congraints. Data-
doninated behaviorshave apredaminance of arithmetic opeations,
and an absene of control-flow congructs. They are commonly en-
courtered in digital signd proceséng ard image processng api-
cétions.
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Hierarchicd high-level syrnthegds can be divided into two sub-
problems, (i) deriving hierarchicd information from a flattened be-
havioral desciption, and (ii) syrtheszing a circuit usng a hier-
archicd behavioral desciption. The latter problem, which is ad-
dressel in this pape, was also consderedin[1, 2, 3, 4]. In[1] and
[3], the problem of syrntheszing areaoptimized circuits from hier-
archicd betaviorswas consdered Thetechrique presetted in [4],
which was geaed towards apgdying power-optimizing trangorma-
tions suppaots two levels of hierarchy. Pad reseach in flattened
high-level syrthess for low power has consdered allocaion and
assgnmert [5, 6], modue sdedion [7], schedling [6], and trans-
formations [4]. A techrique which sdved the problems of allo-
cdion, assgnmert, modue sdedion, schedling, clock sdedion,
andV;,; sdedion simultaneouly to produc power-optimized ar-
chitedureswaspresenedin [10]. We compare experimertal resuts
obtained by our method with those preserted in [10].

The following genea obsevation can be made abou existing
hierarchicd high-level syrthesstechriques they hande large de-
signs much fager than flattened high-level syrthess techriques,
however, the sdutions producel are geneally of inferior qud-
ity. This is becaus fine-grained optimizations which are within
the scope of flattened syrthess techriques are not visible while
performing hierarchicd syrthess. Our work aims at combin-
ing the globd perspedive afforded by hierarchicd syrnthess with
the flexibility of flattened synthesis to produe compad, power-
optimized architedures within shat periods of time. Our algo-
rithm acceps as input a hierarchicd DFG (arbitrarily deep hierar-
chies are allowed), and alibrary of modues which can be simple
(adders, multipliers) or compex (RTL moduesimplemerting spe-
cific DFG9. Other inpusindudetypicd inpu tracesto aid power
edimation, and a throughpu condraint for syrthegs. Our algo-
rithm worksiteratively, i.e,, it beginswith aninitial solution, which
is iteratively refined This can happe in four ways (A) smple
or complex modues in the initial or intermediate solution are re-
placeal by new ones chose from thelibrary, (B) complex modues
areresyrtheszed by descenihg the hierarchy, (C) apar of simple
(complex) moduesis combined into one simple (complex) modue
which exeautes the functionality of bath its constituents, and (D)
asimple (complex) modue is sgit into multi ple simple (complex)
modues Move A alows us to take advarntage of use-spedfied
simple and complex modues and move B allows us to tailor the
complex moduesto ther environmerts. Move C hdpscrede com-
pad circuits, and move D hdps creae new optimizaion oppatuni-
ties. Note that in case of move B, modues whos internd descip-
tions are not availabe or cannd be atered, are nat resyrtheszed.
Furthermore, the algorithm can suppat chaned multi-cycled, and
pipelined functional units, and ded with multi-f unction arithmetic-
logic units (ALU’s). It enaltes escag from locd minima by con-
sidering asequeneof moves at atime, where individud moves can
have negdive gan, i.e., lead to temporarily degraded RTL architec-
tures.

2 Background

In this sedion, we introduce the basc conceps usel in our
work. We first explain the notion of hierarchica betaviorsand cir-
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Figure 1: (a) A hierarchical DFG, and (b) a scheduled and assigned hierarchical DFG

cuits with an example. as Profile(RTL3, DFG8) = {0, 0, 2, 4, T} under the same
Figure 1(a) shows a hierarchical DFG. The DFG labeled “Top ordering. This is because the first two inputdRifL3are expected
level” is thetop-level DFG Nodes of the DFG can represeg- at time 0, the third at time2 and the fourth at tim&. When the

erations like addition and multiplication, ohierarchical nodes inputs arrive in this fashion, the output is expected at tim&iven
like convolution and filtering. In general, if the input hierarchy the profile of a module and the input arrival times, the output arrival
is preserved, hierarchical nodes usually represent specific, well-times can be computed as illustrated next. If thguits at terminals
characterized behaviors. However, if the hierarchy is the output of 0, 1, 2, and3 of RTL3arrive at times2, 5, 3, and7, respectively,
a partitioning process, hierarchiaaddes could represent arbitrary thenRTL3can begin operation ataz(2—0,5—0,3—2,7—4) =5
behaviors. The edges in the top-level DFG entering and exiting hi- cycles, which implies that the output is available afteércycles.
erarchical nodes are annotated with numbers which represent conin this example, each hierarchical node is mapped to a unique in-
nectivity between the top-level edges and edges in the underlyingstance of an RTL module. In general, however, different hierar-
DFG. For instance, the edge labeledeeding nodeDFG1 in the chical nodes could map to the same instance of an RTL module
top-level DFG is connected to edgén DFG1. The DFGs repre- and functionally identical hierarchical nodes could map to different
senting hierarchical nodes can in turn consist of simple and hierar- RTL modules or to different instances of the same RTL module.
chical nodes. Although the hierarchical DFG shown in Figure 1(a) At this stage, we formalize the notion of throughput constraint.
is acyclic, the system is capable of handling loops at any hierarchi- For the class of applications we consider, the circuit should be able
cal level. to process inputs at a constant rate, and it does not pay to be able
A hierarchical node is implemented by BRTL module Just as to process inputs any faster. The sampling period is the number of
multiple operations can map to the samedule library element, time units allowed for completing one iteration of the design. The
multiple hierarchicahodes can map to the same RTL module. An throughput is the inverse of the sampling periogl, it is the num-
RTL module can itself be described hierarchically as an intercon- ber of samples processed per unit of time (clock cycles).
nection of RTL modules, functional units, ftiplexers, and regis- . .
ters. 3 Motivational examples
The environmentof an RTL module for a hierarchical node In this section, we motivate key algorithmic features. The main
mapped to it is an ordered set consisting of the arrival times of the constituents of our algorithm are the moves we use to refine the ini-
inputs to the hierarchical node and the times when the outputs oftial solution. As mentioned in Section 1, moves are of four types.
the hierarchical node areonsumed The environment is defined ~ The first two types of moves involve replacement or resynthesis of
only for RTL modules which are part of a scheduled, allocated, and an existing module, and the next two types involve merging and
assigned RTL circuit. Thprofileof an RTL module for a hierarchi-  splitting of modules. Note that modules can be simple or complex.
cal node is defined as an ordered set consisting oétipectedn- Example 2 illustrates the benefits of the first two move types and
put arrival times and output arrival times. Unlike the environment, Example 3 illustrates the benefits of the third.
profile is de_fine_d for any module, irrespective of whether it is a part Example 2: In this example, we illustrate the following: combin-
of an RTL circuit. ing coarse-grainknowledge available at the higher levels of the
Example 1: Consider the hierarchical DFG shown in Figure 1(a) hierarchy withfine-graintechniques traditionally associated with
again. The hierarchical nodes are annotated with their namesflattened high-level synthesis can significantly enhance solution
(placed inside the circle representing the node) and the names ofjuality. To this end, we perform moves of type(which lever-
instances of the RTL modules they are mapped to (placed outsideage off coarse-grain knowledge by replacing an instance of an RTL
the circle). For example, hierarchical noB&G1 is mapped to module by another one, better suited to the environment), and type
instanceRTL1 Figure 1(b) shows a schedule and assignment of B (which perform fine-grain resynthesis), on an example RTL cir-

the flowgraph in Figure 1(a). The environmentRTL3with re- cuit to demonstrate the power savings obtainable.

spect toDFG3can be described by the sBtv(RTLS, DFG3) = Consider the problem of synthesizing a power-optimized RTL
{0, 0, 0, 0, 9} under the input/output orderif®, 1, 2, 3, 4}. circuit for the hierarchical DFG shown in Figure 1(a), under a sam-
This environment assumes that the four inputdRdlL3arrive at pling period constraint of2 cycles. The simple modules presentin
time 0. Note that the output dRTL3is consumed bfRTL4at time the module library, their areas and delays (in number of clock cy-

9. The profile ofRTL3with respect oDFG3 can be represented  cles) are summarized in Table 1. These library modules also have



Table 1: Summary of functional unit and register properties

addl | add2| chainedadd2 | chainedadd3 | multl | mult2 | regl
Area 30 20 60 90 150 100 10
Delay| 1 2 1 1 3 5 -
power models, which we omit for brevity. The main fact to be of high-level knowledgewhich results from a global view of the
noted is that, to perform the same sequence of operatinnk? hierarchy, todrive synthesis at lower hierarchical levebs key al-

consumes much less power thamiltl Figure 2 shows the com-  gorithmic feature.

plex modules available in the library. For each complex module,  The application of a move of typ&canchange the DFG repre-
the DFG implemented, and the names of the instances of modulessenting a hierarchical nodeFor example, for the case &TLY,
implementing individual operations are shown. For examRIE. module C2 is recognized as a better candidate than modiile
moduleC1 consists of three multiplierdvi1, M2, andM3, which (note thatC1 andC2 implement functionally equivalent behavior),
are of typemultl Chains of functional units are shown enclosed and the substitution is performed. Remizing such opporttties
within boundaries. For example, RTL moduB5 is a chain of requiresknowledge provided by the usegarding the functional
three functional units of typaddl Note that a chain of adders can equivalence of different DFGs. Many hierarchical DFGs are con-
complete execution almost as fast as an individual adder, enabling astructed out of several, commonly-used “building blocks” lila-
chain of three adders of tyeld1to complete in the same time, in  product butterfly, etc. These building blocks are well studied and
cycles, as one adder of typeldl Also, we observe that the com-  have carefully analyzed behaviors, and a number of DFGs describ-
plex modules do not use all available resource sharing opportuni-ing individual building blocks are available, each with its distinct
ties, e.g, operationst+1 and+3 in moduleC4, which can map to advantages. A move of typetries to select the “best” DFG which
the same functional unit instance, are mapped to different instancesdescribes a hierarchical nodes., the DFG which is best suited to
This is because these modules are power-optimized. Power opti-the environmental constraints. |
mization often (but not always) requires that operations be bound to A move of typeA is followed by a move of typ®, which attempts
different functional unit instances, even when the schedule permitsto improve the RTL module further. This is because the library ele-
the operations to share resources. A detailed discussion of the efment selected, though a good match, might not have been designed
fect of resource sharing on power consumption can be found in [9]. with the current environmental constraints in mind.

The solution which is input to the procedure for the selection of The example given ahead illustrates the benefits of moves of
moves of typeA andB is shown in Figure 1(b). As we can see, typeC, which merge two modules into one. Candidate modules for
DFGsDFG1, DFG2, DFG3, andDFG4, are mapped to complex merging can be either simple or complex.

modules of type€1, C2, C3, andC4, respectively. Current hierarchical synthesis systems do not allow different
(anisomorphic) DFGs to be implemented by the same RTL mod-
R A D A N el \a" /al\az Bap aaz a3 ule. This often results in implementations with a large area. The
0 cycles . . Yo main hurdles in performing this merging are as follows:
1
Al DN ¢ ltis difficult to determine the best candidate DFGs for merg-

i ing prior to synthesis.

¢ Current research tackles the problem of designing an RTL
circuit, which can support nitiple behaviors, by just con-

"G Vor sidering it as a multi-behavior high-level synthesis problem.

Thus, a traditional technique would need to perform schedul-

ing, allocation, and assignment afresh for every pair of mod-

o1
Figure 2: Library of complex modules ules which need to be merged. Clearly, the complexity of this

We now illustrate the application of moves of typ&sand B approach would render it unusable in practice.
to the given solution. The first step is the identification of a set Our algorithm overcomes the first limitation because it is iter-
of modules to targetRTL1, RTL2 andRTL3are selected by this  ative, i.e, during the course of the algorithm, different merging
process. We then try to evaluate thlackavailable to the selected  configurations are considered, and the best one is selected. Since
modules,i.e,, we ascertain the earliest input arrival times and the we need to assess several sharing configurations during synthesis,
latest output arrival times whose satisfaction by the selected mod-our procedure to derive an RTL module which can execute mul-
ules would ensure the schedulability of the implementation. For tiple DFGs needs to be fast. We solve this problem by gurst
example, we can see that the outputR@L2can arrive nine cycles  bedding the RTL modules, which implement the DFGs, into a new
later than the inputs. In other wordRTL2can have a profile of RTL module The schedule, assignmentg, for individual DFGs
{0,0,0,0,9, 9}, though the profile foRTL2in the initial solution is unaltered, and the merged RTL module cannot execute the DFGs
is {0,0,0,0,6,3}. We now apply a move of typa, followed by a in parallel. The procedure for merging tries to find an embedding
move of typeB. A move of typeA would identify the “best” (low- which honors clock cycle constraints, while minimizing the area of
est power solution if the objective is power optimization, and most the merged RTL module.

compact solution if objective is area optimization) library module R . . .
; . : — Example 3: This example illustrates the area saving obtainable by
which can replac®TL2 In this example, the current implementa implementing different DFGs on the same RTL module. In Fig-

tion is indeed the best available in the library, therefore, no changes
are made. We then apply a move of tyBei.e,, we resynthesize ure 3, DFGDFG1 andDFG2are mapped to RTL modulésTL1

- : - : and RTL2 respectively. Operations in the DFGs are shown an-
RTL2with the new, relaxed constraints, to see if we can obtain a .
better, lower power match for the required profile. The resynthe- notated with the names of the modules they are mapped to, and

: variables are shown annotated with their names (unparenthesized)
sis procedure foRTL2would suggest the replacement of modules : :
M5 andM4, currently of typemultl, by mult2, which would signif- and the names of the registers they are mapped to (parenthesized).

. . . o RTL moduleNewRTLcan execute both the DFGs, and preserve
icantly reduce power consumption. This illustrates utigzation the original schedules and assignments of the individual DFGs.

LWe use the power models presented in [10]. Details of the power esti- All three RTL modules presented in this example were placed and
mation methodology can be found in [8] routed using tools from the OCTTOOLS suite. Puppy was used
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Figure 3: Mapping of two distinct DFGs to the same RTL module
Table 2: Labeling the new RTL module to implement DFG1 and DFG2

NewRTL| gl | 92| g3 | g4 | g5]| g6 | Al A2 M1 M2 S1
RTL1 - rt | r2 | r3|rd |15 Al A2 M1 M2 S1
RTL2 sl | s2| s3|s4|s5]|s6| Al A2 M1 M2 -

Library | reg | reg | reg | reg | reg | reg | Addl | Addl | Multl | Multl | Subl
Area 51| 5 5 5 5 5 20 20 50 50 20

for placement and Mosaico was used for routingTL1 had an solution, as an intermediate step, in striving for a globally optimal

area of57.94 units,RTL2 53.89 units, andNewRTL.61.67 units. solution.
This significant area saving is possible, without significant compu-  First, the library is searched to find the best possible implemen-
tational effort, due to the technique BTL embeddingwhich we tation of the input behavior that satisfies the constraints imposed.

have devised. Our technique simply constructs a new RTL mod- |f such an implementation cannot be found, one is synthesized us-
ule, NewRTL. in which the original RTL modules can be embed- ing the routine INITIALSOLUTION. This routine maps each sim-
ded. The goal of our procedure is to find the minimum area em- ple node in the DFG to the fastest implementation available in the
bedding (including a measure of interconnect) which satisfies clock jiprary. DFGs which represent hierarchical nodes are handled in
cycle constraints. The correspondence between the components q:he same manner. Each operation is mapped to a separate func-

NewRTLand their counterparts iRTL1andRTL2is given in Ta- tional unit, and each variable to a separate register/tiegin a
ble 2. The module library used and the area of the simple modulescompletely parallel architecture. The initial solution is improved
are also shown. n through the application of moves of typAsB, C, andD. When a

. move is performed, its validity is checked by scheduling to make
4 The algomhm sure that the throughput constraints ditt siet.

In this section, we present a brief description of the basic com-
ponents of our synthesis algorithm and their interactions. Details of
individual components can be found in [8].

Figure 4 describes the top level of our synthesis algorithm. The
algorithm accepts as input a DFG, a library of simple and complex
RTL modules, an objective function to optimize (area or power),
and a constraint that specifies when the primary inputs arrive and
when the primary outputs are expected. The core iterative improve-
ment procedure is enclosed in loops which iterate through the se
of availableV,,’s and allowed clock period€. The best solution
for a givenV, and clock period is obtained through variable-depth
iterative improvement general optimization technique that starts
with an initial solution and improves its quality thugh the applica-
tion of a sequence ahoved11]. This algorithm derives its power
from the ability to perform moves which worsen the quality of the

The scheduler is called whenever we need to check the validity
of an assignment. Before scheduling, we derive an ordering for the
operations that need to execute on the same functional unit or RTL
module, and variables that need to be stored in the register. This
ordering imposes extra dependencies in the DFG, which are mod-
eled as edges. Under this scenario, scheduling of a node reduces to
the problem of finding the longest path from a primary input to the
node [10]. Scheduling of DFGs is a well-studied problem [12], and
Ywe do not discuss it further in this paper.

As mentioned in Example 2, moves of typeksandB alter the
implementation of a selected set of RTL modules and functional
units with a view to minimizing the power consumption (or area) of
the circuit. The application of these moves can be described by the
algorithm shown in Figure 5. This algorithm corresponds to state-
ment7 of Figure 4. As is evident from the pseudocode shown in

2The set ofV/z,'s and clock periods can be drastically pruned by usinga Figure 5, this process can be divided into three distinct parts: mod-
procedure from [10] to obtain the subset that needs to be considered. ule group formation, constraint derivation, and resynthesis. Mod-




SYNTHESIZE(DFGG, LIBRARY L, CONSTRAINTSETC, GET_BEST.TYPEA_AND_B_MOVE (DFG G, LIBRARY L,

OBJECTIVE Obj){ DATAPATH Cur_DP, CONSTRAINTSETC,
0 foreachsupply voltagd/;, in the pruned supply voltage sgt OBJECTIVE Obj){
1 foreachclock periodclk in the pruned clock period sét /lObj can be area or power
2 Cur _DP « INITIAL _SOLUTION(G, L); Module _groups = ®;

//If the library cannot supply an implementation of Best_gain = —oo;
/lthe behavior, generate an initial implementation Module_groups = FORM_MODULE_GROUPECurDP);

3 Pass_gain «— oo, Best_DP « Cur_DP; /| Module _groups is a set whose elements are sets of
4 while(Pass_Gain > 0){ /l modules which will be considered together for synthesis
6 for@ = 0;i < MAX_MOVES; i+ +){ mgroup = & ;
7 MOVE m1 = GET_.BEST_TYPE- foreach(mgroup, Module groups){

_A_AND_B_MOVE(G, L, Cur _DP, C, Obj); Gain = 0;
8 MOVE m8 = GET_BEST_.RESOURCE DERIVE_CONSTRAINTYmgroup, Cur _DP);

_SHARINGMOVE(G, L, Cur _DP, C, Obj); /lderive constraints for resynthesis of each
9 if (Gain(m3 Obj) < 0) /Inode mapped to module groespgroup.
10 MOVE m8 = GET_.BEST-RESOURCE- foreach(M, mgroup){

SPLITTINGMOVE(G, L, Cur_DP, C, Obj); Resynthesize modul® based on the constraints
11 if (Gain(m1, Ob)) > Gain(m3, Obj)) derived in the [ERIVE_.CONSTRAINTSroutine
12 IMPLEMENTM1_AND_M2(Cur_DP, m1); Gain = Gain — COST(M, Oby);
13 elselMPLEMENTM3(Cur_DP, m3);

if (Gain > Best_gain){
14 Pass_Gain = Get sequence of moves store the current solution as the best solution;
with best cumulative gain; Best_gain = Gain,;
15 if (Pass_Gain < 0) 11}
break;
16 apply best move sequence@ur_DP; Figure 5: Module selection moves
. ) hier_paulinis a hierarchical DFG obtained by unrolling the well-

17 Best_DP = best solution seen so far; known benchmarkPaulin. dctimplements discrete cosine trans-
11} form. avenhausascadedoct, iir, andlat are hierarchical DFGs

Figure 4: Iterative improvement which represent filters and are a part of the HYPER package [4].
: testlis the DFG in Figure 1(a). In all cases, the input hierarchy
ule group formation divides the modules in the current RTL imple- Was preserved. To assess the efficacy of our technique, we com-
mentation into groups for the steps that follow. This is followed by Pared our hierarchical algorithm to the flattened version of the same
constraint derivation where each operation which is performed by algorithm [10]. The flattened technique also takes advantage of reo-
a module belonging to the group under consideration is assignedsurce sharing, module selectidfy; selection, clock selection, and
a new constraint for synthesis. For instance, an addition operationscheduling for low power, and is one of the most comprehensive
which initially took two cycles to complete could be set a constraint technigues available today.
of five cycles, or, a filter which accepted inputs in cygland pro- The results obtained are tabulated in Table 3. Coluknrep-
duced an output in cycle could be constrained to produce an out- resents thdaxity factor used for synthesis. Laxity factor is de-
put in cycle7 due to this process. The new constraints must pre- fined as the ratio of the given sampling period (inverse of specified
serve schedulability of the implementatidrg., the new architec-  throughput) to the minimum sampling period that can be attained
ture, when rescheduled, should meet throughput constraints. Mod-for the input DFG using the library of modules provided. Columns
ules are then resynthesized to meet the new constraints. Note thaklat andHier represent flattened and hierarchical versions of the
the term “resynthesis” refers to alterations performed on RTL mod- Same behavioral description. The circuits in coluAmwere syn-
ules as well as choosing new functional units or RTL modules from thesized to optimize for area at a supply voltagé Bbits and sub-
the library. The relaxation in constraints might enable replacementsequently voltage-scaled for low power operation. The circuits in
of the library element performing the function by a slower, poten- column P were synthesized to optimize for power. Rowsand

tially lower power library element. P represent the area and power consumption, respectively, of the
) synthesized circuits. The area (power) is normalized with respect
5 Experimental results to the area (power) of an area-optimized, riGn-scaled architec-
We have implemented the behavioral synthesis framework pre-ture synthesized from a flattened input description at the same lax-
sented in the previous sections as the progkus8YNin 44,000 ity factor. For example, if row? of columnP, under major column

lines of C++. We have performed experiments to evaluate our tech-Hier is z, then the power consumed by a circuit obtained from a
niques using several behavioral descriptions of digital signal and hierarchical behavioral description, optimized for powes, tsnes
image processing applicationsl-SYNreads in a textual descrip-  the power consumed by a circuit obtained from a flattened behav-
tion of the hierarchical DFG, and perforrifg; selection, clock se-  ioral description, optimized for area, and operating &blts. All
lection, module selection, scheduling, allocation, and assignmenttoentries in rowA of columnA under major columifrlat are1. This
resultin a highly power/area-efficient RTL circuit that consists of a is because this column represents the area of an area-optimized cir-
datapath netlist, and a finite-state machine description of the con-cuit, synthesized from a flattened behavioral description,1é5¢el
troller. The controller and datapath netlists are merged and mappedscaled for low power, normalized with respect to the area of an
to the MSU standard cell library using the SIS logic synthesis sys- area-optimized circuit, synthesized from a flattened behavioral de-
tem. Placement and routing are performed using tools from the scription, which operates &tVolts. SinceV;,-scaling makes no
OCTTOOLS suite. A switch-level circuit extracted from the lay- difference to area, these entries are
out is simulated by a switch-level simulator, IRSIM, and the capac-  The area-power-synthesis time trade-offs for different laxity
itance switched is recorded and used to compute the power. factors for flattenedR]) and hierarchicalHi) behavioral descrip-

We have synthesized flattened and hierarchical examples oftions are summarized in Table 4. In this table, the area and power
several existing benchmarks to optimize for area and power. ratios are with respectto flattened area-optimized architectures, and



Table 3: Area (normalized) and power (normalized) results
=22

Circuit A/P LF =12 L.F. = LF =32
Flat Hier Flat Hier Flat Hier

A P A Pl A P A Pl A P A P
avenhausascade] A | 1126 108| 134| 1| 139|1.13|147| 1| 150 1.08| 1.54
P| 1/066|087|058| 1|054|0.85|047| 1| 055|0.85| 0.47
lat Al 1]136[091|134] 1] 1.27 1]139] 1] 1.07] 0.96 1
P| 1/055/099|054| 1|030|093|030| 1| 052|0.83]0.39
dct Al 1]133[/083| 10| 1(1.18|084|091| 1| 1.04| 0.74| 0.96
P| 1/062|090|055| 1|050|092|044| 1| 058|092 0.50
iir Al 1]|121]107|128| 1|1.13|101|123| 1] 1.13|0.99]| 1.23
P| 1/061|093|061| 1|046|0.86|039| 1| 042|081 0.36
hier_paulin Al 1]120]105|132| 1123|113 134| 1| 1.17| 1.16| 1.33
P| 1/059|097|055| 1|057|097|050| 1| 0.43]|0.87| 0.37
testl Al 1]|134]123|185| 1137|138 170 1| 152]|1.42| 1.65
P| 1/054|068|044| 1]|039|0.68| 030| 1| 0.37|0.75| 0.29

are averaged over all examples for the corresponding laxity factor.ods, our algorithm allows multiple DFGs to be executed on the

For example, if the entry in columHli, major columnArea ra- same RTL module. This is made possible by the technique of RTL
tio is z, then the average area of power-optimized circuits, synthe- embedding which we have developed for the purpose. We imple-
sized from hierarchical behavioral descriptions ismes the aver- mented our ideas in a program namédbYNwritten in C++. Ex-

age area of area-optimized circuits, synthesized from flattened beperimental results performed on commonly available benchmarks,
havioral descriptions, for that laxity factor. Under the major col- including some from the industry, demonstrated the efficacy of our
umn Power ratiq comparisons of power-optimized architectures techniques in synthesizing power-optimized circuits with relatively

are made against area-optimized architecturéd’aflabeledsV") low area overheads within short run times.

and those that have be&h,-scaled to just meet the sampling pe- Table 4: Summary of area (ratio), power(ratio) , and synthe-

riod constraint (labele®;4-sc). Major columnSynth. timegives
the synthesis time, in seconds, for area- and power-optimized cir-

sis time (seconds) results

cuits, averaged over all examples for a given laxity factor. The ex- LF | Arearatio Power ratio Synth. time
periments were conducted on an SGI Challenge workstation with A 5VH| FYdd_sljl Fl(sec')Hl
256 MB RAM.

The results obtained indicate that our hierarchical synthesis al- %g igg igg gi ‘21; ?12 4518 ggj gg%
gorithm produces circuits whose area and power consumption are 3'2 1'24 1‘29 ‘19 ‘17 .48 ‘40 1029 | 357
comparable to those of circuits produced from flattened descrip- - - : : : : :
tions. This is significant because most previous hierarchical high- References

level synthesis systems synthesize circuits which are significantly
less compact than than their flattened equivalents [3]. The synthe-
sis time, which is measured as the time to compile the behavioral
description into an RTL implementation, is significantly less for hi-
erarchical circuits.

For application-specific integrated circuits, which typically have
a short design cycle (order of weeks), reduction in synthesis time
can be extremely significant. For larger hierarchical behavioral de-
scriptions, we expect the ratio of synthesis times for flattened and
hierarchical synthesis to be even greater. Note that flattened syn-

thesis can also take advantage of module selection, scheduling, re-

source sharing, clock arid;; selection techniques available for hi-
erarchical synthesis. The efficacy of our power optimization tech-
niquesis illustrated by the improvement in power obtained at a rela-
tively low area overhead. Under hierarchical synthesis, our method
results in uptos.7-fold reduction in power at area overheads not
exceeding0% over area-optimized circuits working&a¥olts. On

an average, hierarchical power-optimized designs consutath

less power than flattened designs optimized for power, and hierar-
chical area-optimized designs had an area overhe&d & over
flattened, area-optimized designs.

6 Conclusions
In this paper, we presented a methodology for the synthesis of

power- and area-optimized circuits from hierarchical behavioral de- [11]

scriptions. Our algorithm can uniformly handle arbitrarily deep

hierarchies, and aims at using the high-level knowledge available ;5

at higher hierarchical levels to drive fine-grain optimization tech-
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