
Arithmetic Optimization using Carry-Save-Adders

Taewhan Kimy William Jaoz Steve Tjiangy

ySynopsys Inc. zAimfast Corp.

700 E. Middle�eld Rd. 846 Stewart Dr.

Mountain View, CA 94043 Sunnyvale, CA 94086

Abstract

Carry-save-adder(CSA) is the most often used type
of operation in implementing a fast computation of
arithmetics of register-transfer level design in indus-
try. This paper establishes a relationship between the
properties of arithmetic computations and several op-
timizing transformations using CSAs to derive consis-
tently better qualities of results than those of manual
implementations. In particular, we introduce two im-
portant concepts, operation-duplication and operation-
split, which are the main driving techniques of our al-
gorithm for achieving an extensive utilization of CSAs.
Experimental results from a set of typical arithmetic
computations found in industry designs indicate that
automating CSA optimizationwith our algorithmpro-
duces designs with signi�cantly faster timing and less
area.

1 Introduction
Hardware designers have long applied many arith-

metic optimization techniques for implementation
of arithmetic functionality like addition, subtrac-
tion, and multiplication. Among them, carry-save-
adder(CSA)[1] has proved a powerful mechanism to
improve timing with little, if any, area penalty (even
reduced area). Figure 1(a) shows the structure of an
n-bit CSA.

FAFA FA

Xn-1 n-1Y Z n-1 Xn-2 Yn-2 Z n-2 0YX0 0Z

C1Cn-1 0C
A B C

F
(c)

C S
CO

CI
ZX Y

(b)

CI

SS Sn-1 n-2 0

(a)
CO

Figure 1: An n-bit CSA and an example of use

The n-bit CSA consists of n disjoint full adders(FAs).
It consumes three n-bit input vectors and produces
two outputs, i.e., n-bit sum vector S and n-bit carry
vector C. We use the block symbol in Figure 1(b) to
represent a CSA operation. Unlike the normal adders
(e.g., ripple-carry adder(RCA) and carry-lookahead
adder(CLA)), a CSA contains no carry propagation.
Consequently, the CSA has the same propagation de-
lay as only one FA delay (compared to RCA's n FA
delay where n is the bit-width), and the delay is con-
stant for any value of n. For su�ciently large n, the
CSA implementation becomes much faster and also
relatively smaller in size than the implementation of
normal adders.1

There has been an extensive research work on
the arithmetic optimizations in several areas[2, 3, 4].
They, however, focused on the transformation of oper-
ations using techniques such as simple algebraic ma-
nipulations and constant propagation; they did not
address the problem of arithmetic optimization us-
ing CSAs. This paper introduces the concept of CSA
transformation and presents an algorithm that e�ec-
tively utilizes CSAs to derive consistently better qual-
ity of results than that of manual implementations.

We de�ne a CSA tree to be a tree of CSA operators
and one adder at the root of the tree. A CSA tree
can be used to transform an arbitrary number of ad-
ditions to produce two adding operands and the adder
is used at the root of CSA tree to produce a �nal sum.
In other words, an expression of N additions can be
transformed to a CSA tree of depth log1:5(N) and the
overall delay is log1:5(N) plus the delay of �nal adder
(which is about log2(n) for a CLA). For example, ex-
pression A+B+C can be transformed into one CSA
and one adder as shown in Figure 1(c).

Based on several results of our experimentations,
our transformation can be stated as follows: Given
a non-cyclic dataow graph of arithmetic operations,
we wish to transform the computations using as many
CSA operations as possible while preserving the func-
tionality of the design.

1Note that a CSA performs the same functionality of the
conventional adders in the sense that each reduces the number
of adding operands by one, i.e., a CSA reduces from 3 to 2 and
an adder from 2 to 1.

35th Design Automation Conference ®
Copyright ©1998 ACM

1-58113-049-x-98/0006/$3.50 DAC98 - 06/98 San Francisco, CA USA

2 Applicability of Transformation
CSA transformation is not limited to addition only.

We can transform other arithmetic operations like sub-
traction and multiplication into additions to produce
longer chains of additions. We replace a subtraction
by adding the negation2 of the subtraction. That is,
(x-y) in expression is changed into (x + �y + 1). For
multiplication, we can use two possible options:

� sum of products:

A multiplication is decomposed into a set of shift-
and-add operations, which is de�nitely bene�cial
when it has a constant as input.3 With full de-
composition we can e�ectively extend the addi-
tion tree by merging the decomposed additions
with another additions. However, decomposition
can increase the number of CSA operations dras-
tically as the bit-width increases.

� partial multiplication and addition:

Two types of implementation for multiplication
operation are typically found in designs[6]: (i)
wallace tree model for fast timing and (ii) carry-
save array model for small area. The wallace tree
model consists of two blocks called partial-mult4

and �nal-add. Partial-mult uses the two inputs
of the multiplication as input and produces two
outputs, in which by adding them the �nal result
of multiplication is obtained.5 Consequently, by
decomposing into a partial-mult and a �nal-add
we can merge the �nal-add with a descendent op-
eration to transform into CSAs. This option in-
creases only one operation, but is less exible than
the case of full decomposition.

3 An Algorithm
Our transformation algorithm consists of three ma-

jor steps: (1) identi�cation of operation tree to be
transformed, (2) translation of the expression of the
identi�ed tree into an addition expression, and (3)
conversion of the addition expression into a CSA tree.
Given a non-cycle dataow graph of arithmetic com-
putations, our algorithm iteratively performs the three
steps until there is no candidate expression of tree to
be transformed. The following subsections describe
the details of the three steps.

3.1 Candidate Identi�cation

As explained in Sec. 2, the CSA transformation
can be applied to any type of operations that can
be converted to additions. A candidate cluster is
basically a tree which contains operations like addi-
tions/subtractions/multiplications. Our algorithm is
a bottom-up (from the output boundary of design to-
ward the input boundary) approach. From the out-
puts of design it �nds an operation which has not been

2We used two's complement.
3We used the signed-digit(SD) encoding scheme[5] for the

multiplication with a constant input to reduce the number of
decomposed operations.

4It is a functionality of wallace tree compressor.
5We use S(partial mult(A,B)) and C(partial mult(A,B)) to

denote the two outputs of the partial-mult of operation A �B.

transformed yet in the previous iterations. We refer
the operation to root. The root is then expanded to-
ward the input boundary of design to construct a tree
of operations. Note that the type of root must be
one of addition, subtraction, and multiplication oper-
ations.

Suppose that operation A is a leaf of the operation
tree expanded so far and B is an operation in which
its output is used as an input of operation A. We
expand the current operation tree by including B if
the following four conditions are satis�ed:

� Condition 1: A must be one of addition and sub-
traction operations.

� Condition 2: B must be one of addition, subtrac-
tion, and multiplication operations.

� Condition 3: Output of B must be single fanout.
That is, B drives only an input of A.

� Condition 4: There should be no \leak" of data
values through the connections fromB to A up-to
the output bit-width of root of the tree.

Condition 1 ensures that only addition and sub-
traction are used as non-leaf operations of the tree,
and Condition 2 ensures that only addition, subtrac-
tion and multiplication are used as leaf operations.
Condition 3 ensures that we do not allow transform-
ing non-tree structure of operations. (We solve the
multiple fanout case in Sec. 4.1.) Finally, Condition
4 is required for preserving the functionality of de-
sign before and after transformation. The examples
shown in Figure 2 clarify the concept of leakage of
data values. Suppose operation A is also the root of
the current tree. Figure 2(a) shows a case of upper-
bit truncation between B and A. Because up-to 8
bits of data values must be preserved, the truncation
does not allow merging operation B with A. Simi-
larly, Figure 2(b) shows a case of lower-bit truncation
between the two operations. It also prevents merg-
ing the two operations. However, Figure 2(c) shows
a case of preserved data values up-to 8 bits from B
through A. Consequently, the two operation can be
merged and transformed into CSA operations without
changing the functionality of design.

3.2 Conversion to Additions

With the identi�ed cluster of operation tree ob-
tained from Step 1, this step converts the expression
of operation tree consisting of additions, subtractions,
and multiplications into a tree of additions. What we
are interested in this step is to extract all the operands
from the converted addition expression. Table 1 sum-
marizes all possible conversion rules for basic oper-
ations. Note that there exist three di�erent rules to
convert a multiplication. Which rule to apply depends
on constraints such as number of operations to allow,
word size of operation, and optimization goals. For
example, rule 6 (full decomposition) decreases tim-
ing, but increases the number of CSAs drastically. On
the other hands, rule 5 (partial decomposition) is not
much e�ective to decrease timing than that of rule
6, but maintains the number of CSAs in a certain

A

B

10 10

8

8

8
3
11

B

A

8

8

7 7

1
78

A

B

8 8

8

8

8
9 1

(c) preserved bit-flow
 upto 8 bits

(b) lower-bit trunction(a) upper-bit truncation

Figure 2: Example of possible net-connections be-
tween two operations

primitive exp. new exp.

1 x + y x + y

2 x + y with cin x + y + cin

3 x - y x + (-y)

4 x - y with cin x + (-y) + cin

5 x * y C(partial mult(x; y)) +

S(partial mult(x; y))

6 x * y
P

n�1

i=0
AND(x;yi) << i

7 x * const summing from SD encoding[5]

Table 1: Conversion rules to additions for primitive
expressions

amount. In addition, rule 7 can be used as a pre-
processing step which guarantees that the number of
operations is always within half of bit-size of the con-
stant.

We apply the rules in Table 1 to the original ex-
pression of tree to obtain a set of operands, some of
which might need to negated (e.g. -y in subtraction)
or shifted (e.g. AND(x; yi) << i in multiplication).
The operands may also include single-bit ones and
constants. We then replace negated operands, e.g.,
-x by �x+1 and all constants are folded.

3.3 Conversion to CSAs

All the operands obtained from Step 2 are to be
summed up by CSA tree. In this step, we build up
the tree. Our algorithm constructs CSAs iteratively
one by one. Each iteration selects three operands as
input of a new CSA and two new operands are cre-
ated from the CSA. At the next iteration, the three
operands used in the previous iteration are removed
from the operand set and the new two operands are
added to the set. Therefore, whenever one CSA is cre-
ated the size of operand set is reduced by one. CSA
construction proceeds until only two operands in the
set remain. Finally, a normal adder adds the two re-
maining operands to produce a �nal output of the ex-
pression.

Because the primary objective of our transforma-
tion is to reduce timing, each iteration selects, from all

the possible triples of operands in the set, the triple
with the earlist arriving time. We use an e�cient
linear-time heuristic: Initially we sort operands in the
set in a non-decreasing order according to the delay to
the operands from input boundary. If two operands
have the same delay, we give a higher priority to the
one of smaller bit-width. At each iteration, our algo-
rithm picks the �rst three operands from the sorted list
and creates a CSA. The delays to two output operands
of CSA are then computed and the operands are in-
serted to the correct positions of the sorted list. Our
experimentation indicates that our operand selection
approach is very e�cient and yet, does not degrade
the quality of results when compared with that of the
exhaustive search of selections. In addition, the algo-
rithm can easily tune to optimize area of the resultant
CSA tree by sorting the operands according to the size
of bit-width of operands. (If two operands have the
same bit-width we resolve it by giving higher priority
to the one of shorter delay.)

We handle one-bit operands and a constant in dif-
ferent ways to reduce the number of CSAs created.
This can be achieved by utilizing as many carry in-
puts of CSAs as possible. Each CSA created can con-
sume an one-bit operand as carry input. Therefore, it
is desirable to assign as many one-bit operands to the
carry inputs of CSAs as possible because otherwise,
each requires one additional CSA. On the other hand,
for the constant operand it can be used as a multi-
bit operand or be decomposed into logic-1 values to
be used as carry input of CSAs. Using constant as a
multi-bit operand requires only one additional CSA.
However, when there are su�ciently large number of
CSAs for the multi-bit (non-constant) operands, the
constant can be assigned to the carry inputs of CSAs,
avoiding unnecessary creation of an additional CSA.
Furthermore, when there is a mixture of operands of
(non-constant) single-bit and logic-1 values, because
logic-1 operand takes zero delay, it is desirable to as-
sign the logic-1 operands to CSAs which are far from
the root of �nal CSA tree, and to assign the non-
constant operands to CSAs which are close to the root
of tree to reduce the timing of the critical path of the
�nal CSA tree.

Figure 3 illustrates the e�ects of di�erent utiliza-
tion of carry inputs of CSAs on the timing and area of
�nal CSA tree. Suppose that A, B, C, D are mult-bit
operands, E is single-bit, and the constant value is 2.
We assume that the bit sizes of the multi-bit operands
are the same. Also, we assume we have already com-
puted delay to the operands as shown in Figure 3(a).6

Figure 3 shows a set of possible transformations for the
operands. Figure 3(a) shows the case that the single-
bit operand E and constant 2 are not used as carry
input of CSA. Consequently, four CSAs are created
and timing of the �nal tree is worse than the other
cases. On the other hand, Figures 3(b) and 3(c) show
the cases that the single-bit operand and constant are
used as carry input of CSA but not both, respectively.
Each of them requires three CSAs and timing of the
CSA trees is better than the previous one, but still
there is a room to improve. Figures 3(d) and 3(e)

6We use notation D(X) to denote the delay of operand X.

show the cases that the carry inputs of CSA tree are
maximally utilized. However, according to the way
of assigning single-bit operand and constant there is
a big di�erence in timing. One guideline is that we
need to assign the constant operands (i.e., logic-1) to
earlier steps than the single-bit ones during the top
down process of CSA tree construction. In fact, our
algorithm produced the one in Figure 3(e) which is the
best in terms of timing and area.

B CA

F

D E 2

D(A) = 0,

D(B) = 0,

D(C) = 0,

D(D) = 0,

D(E) = 2.

B CA

F

D

2

E

(b)

B CA

F

D

E

1

1

(c)

F

B CA

D

1

E

1

(e)

B CA

D

1

F

E

1

(d)

(a)

Figure 3: E�ects of utilization of carry inputs on CSA
tree

4 Extension to the Applicability of

CSA Transformation
Many signal processings and data-intensive compu-

tations frequently contain an operation in which only
the upper m bits among n bits of its output are fed in-
put to a descendent operation. We call this partial use
of an output the lower-bit truncation problem. More-
over, many designs often contain an operation whose
output feeds several other operations. We call this
the multiple fanout problem. In fact, the two prob-
lems correspond to the violations of Condition 4 (Fig-
ure 2(b)) and Condition 3 in Sec. 3.1, respectively. In
the following, we provide solutions to the problems.

4.1 A Solution to the Multiple Fanout

Problem

We begin with an example to demonstrate how
our approach handles operations with multiple fanout.
Suppose that Figure 4(a) is a partial structure of a de-
sign that we are going to transform into CSAs. Note
that operation O3 has multiple fanout. According to
the algorithm described in Sec. 3, the �rst iteration
will identify operation tree tree1 and transform it into

CSAs, and the second iteration will identify tree2 and
transform it into CSAs as show in Figure 4(b). Conse-
quently, two CSAs and two adders (one for each CSA
tree) are used. Suppose that a design contains a chain
of operations in which n of them have multiple fanout.
Then, our algorithm will identify n operation trees
having each operation with multiple fanout as root.
Consequently, n adders will be allocated on the chain
of the transformed CSA trees. Here, our objective is
that we want to reduce the number of adders from n
to 1 and replace the remaining n-1 adders with CSAs.
We accomplish this by introducing the concept of CSA
transformation without �nal adder.

We use the algorithm in Sec. 3 for identifying ex-
pression tree. However, when an operation with multi-
ple fanout is encountered (i.e., Condition 3), we mark
the operation as a root of another operation tree and
continue to expand the operation tree. Once we collect
all the operation trees by crossing over operations with
multiple fanout, we topologically sort the operation
trees from input boundary of design to output bound-
ary. We then transform the operation trees on the list
one by one. For those trees with multiple fanout root,
we do not allocate �nal adders in the resultant CSA
trees. Instead, we generate �nal two outputs of each
CSA tree. The two outputs are then used in two ways:
(1) Both of them are used as input operand of the op-
erations trees which depend on the operation tree cor-
responding to the transformed CSA tree without �nal
adder and (2) A new adder is created and they are
used as input of the adder. (we refer this process to
as operation-duplication.) The output of adder is then
used for the fanout of the root of operation tree cor-
responding to the CSA tree. Consequently, only one
adder will be created at the end of the last operation
tree of the sorted list of trees.

For example, in Figure 4(a) the �rst iteration will
�nd two operation trees tree1 and tree2 in which there
is a data ow from tree2 to tree1. tree2 is then trans-
formed into a CSA tree without �nal adder. It gener-
ates two outputs T1 and T2 and one new adder Odup

as shown in Figure 4(c). tree1 is then transformed
into a CSA tree with �nal adder by using T1, T2, D,
and E as operands as shown in Figure 4(d). Note that
the resultant transformation contains three CSAs and
one adder in the two CSA trees and generates a faster
timing than the one in Figure 4(b). However, the total
area increases because one additional adder is created
outside of the CSA trees.

4.2 A Solution to the Lower-bit Trunca-

tion Problem

We also begin with an example to demonstrate how
our approach can solve the problem of lower-bit trun-
cation. Figure 5(a) shows an example of lower-bit
truncation. Note that only 8 upper-bits of the out-
put of operation O2 are used. Therefore, we cannot
merge operation O1 and O2 into CSAs because there
is a data leakage between the operations(i.e., Condi-
tion 4 in Sec. 3.1). We solve this problem by intro-
ducing the concept of operation-split: We split oper-
ation O2 into two operations O3 and O4 as shown in
Figure 5(b). This means that given the split opera-
tions our algorithm can identify an expression tree as

3O

O4

D

tree 2

F

E

D

Odup

2O

1O

F

tree 2

1tree

tree 2

1tree

F

CA B

(b)

E
D

1tree

tree 2

Odup

F

B CA

D

E

(d)

1tree

B

C

A

C

T2T1

A B

(c)

(a)

E

Figure 4: Examples of transformation of operation
with multiple fanout

shown in Figure 5(c) where C, upper 8-bits of A and
B, and carry-out of operation O4 are the operands to
be added. Figure 5(d) shows the transformed CSA
tree from the operation tree in Figure 5(c).

Unlike the case of solution of multiple fanout prob-
lem, the operation-split does not increase area. Fur-
thermore, when the operation with lower-bit trunca-
tion has multiple fanout, the carry-out of lower one of
two split operations can be extracted directly from the
adder created from the solution of the multiple fanout
problem.

5 Experimental Results
We tested our algorithm on a large number of arith-

metic computations which are typically used in indus-
trial designs. We used Design Compiler package from
Synopsys Inc. to perform the implementation selec-
tion, tree-height minimization and logic optimizations
for the designs transformed by our algorithm and the
designs without using our algorithm7, and compared
their results.

� Designs with additions, subtractions, and
multiplications:

We tested our algorithm on designs with a mix-
ture of additions, subtractions, and multiplica-
tions as shown in Table 2. We used 8-bit operands

7The tree-height minimization was performed on non-CSA
operations. We used lcbg10pv (0.35�) technology[7] for all test
cases.

O1

O2

15-8A B15-8
B7-0A7-0

O1

O3

O4

8

F

8

C

8 8

8

1

8 8
B7-0A7-0

O4

15-8A B15-8

F

8

8 8
C

15-8A B15-8
B7-0A7-0

O1

O3

O4

(b)

(d)

8

F

8

C

8 8

8

1

8 8

1

(a)

(c)

16 16

8

A B

C

F

8
8

16

Figure 5: An example of transformation of operation
with lower-bit truncation

for non-constant inputs of multiplication and used
16-bit operands for the rest. We also assume that
the arrival times of all input operands are 0. For
multiplication operation, our algorithm fully de-
composed it into additions. The results in Table 2
show a strong indication that our algorithm can
extensively apply to the designs with additions,
subtractions and multiplications.

� Designs with multiple fanout:

We conducted our experimentation on three de-
signs shown in Figure 6. (In all designs in the
following, we assume that the arrival times of all
input operands are 0.) Each design has opera-
tions with multiple fanout. We used two CSA
transformation techniques: (i) without operation-
duplication and (ii) with operation-duplication,
and compared the results with that produced
without CSA transformation. The results are
summarized in Table 3. Note that operation-
duplication can reduce timing of design much fur-
ther, but it increases area. Consequently, the
transformation with operation-duplication can be
applied in a local way to those operations on the
critical path of design to reduce timing with a
minimal increase of area.

� Designs with lower-bit truncation:

We also conducted our experimentation on the
three designs shown in Figure 7. Note that the
designs have operations with lower-bit truncation.

We used two CSA transformation techniques: (i)
without operation-split and (ii) with operation-
split, and compared the results with that pro-
duced without CSA transformation. The results
shown in Table 4 reect that the operation-split is
a very powerful technique to overcome the limita-
tion of lower-bit truncation problem and extend
the applicability of CSA transformation to pro-
duce much faster timing and less area.

Equations RTL Design CSA design di�.
timing/area timing/area

A * B + 1 6.18 ns 5.88 ns -5%

3430 units 3410 units -1%

A * 3E3E 6.86 ns 6.55 ns -5%

(0011111000111110) 2920 units 2068 units -29%

A*B + C*D 7.21 ns 6.84 ns -37%
+ E*F 11225 units 10141 units -10%

A*B - C + D 7.19 ns 6.37 ns -10%

5185 units 4880 units -6%

A + B - C - 7.94 ns 6.03 ns -24%
D - E - F 5328 units 3697 units -31%

Table 2: Comparison of results for expressions with
addition, subtraction and multiplication

RTL Design CSA design CSA Design
Designs w/o duplicate w/ duplicate

timing/area timing/area timing/area

fanout 1 7.11 ns 6.83 ns 6.24 ns

4010 units 3600 units 4659 units

fanout 2 7.96 ns 7.13 ns 7.04 ns

6328 units 6072 units 7037 units

fanout 3 7.86 ns 7.07 ns 6.87 ns

9344 units 8992 units 9772 units

Table 3: Comparison of results for designs in Figure 6

RTL Design CSA design CSA Design

Designs w/o split w/ split

timing/area timing/area timing/area

truncate 1 6.01 ns 5.94 ns 4.02 ns

2315 units 2138 units 1721 units

truncate 2 7.75 ns 7.25 ns 5.81 ns
4610 units 4560 units 4133 units

truncate 3 7.98 ns 7.25 ns 6.45 ns

8374 units 8161 units 7405 units

Table 4: Comparison of results for designs in Figure 7

6 Conclusions
We presented a new technique to optimize arith-

metic circuits. The technique automatically expands
circuits consisting of adders, subtractors, and multipli-
ers into their carry-save-adder (CSA) representation
which are then optimized. The representation obvi-
ates the need for implementation selection, the au-
tomatic selection of the best implementation among
several adder/subtractor/multiplier implementations,
a time-consuming part of arithmetic optimization.

Acknowledgment- We wish to thank Ron Miller,
Hazem Almusa, Reiner Genevriere, Sean Huang, and
Tai Ly for making this work successful.

16

16

16

16

 8 8 8 8

16 16 16 16

16

16

16

16

fanout_3

16

16

16

16 16
16

16
16

 8 8

16

fanout_2fanout_1

16 16
16

1616

16
16

16

Figure 6: Designs with multiple fanout

8 8

 8 8

 12 12

4

 8 8

 8

8

4

truncate_2

 8 8

4

12 12

12

12 12

 8 8

4 12
 12

truncate_3

 12 4 12

4

 8

 8

8

1616

8

truncate_1

Figure 7: Designs with lower-bit truncation

References
[1] N. Weste and K. Eshraghian, Principles of CMOS

VLSI Design - A Systems Perspective, Addition-

Wesley Publishers, 1985.
[2] M. Potkonjak and J. Rabaey, \Optimizing Resource

Utilization Using Transformations", Proc. of ICCAD,

pp. 88-91, 1991.
[3] D. Lobo and B. Pangrle, \Redundant Operation Cre-

ation: A Scheduling Optimization Technique", Proc.
of DAC, pp. 775-778, 1991.

[4] A. Aho and J. Ullman, Principles of Compiler Design,

Addition-Wesley Publishers, 1977.
[5] K. Hwang, Computer Arithmetic: Principles, archi-

tecture, and Design, New York, 1979.
[6] Synopsys Inc., DesignWare Components Databook,

1996.
[7] LSI Logic Inc., G10-p Cell-Based ASIC Products

Databook, 1996.

	CDROM Home Page
	DAC98
	Front Matter
	Table of Contents
	Session Index
	Author Index

