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Abstract

We present a technique for synthesizing power- as well as
area-optimized circuits from hierarchical data flow graphs under
throughput constraints. Weallow for theuseof complex RTL mod-
ules, such as FFTs and filters, as building blocks for the RTL cir-
cuit, in addition to simple RTL modules such as adders and mul-
tipliers. Unlike past techniques in the area, we also customize the
complex RTL modulesto match theenvironment in which they find
themselves. We present a fast and efficient algorithm for mapping
multiple behaviors onto the same RTL module during the course
of synthesis, thus allowing our synthesis system to explore previ-
ously unexplored regionsof thedesignspace. Thesetechniquesare
at the core of an iterative improvement based approach which can
accept temporary degradation in solution quality in its quest for a
globally optimal solution. Themoves in our iterative improvement
procedure explore optimizations along different dimensions such
as functional unit selection, resource allocation, resource sharing,
resource splitti ng, and selection and resynthesis of complex RTL
modules. Theseinter-related optimizations are dynamically traded
off with each other during the course of synthesis, thus exploiting
the benefits that arise from their interaction. The synthesis frame-
work also tackles other related high-level synthesis tasks such as
scheduling, clock selection, andVdd selection. Experimental re-
sults demonstrate that our algorithm produces circuits whose area
and power consumptionarecomparableto or better than thosepro-
duced using flattened synthesis, within much shorter CPU times.
Theefficacy of our algorithm in thepower-optimization mode is il -
lustrated by the fact that it producescircuits that consumeupto 6:7
times lesspower than area-optimized circuits working at 5 Volts at
areaoverheadsnot exceeding50%:

1 Introduction
High-level synthesis is the process of deriving an optimized

register-transfer level (RTL) architecture from a behavioral de-
scription, usually specified as a data flow graph (DFG) for data-
dominated circuits. In this paper, we present a technique for syn-
thesizing power- as well as area-optimized data-dominated cir-
cuits from hierarchical DFGs under throughput constraints. Data-
dominatedbehaviorshave apredominanceof arithmetic operations,
and an absenceof control-flow constructs. They arecommonly en-
countered in digital signal processing and image processing appli -
cations.
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Hierarchical high-level synthesis can be divided into two sub-
problems, (i) deriving hierarchical information from aflattened be-
havioral description, and (ii ) synthesizing a circuit using a hier-
archical behavioral description. The latter problem, which is ad-
dressed in this paper, was also considered in [1, 2, 3, 4]. In [1] and
[3], the problem of synthesizing area-optimized circuits from hier-
archical behaviorswas considered. Thetechniquepresented in [4],
which was geared towards applying power-optimizing transforma-
tions, supports two levels of hierarchy. Past research in flattened
high-level synthesis for low power has considered allocation and
assignment [5, 6], module selection [7], scheduling [6], and trans-
formations [4]. A technique which solved the problems of allo-
cation, assignment, module selection, scheduling, clock selection,
andVdd selection simultaneously to produce power-optimized ar-
chitectureswaspresentedin [10]. Wecompareexperimental results
obtained by our method with thosepresented in [10].

The following general observation can be made about existing
hierarchical high-level synthesis techniques: they handle large de-
signs much faster than flattened high-level synthesis techniques,
however, the solutions produced are generally of inferior qual-
ity. This is because fine-grained optimizations, which are within
the scope of flattened synthesis techniques, are not visible while
performing hierarchical synthesis. Our work aims at combin-
ing the global perspective afforded by hierarchical synthesis with
the flexibilit y of flattened synthesis to produce compact, power-
optimized architectures, within short periods of time. Our algo-
rithm accepts as input a hierarchical DFG (arbitrarily deep hierar-
chies are allowed), and a library of modules, which can be simple
(adders, multipliers) or complex (RTL modules implementing spe-
cific DFGs). Other inputs include typical input traces to aid power
estimation, and a throughput constraint for synthesis. Our algo-
rithm works iteratively, i.e., it beginswith an initial solution, which
is iteratively refined. This can happen in four ways: (A) simple
or complex modules in the initial or intermediate solution are re-
placed by new ones, chosen from the library, (B) complex modules
are resynthesized by descending thehierarchy, (C) apair of simple
(complex) modules is combined into onesimple (complex) module
which executes the functionality of both its constituents, and (D)
a simple (complex) module is spli t into multiple simple (complex)
modules. Move A allows us to take advantage of user-specified
simple and complex modules, and move B allows us to tailor the
complex modulesto their environments. MoveC helpscreatecom-
pact circuits, and moveD helpscreatenew optimization opportuni-
ties. Note that in caseof moveB, modules, whoseinternal descrip-
tions are not available or cannot be altered, are not resynthesized.
Furthermore, the algorithm can support chained, multi-cycled, and
pipelined functional units, and deal with multi-f unction arithmetic-
logic units (ALU’s). It enables escape from local minima by con-
sidering asequenceof movesat atime, where individual movescan
havenegativegain, i.e., lead to temporarily degradedRTL architec-
tures.
2 Background

In this section, we introduce the basic concepts used in our
work. We first explain the notion of hierarchical behaviorsand cir-
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Figure 1: (a) A hierarchical DFG, and (b) a scheduled and assigned hierarchical DFG

cuits with an example.
Figure 1(a) shows a hierarchical DFG. The DFG labeled “Top

level” is the top-level DFG. Nodes of the DFG can representop-
erations, like addition and multiplication, orhierarchical nodes
like convolution and filtering. In general, if the input hierarchy
is preserved, hierarchical nodes usually represent specific, well-
characterized behaviors. However, if the hierarchy is the output of
a partitioning process, hierarchicalnodes could represent arbitrary
behaviors. The edges in the top-level DFG entering and exiting hi-
erarchical nodes are annotated with numbers which represent con-
nectivity between the top-level edges and edges in the underlying
DFG. For instance, the edge labeled0 feeding nodeDFG1 in the
top-level DFG is connected to edge0 in DFG1. The DFGs repre-
senting hierarchical nodes can in turn consist of simple and hierar-
chical nodes. Although the hierarchical DFG shown in Figure 1(a)
is acyclic, the system is capable of handling loops at any hierarchi-
cal level.

A hierarchical node is implemented by anRTL module. Just as
multiple operations can map to the same module library element,
multiple hierarchicalnodes can map to the same RTL module. An
RTL module can itself be described hierarchically as an intercon-
nection of RTL modules, functional units, multiplexers, and regis-
ters.

The environmentof an RTL module for a hierarchical node
mapped to it is an ordered set consisting of the arrival times of the
inputs to the hierarchical node and the times when the outputs of
the hierarchical node areconsumed. The environment is defined
only for RTL modules which are part of a scheduled, allocated, and
assigned RTL circuit. Theprofileof an RTL module for a hierarchi-
cal node is defined as an ordered set consisting of theexpectedin-
put arrival times and output arrival times. Unlike the environment,
profile is defined for any module, irrespective of whether it is a part
of an RTL circuit.

Example 1: Consider the hierarchical DFG shown in Figure 1(a)
again. The hierarchical nodes are annotated with their names
(placed inside the circle representing the node) and the names of
instances of the RTL modules they are mapped to (placed outside
the circle). For example, hierarchical nodeDFG1 is mapped to
instanceRTL1. Figure 1(b) shows a schedule and assignment of
the flowgraph in Figure 1(a). The environment ofRTL3with re-
spect toDFG3can be described by the setEnv(RTL3 ;DFG3 ) =
f0; 0; 0; 0; 9g under the input/output orderingf0; 1; 2; 3; 4g.
This environment assumes that the four inputs ofRTL3arrive at
time 0. Note that the output ofRTL3is consumed byRTL4at time
9. The profile ofRTL3with respect ofDFG3 can be represented

asPro�le(RTL3 ;DFG3) = f0; 0; 2; 4; 7g under the same
ordering. This is because the first two inputs ofRTL3are expected
at time0, the third at time2 and the fourth at time4. When the
inputs arrive in this fashion, the output is expected at time7. Given
the profile of a module and the input arrival times, the output arrival
times can be computed as illustrated next. If the inputs at terminals
0, 1, 2, and3 of RTL3arrive at times2, 5, 3, and7, respectively,
thenRTL3can begin operation atmax(2�0; 5�0; 3�2; 7�4) = 5
cycles, which implies that the output is available after12 cycles.
In this example, each hierarchical node is mapped to a unique in-
stance of an RTL module. In general, however, different hierar-
chical nodes could map to the same instance of an RTL module
and functionally identical hierarchical nodes could map to different
RTL modules or to different instances of the same RTL module.

At this stage, we formalize the notion of throughput constraint.
For the class of applications we consider, the circuit should be able
to process inputs at a constant rate, and it does not pay to be able
to process inputs any faster. The sampling period is the number of
time units allowed for completing one iteration of the design. The
throughput is the inverse of the sampling period,i.e., it is the num-
ber of samples processed per unit of time (clock cycles).

3 Motivational examples
In this section, we motivate key algorithmic features. The main

constituents of our algorithm are the moves we use to refine the ini-
tial solution. As mentioned in Section 1, moves are of four types.
The first two types of moves involve replacement or resynthesis of
an existing module, and the next two types involve merging and
splitting of modules. Note that modules can be simple or complex.
Example 2 illustrates the benefits of the first two move types and
Example 3 illustrates the benefits of the third.

Example 2: In this example, we illustrate the following: combin-
ing coarse-grainknowledge available at the higher levels of the
hierarchy withfine-grain techniques traditionally associated with
flattened high-level synthesis can significantly enhance solution
quality. To this end, we perform moves of typeA (which lever-
age off coarse-grain knowledge by replacing an instance of an RTL
module by another one, better suited to the environment), and type
B (which perform fine-grain resynthesis), on an example RTL cir-
cuit to demonstrate the power savings obtainable.

Consider the problem of synthesizing a power-optimized RTL
circuit for the hierarchical DFG shown in Figure 1(a), under a sam-
pling period constraint of12 cycles. The simple modules present in
the module library, their areas and delays (in number of clock cy-
cles) are summarized in Table 1. These library modules also have



Table 1: Summary of functional unit and register properties
add1 add2 chainedadd2 chainedadd3 mult1 mult2 reg1

Area 30 20 60 90 150 100 10
Delay 1 2 1 1 3 5 -

power models, which we omit for brevity1. The main fact to be
noted is that, to perform the same sequence of operations,mult2
consumes much less power thanmult1. Figure 2 shows the com-
plex modules available in the library. For each complex module,
the DFG implemented, and the names of the instances of modules
implementing individual operations are shown. For example,RTL
moduleC1 consists of three multipliers,M1, M2, andM3, which
are of typemult1. Chains of functional units are shown enclosed
within boundaries. For example, RTL moduleC5 is a chain of
three functional units of typeadd1. Note that a chain of adders can
complete execution almost as fast as an individual adder, enabling a
chain of three adders of typeadd1to complete in the same time, in
cycles, as one adder of typeadd1. Also, we observe that the com-
plex modules do not use all available resource sharing opportuni-
ties,e.g., operations+1 and+3 in moduleC4, which can map to
the same functional unit instance, are mapped to different instances.
This is because these modules are power-optimized. Power opti-
mization often (but not always) requires that operations be bound to
different functional unit instances, even when the schedule permits
the operations to share resources. A detailed discussion of the ef-
fect of resource sharing on power consumption can be found in [9].
The solution which is input to the procedure for the selection of
moves of typeA andB is shown in Figure 1(b). As we can see,
DFGsDFG1, DFG2, DFG3, andDFG4, are mapped to complex
modules of typesC1, C2, C3, andC4, respectively.
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Figure 2: Library of complex modules
We now illustrate the application of moves of typesA andB

to the given solution. The first step is the identification of a set
of modules to target.RTL1, RTL2, andRTL3are selected by this
process. We then try to evaluate theslackavailable to the selected
modules,i.e., we ascertain the earliest input arrival times and the
latest output arrival times whose satisfaction by the selected mod-
ules would ensure the schedulability of the implementation. For
example, we can see that the outputs ofRTL2can arrive nine cycles
later than the inputs. In other words,RTL2can have a profile of
f0; 0; 0; 0; 9; 9g, though the profile forRTL2in the initial solution
is f0; 0; 0; 0; 6; 3g. We now apply a move of typeA, followed by a
move of typeB. A move of typeA would identify the “best” (low-
est power solution if the objective is power optimization, and most
compact solution if objective is area optimization) library module
which can replaceRTL2. In this example, the current implementa-
tion is indeed the best available in the library, therefore, no changes
are made. We then apply a move of typeB, i.e., we resynthesize
RTL2with the new, relaxed constraints, to see if we can obtain a
better, lower power match for the required profile. The resynthe-
sis procedure forRTL2would suggest the replacement of modules
M5 andM4, currently of typemult1, bymult2, which would signif-
icantly reduce power consumption. This illustrates theutilization

1We use the power models presented in [10]. Details of the power esti-
mation methodology can be found in [8]

of high-level knowledge, which results from a global view of the
hierarchy, todrive synthesis at lower hierarchical levels, a key al-
gorithmic feature.

The application of a move of typeA canchange the DFG repre-
senting a hierarchical node. For example, for the case ofRTL1,
moduleC2 is recognized as a better candidate than moduleC1
(note thatC1 andC2 implement functionally equivalent behavior),
and the substitution is performed. Recognizing such opportunities
requiresknowledge provided by the userregarding the functional
equivalence of different DFGs. Many hierarchical DFGs are con-
structed out of several, commonly-used “building blocks” likedot-
product, butterfly, etc.. These building blocks are well studied and
have carefully analyzed behaviors, and a number of DFGs describ-
ing individual building blocks are available, each with its distinct
advantages. A move of typeA tries to select the “best” DFG which
describes a hierarchical node,i.e., the DFG which is best suited to
the environmental constraints.
A move of typeA is followed by a move of typeB, which attempts
to improve the RTL module further. This is because the library ele-
ment selected, though a good match, might not have been designed
with the current environmental constraints in mind.

The example given ahead illustrates the benefits of moves of
typeC, which merge two modules into one. Candidate modules for
merging can be either simple or complex.

Current hierarchical synthesis systems do not allow different
(anisomorphic) DFGs to be implemented by the same RTL mod-
ule. This often results in implementations with a large area. The
main hurdles in performing this merging are as follows:

� It is difficult to determine the best candidate DFGs for merg-
ing prior to synthesis.

� Current research tackles the problem of designing an RTL
circuit, which can support multiple behaviors, by just con-
sidering it as a multi-behavior high-level synthesis problem.
Thus, a traditional technique would need to perform schedul-
ing, allocation, and assignment afresh for every pair of mod-
ules which need to be merged. Clearly, the complexity of this
approach would render it unusable in practice.

Our algorithm overcomes the first limitation because it is iter-
ative, i.e., during the course of the algorithm, different merging
configurations are considered, and the best one is selected. Since
we need to assess several sharing configurations during synthesis,
our procedure to derive an RTL module which can execute mul-
tiple DFGs needs to be fast. We solve this problem by justem-
bedding the RTL modules, which implement the DFGs, into a new
RTL module. The schedule, assignment,etc., for individual DFGs
is unaltered, and the merged RTL module cannot execute the DFGs
in parallel. The procedure for merging tries to find an embedding
which honors clock cycle constraints, while minimizing the area of
the merged RTL module.

Example 3: This example illustrates the area saving obtainable by
implementing different DFGs on the same RTL module. In Fig-
ure 3, DFGsDFG1 andDFG2 are mapped to RTL modulesRTL1
and RTL2, respectively. Operations in the DFGs are shown an-
notated with the names of the modules they are mapped to, and
variables are shown annotated with their names (unparenthesized)
and the names of the registers they are mapped to (parenthesized).
RTL moduleNewRTLcan execute both the DFGs, and preserve
the original schedules and assignments of the individual DFGs.
All three RTL modules presented in this example were placed and
routed using tools from the OCTTOOLS suite. Puppy was used
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Figure 3: Mapping of two distinct DFGs to the same RTL module

Table 2: Labeling the new RTL module to implement DFG1 and DFG2

New RTL q1 q2 q3 q4 q5 q6 A1 A2 M1 M2 S1
RTL1 - r1 r2 r3 r4 r5 A1 A2 M1 M2 S1
RTL2 s1 s2 s3 s4 s5 s6 A1 A2 M1 M2 -

Library reg reg reg reg reg reg Add1 Add1 Mult1 Mult1 Sub1
Area 5 5 5 5 5 5 20 20 50 50 20

for placement and Mosaico was used for routing.RTL1 had an
area of57:94 units,RTL2, 53:89 units, andNewRTL, 61:67 units.
This significant area saving is possible, without significant compu-
tational effort, due to the technique ofRTL embedding, which we
have devised. Our technique simply constructs a new RTL mod-
ule, NewRTL, in which the original RTL modules can be embed-
ded. The goal of our procedure is to find the minimum area em-
bedding (including a measure of interconnect) which satisfies clock
cycle constraints. The correspondence between the components of
NewRTLand their counterparts inRTL1andRTL2 is given in Ta-
ble 2. The module library used and the area of the simple modules
are also shown.

4 The algorithm
In this section, we present a brief description of the basic com-

ponents of our synthesis algorithm and their interactions. Details of
individual components can be found in [8].

Figure 4 describes the top level of our synthesis algorithm. The
algorithm accepts as input a DFG, a library of simple and complex
RTL modules, an objective function to optimize (area or power),
and a constraint that specifies when the primary inputs arrive and
when the primary outputs are expected. The core iterative improve-
ment procedure is enclosed in loops which iterate through the set
of availableVdd ’s and allowed clock periods.2 The best solution
for a givenVdd and clock period is obtained through variable-depth
iterative improvement, a general optimization technique that starts
with an initial solution and improves its quality through the applica-
tion of a sequence ofmoves[11]. This algorithm derives its power
from the ability to perform moves which worsen the quality of the

2The set ofVdd ’s and clock periods can be drastically pruned by using a
procedure from [10] to obtain the subset that needs to be considered.

solution, as an intermediate step, in striving for a globally optimal
solution.

First, the library is searched to find the best possible implemen-
tation of the input behavior that satisfies the constraints imposed.
If such an implementation cannot be found, one is synthesized us-
ing the routine INITIAL SOLUTION. This routine maps each sim-
ple node in the DFG to the fastest implementation available in the
library. DFGs which represent hierarchical nodes are handled in
the same manner. Each operation is mapped to a separate func-
tional unit, and each variable to a separate register, resulting in a
completely parallel architecture. The initial solution is improved
through the application of moves of typesA, B, C, andD. When a
move is performed, its validity is checked by scheduling to make
sure that the throughput constraints are still met.

The scheduler is called whenever we need to check the validity
of an assignment. Before scheduling, we derive an ordering for the
operations that need to execute on the same functional unit or RTL
module, and variables that need to be stored in the register. This
ordering imposes extra dependencies in the DFG, which are mod-
eled as edges. Under this scenario, scheduling of a node reduces to
the problem of finding the longest path from a primary input to the
node [10]. Scheduling of DFGs is a well-studied problem [12], and
we do not discuss it further in this paper.

As mentioned in Example 2, moves of typesA andB alter the
implementation of a selected set of RTL modules and functional
units with a view to minimizing the power consumption (or area) of
the circuit. The application of these moves can be described by the
algorithm shown in Figure 5. This algorithm corresponds to state-
ment7 of Figure 4. As is evident from the pseudocode shown in
Figure 5, this process can be divided into three distinct parts: mod-
ule group formation, constraint derivation, and resynthesis. Mod-



SYNTHESIZE(DFGG, LIBRARY L, CONSTRAINT SETC,
OBJECTIVEObj )f

0 foreachsupply voltageVdd in the pruned supply voltage setf
1 foreachclock periodclk in the pruned clock period setf
2 Cur DP  INITIAL SOLUTION(G,L);

//If the library cannot supply an implementation of
//the behavior, generate an initial implementation

3 Pass gain  1; Best DP  Cur DP ;
4 while(Pass Gain > 0)f
6 for(i = 0; i < MAX MOVES ; i++)f
7 MOVEm1 = GET BEST TYPE-

A AND B MOVE(G,L, Cur DP ,C, Obj );
8 MOVEm3 = GET BEST RESOURCE-

SHARING MOVE(G,L, Cur DP ,C, Obj );
9 if (Gain(m3, Obj) < 0)
10 MOVEm3 = GET BEST RESOURCE-

SPLITTING MOVE(G,L, Cur DP , C,Obj );
11 if (Gain(m1 , Obj) >Gain( m3, Obj ))
12 IMPLEMENT M1 AND M2(Cur DP, m1 );
13 elseIMPLEMENT M3(Cur DP ,m3 );

g

14 Pass Gain = Get sequence of moves
with best cumulative gain;

15 if (Pass Gain � 0)
break;

16 apply best move sequence toCur DP ;
g

17 Best DP = best solution seen so far;
ggg

Figure 4: Iterative improvement

ule group formation divides the modules in the current RTL imple-
mentation into groups for the steps that follow. This is followed by
constraint derivation where each operation which is performed by
a module belonging to the group under consideration is assigned
a new constraint for synthesis. For instance, an addition operation
which initially took two cycles to complete could be set a constraint
of five cycles, or, a filter which accepted inputs in cycle0 and pro-
duced an output in cycle5 could be constrained to produce an out-
put in cycle7 due to this process. The new constraints must pre-
serve schedulability of the implementation,i.e., the new architec-
ture, when rescheduled, should meet throughput constraints. Mod-
ules are then resynthesized to meet the new constraints. Note that
the term “resynthesis” refers to alterations performed on RTL mod-
ules as well as choosing new functional units or RTL modules from
the library. The relaxation in constraints might enable replacement
of the library element performing the function by a slower, poten-
tially lower power library element.

5 Experimental results
We have implemented the behavioral synthesis framework pre-

sented in the previous sections as the programH-SYNin 44,000
lines of C++. We have performed experiments to evaluate our tech-
niques using several behavioral descriptions of digital signal and
image processing applications.H-SYNreads in a textual descrip-
tion of the hierarchical DFG, and performsVdd selection, clock se-
lection, module selection, scheduling, allocation, and assignment to
result in a highly power/area-efficient RTL circuit that consists of a
datapath netlist, and a finite-state machine description of the con-
troller. The controller and datapath netlists are merged and mapped
to the MSU standard cell library using the SIS logic synthesis sys-
tem. Placement and routing are performed using tools from the
OCTTOOLS suite. A switch-level circuit extracted from the lay-
out is simulated by a switch-level simulator, IRSIM, and the capac-
itance switched is recorded and used to compute the power.

We have synthesized flattened and hierarchical examples of
several existing benchmarks to optimize for area and power.

GET BEST TYPE A AND B MOVE (DFGG, LIBRARY L,
DATAPATH Cur DP, CONSTRAINT SETC,
OBJECTIVEObj )f
//Obj can be area or power
Module groups = �;
Best gain = �1;
Module groups = FORM MODULE GROUPS(Cur DP);
//Module groups is a set whose elements are sets of
// modules which will be considered together for synthesis
mgroup = � ;
foreach(mgroup, Module groups)f
Gain = 0;
DERIVE CONSTRAINTS(mgroup,Cur DP );
//derive constraints for resynthesis of each
//node mapped to module groupmgroup.
foreach(M ,mgroup)f

Resynthesize moduleM based on the constraints
derived in the DERIVE CONSTRAINTSroutine
Gain = Gain � COST(M ,Obj );
g

if (Gain > Best gain)f
store the current solution as the best solution;
Best gain = Gain;

ggg

Figure 5: Module selection moves

hier paulin is a hierarchical DFG obtained by unrolling the well-
known benchmark,Paulin. dct implements discrete cosine trans-
form. avenhauscascade, dct, iir , and lat are hierarchical DFGs
which represent filters and are a part of the HYPER package [4].
test1 is the DFG in Figure 1(a). In all cases, the input hierarchy
was preserved. To assess the efficacy of our technique, we com-
pared our hierarchical algorithm to the flattened version of the same
algorithm [10]. The flattened technique also takes advantage of reo-
surce sharing, module selection,Vdd selection, clock selection, and
scheduling for low power, and is one of the most comprehensive
techniques available today.

The results obtained are tabulated in Table 3. ColumnL.F. rep-
resents thelaxity factor used for synthesis. Laxity factor is de-
fined as the ratio of the given sampling period (inverse of specified
throughput) to the minimum sampling period that can be attained
for the input DFG using the library of modules provided. Columns
Flat andHier represent flattened and hierarchical versions of the
same behavioral description. The circuits in columnA were syn-
thesized to optimize for area at a supply voltage of5Volts and sub-
sequently voltage-scaled for low power operation. The circuits in
columnP were synthesized to optimize for power. RowsA and
P represent the area and power consumption, respectively, of the
synthesized circuits. The area (power) is normalized with respect
to the area (power) of an area-optimized, non-Vdd -scaled architec-
ture synthesized from a flattened input description at the same lax-
ity factor. For example, if rowP of columnP, under major column
Hier is x, then the power consumed by a circuit obtained from a
hierarchical behavioral description, optimized for power, isx times
the power consumed by a circuit obtained from a flattened behav-
ioral description, optimized for area, and operating at5Volts. All
entries in rowA of columnA under major columnFlat are1. This
is because this column represents the area of an area-optimized cir-
cuit, synthesized from a flattened behavioral description, andVdd -
scaled for low power, normalized with respect to the area of an
area-optimized circuit, synthesized from a flattened behavioral de-
scription, which operates at5Volts. SinceVdd -scaling makes no
difference to area, these entries are1.

The area-power-synthesis time trade-offs for different laxity
factors for flattened (Fl) and hierarchical (Hi) behavioral descrip-
tions are summarized in Table 4. In this table, the area and power
ratios are with respect to flattened area-optimized architectures, and



Table 3: Area (normalized) and power (normalized) results
Circuit A/P L.F. = 1.2 L.F. = 2.2 L.F. = 3.2

Flat Hier Flat Hier Flat Hier
A P A P A P A P A P A P

avenhauscascade A 1 1.26 1.08 1.34 1 1.39 1.13 1.47 1 1.50 1.08 1.54
P 1 0.66 0.87 0.58 1 0.54 0.85 0.47 1 0.55 0.85 0.47

lat A 1 1.36 0.91 1.34 1 1.27 1 1.39 1 1.07 0.96 1
P 1 0.55 0.99 0.54 1 0.30 0.93 0.30 1 0.52 0.83 0.39

dct A 1 1.33 0.83 1.0 1 1.18 0.84 0.91 1 1.04 0.74 0.96
P 1 0.62 0.90 0.55 1 0.50 0.92 0.44 1 0.58 0.92 0.50

iir A 1 1.21 1.07 1.28 1 1.13 1.01 1.23 1 1.13 0.99 1.23
P 1 0.61 0.93 0.61 1 0.46 0.86 0.39 1 0.42 0.81 0.36

hier paulin A 1 1.20 1.05 1.32 1 1.23 1.13 1.34 1 1.17 1.16 1.33
P 1 0.59 0.97 0.55 1 0.57 0.97 0.50 1 0.43 0.87 0.37

test1 A 1 1.34 1.23 1.85 1 1.37 1.38 1.70 1 1.52 1.42 1.65
P 1 0.54 0.68 0.44 1 0.39 0.68 0.30 1 0.37 0.75 0.29

are averaged over all examples for the corresponding laxity factor.
For example, if the entry in columnHi, major columnArea ra-
tio is x, then the average area of power-optimized circuits, synthe-
sized from hierarchical behavioral descriptions isx times the aver-
age area of area-optimized circuits, synthesized from flattened be-
havioral descriptions, for that laxity factor. Under the major col-
umn Power ratio, comparisons of power-optimized architectures
are made against area-optimized architectures at5V (labeled5V )
and those that have beenVdd -scaled to just meet the sampling pe-
riod constraint (labeledVdd -sc). Major columnSynth. timegives
the synthesis time, in seconds, for area- and power-optimized cir-
cuits, averaged over all examples for a given laxity factor. The ex-
periments were conducted on an SGI Challenge workstation with
256 MB RAM.

The results obtained indicate that our hierarchical synthesis al-
gorithm produces circuits whose area and power consumption are
comparable to those of circuits produced from flattened descrip-
tions. This is significant because most previous hierarchical high-
level synthesis systems synthesize circuits which are significantly
less compact than than their flattened equivalents [3]. The synthe-
sis time, which is measured as the time to compile the behavioral
description into an RTL implementation, is significantly less for hi-
erarchical circuits.

For application-specific integrated circuits, which typically have
a short design cycle (order of weeks), reduction in synthesis time
can be extremely significant. For larger hierarchical behavioral de-
scriptions, we expect the ratio of synthesis times for flattened and
hierarchical synthesis to be even greater. Note that flattened syn-
thesis can also take advantage of module selection, scheduling, re-
source sharing, clock andVdd selection techniques available for hi-
erarchical synthesis. The efficacy of our power optimization tech-
niques is illustrated by the improvement in power obtained at a rela-
tively low area overhead. Under hierarchical synthesis, our method
results in upto6:7-fold reduction in power at area overheads not
exceeding50% over area-optimized circuits working at5Volts. On
an average, hierarchical power-optimized designs consumed13:3%
less power than flattened designs optimized for power, and hierar-
chical area-optimized designs had an area overhead of5:6% over
flattened, area-optimized designs.

6 Conclusions
In this paper, we presented a methodology for the synthesis of

power- and area-optimized circuits from hierarchical behavioral de-
scriptions. Our algorithm can uniformly handle arbitrarily deep
hierarchies, and aims at using the high-level knowledge available
at higher hierarchical levels to drive fine-grain optimization tech-
niques at lower levels. Our approach allows for the use of libraries
of specialized RTL modules, such as filters and FFT’s, in an ef-
ficient manner. Furthermore, it allows for customization of these
libraries if needed. Unlike previous hierarchical synthesis meth-

ods, our algorithm allows multiple DFGs to be executed on the
same RTL module. This is made possible by the technique of RTL
embedding which we have developed for the purpose. We imple-
mented our ideas in a program namedH-SYNwritten in C++. Ex-
perimental results performed on commonly available benchmarks,
including some from the industry, demonstrated the efficacy of our
techniques in synthesizing power-optimized circuits with relatively
low area overheads within short run times.

Table 4: Summary of area (ratio), power(ratio) , and synthe-
sis time (seconds) results

L.F Area ratio Power ratio Synth. time
5V Vdd -sc (sec.)

Fl Hi Fl Hi Fl Hi Fl Hi
1.2 1.28 1.36 .51 .47 .60 .55 844 261
2.2 1.26 1.34 .31 .27 .46 .40 854 322
3.2 1.24 1.29 .19 .17 .48 .40 1029 357
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