
Abstract
Networked embedded systems are expected to support adaptive
streaming audio/video applications with soft real-time constraints.
These systems can be designed in a cost efficient manner only if
their architecture exploits the “leads” suggested by clever compile-
time performance estimators. However, performance estimation of
networked embedded systems is a non-trivial problem. The compu-
tational requirements of such systems show statistical variations
that stem from several interacting factors. At the slowest time scale,
applications can adapt to network bandwidth by configuring the
processing functionality of their tasks (e.g. compression parame-
ters). Also, there could be significant execution time variations
within a task. Thus, it is tricky to compute the net processing
demand of several such applications on a system architecture, espe-
cially if the system schedules these applications using prioritized
run-time schedulers.
In this paper, we describe an analytical tool called AsaP for fast
performance estimation of such embedded systems. AsaP builds
approximate models of these systems and characterizes the process-
ing load on the system as a stochastic process. The output of AsaP
is an exact distribution of the processing delay of each application.
This is a powerful result that can be leveraged for efficient design of
multimedia networked systems requiring soft real-time guarantees.
It is also the first known framework that quantifies the effect of run-
time schedulers (FCFS, RM, EDF) on the performance of such sys-
tems.

1. Introduction

Examples of networked embedded end-systems include slim
hosts like personal digital assistants and network computers [1]. In
their next generation, these systems are expected to support multiple
concurrent continuous media (CM) applications like audio, video,
and graphics. These applications are computation-intensive, period-
ic, and becoming network-aware. Figure 1 shows two networked
embedded systems. The transmitter captures data, encodes it, pack-
etizes it using the particular transport protocol, and sends it over the
network. One candidate protocol is RTP (Real-time Transport Pro-
tocol [2]), where packets are tagged with timing information. A
complementary protocol, RTCP (Real-time Transport Control Pro-
tocol), is used by the receiving end to provide feedback regarding
packet loss, delay, jitter, etc. This feedback is used by the sender sys-
tem toadapt audio and video applications. If the network is congest-

ed, a video application manager adapts the video application to send
at a lower frame rate, trading off bandwidth for perceptual quality
[3]. When network conditions improve, a higher frame rate may be
used. Different frame rates are referred to asadaptation levels. The
audio application can also have adaptive behavior; one of PCM,
ADM, LPC, and GSM compression algorithms can be selected at
run time depending on network feedback [4]. These algorithms trade
off output bit rates with computation load. For example, the relative
processing loads of PCM and LPC is 1:100. This adaptive behavior
is one characteristic of “smart networked” embedded systems.

In addition to adaptive behavior, the applications running on
these end-systems also tend to have varying performing constraints
ranging from relatively strict real-time (e.g. audio) to tolerating
looser constraints (e.g video). The heterogeneous demands of these
applications are typically managed using sophisticated run-time
schedulers on the end-systems.

Our focus in this paper is on the system-level design of such
systems. We believe that estimating the performance of a set of
adaptive applications on a particular architecture is one of the key
problems in system-level design of networked end-systems. Further,
the estimation has to account for the particular run-time scheduling
policy that may be used to prioritize applications. Performance esti-
mation is difficult since:
1. Each adaptation level offers a different processing load.
2. Data- and architecture-dependent variations (cache misses, bus

contention, communication overhead, ...) lead to variable execu-
tion times of taskswithin each application.

AudioVideo

Networked Embedded System

RTCP

video processing

packetized data
using RTP

feedback

Audio Processing (select one of several audio coders)

audio echo
cancellation

silence channel
input detection encoding

loss
PCM (64kbs) Pulse Code Modulation

ADM (16-48 kbps) Adaptive Delta Modulation

LPC (4.8 kbps) Linear Predictive Coding

GSM (13 kbps)

compression

Video Processing (select one of several frame rates)

7.5 fps (133ms/frame)

10 fps (100ms/frame)

15 fps (66.7ms/frame)

loss

 Figure 1. Networked Embedded Systems. Examples of
adaptive applications.

adaptation

adaptation levels

audio processing

feedback

levels

 feedback

NETWORK via RTCP

end
system

A Tool for Performance Estimation of Networked Embedded End-Systems

Asawaree Kalavade Pratyush Moghé
 DSP and VLSI Systems Research Dept., Network and Service Management Research Dept.
 Bell Labs, Holmdel, NJ 07733. Bell Labs, Holmdel, NJ 07733.
 kalavade@bell-labs.com pmoghe@bell-labs.com

35th Design Automation Conference ®
Copyright ©1998 ACM

1-58113-049-x-98/0006/$3.50 DAC98 - 06/98 San Francisco, CA USA

3. The scheduling policy used by therun-time scheduler and appli-
cation priorities impact the processing delay.

The contribution of this paper is to propose an analytical frame-
work to estimate the performance of a set of concurrent adaptive ap-
plications on a given architecture and run-time scheduler, wherein
the dynamics at any of the above three categories can be captured
systematically. The output of performance estimation is several met-
rics including theprocessing delay(time taken to process one iter-
ation of the application), probability of soft deadline misses, and
resource utilization. Our approach is as follows. The first step con-
sists of modeling the adaptation of each application according to net-
work feedback by a time-varying dynamic process called the
adaptation process. The transitions of this process indicate the
probability of jumping from one adaptation level to another and ap-
proximate the behavior of the network state and the adaptation algo-
rithm being employed. The second step is to model each adaptive
application as a task graph with several alternative execution paths,
each path corresponding to a particular adaptation level. Only one of
several paths in the task graph is activated at run time, depending on
the current adaptation level. This provides the link between the ad-
aptation levels and their processing requirements. Unfortunately,
this dependence makes the analysis of the computation complicated.
We assume that task-level changes (order of milliseconds) are much
faster than changes in the adaptation levels (order of minutes). This
assumption makes it much simpler to characterize the state of com-
putation on the end-system between two consecutive changes in the
adaptation process. In the third step we characterize the state of com-
putation between changes in the adaptation levels by another pro-
cess called thecomputation process. The computation process
captures dynamics due to the tasks and the run-time scheduler. To
characterize this process, we need to capture the task-level resource
requirements within each application. We assume that each task in
an application has an execution time with an arbitrary known distri-
bution. This distribution captures data-dependent variations as well
as other architecture-dependent variations such as cache misses.
Communication costs are modeled by adding dummy nodes be-
tween tasks. The run-time environment on the end-system is
assumed to activate tasks to be run according to a specified schedul-
ing policy. Policies such as earliest deadline first, first-come first
served, and rate-monotonic scheduling can be modeled. We show
that the computation process is a semi-Markov stochastic process.
The exact processing delay distribution of the applications can be
derived in terms of the stationary distribution of the jumps made by
the computation and adaptation processes. The processing delay dis-
tribution can be used to compute theexcess delay probability, the
probability that the delay exceeds a specified threshold. This is a
powerful metric for computing soft deadline misses. Other metrics
such as average delay and worst-case delay can also be computed.

The rest of the paper is organized as follows. In Section 2, we
discuss related work. In Section 3, we propose our analytical frame-
work (AsaP). In Section 4, we describe three experiments that dem-
onstrate the use of AsaP for exploring design tradeoffs.

2. Related Work

There has been considerable work reported in the literature on
estimation of execution times of individual tasks and entire applica-
tions in both software and hardware communities. Liet al. [5] study
the problem of estimating the worst-case execution time of tasks in

cached systems using integer linear programming. Guptaet al. [6]
use stochastic techniques to analyze execution times of single tasks,
especially to estimate the execution times of loops with non-deter-
ministic behavior. Henkelet al. [7] propose fast simulation-based
techniques, for use in hardware/software partitioning, that estimate
the execution times for tasks mapped to hardware and software.

Kim et al [8] and Li et al [9] compute the distribution of pro-
cessing delay of an application by convolving density functions of
individual tasks. Our approach differs in several aspects: First, we
support a more general model for tasks; execution times of tasks are
not constrained to have an identical distribution [8] but can have an
arbitrary distribution. Second, their methods assume a single appli-
cation; we support concurrent applications under different run-time
scheduling policies. Finally, our approach is to model the system-
wide behavior through a single stochastic process. The statistics fall
out of the characterization; intensive convolutions are not needed.

The work by Yenet al. [10] focuses on computing the worst
case processing delay of concurrent applications, where each appli-
cation is made up of tasks and the execution time of a task is speci-
fied as a tuple, representing the lower and upper bound. Note that
our formulation, in contrast, models the execution time of a task as
a distribution, which is more powerful in expressing variations in
execution time; worst case execution times can be one or two orders
of magnitude larger than the actual execution times [8]. We compute
the distribution of the processing delay, in addition to the worst-case
execution time. We comment more on this in the results section.

In a related area of real-time operating systems (RTOS’s), stat-
ic analysis of RTOS’s using deterministic models has been studied
extensively [11][12] The RTOS community has also focussed on de-
signing schedulers to give guarantees to multimedia tasks [13][14].
The problem of automated generation of RTOS’s has been ad-
dressed in the context of hardware/software codesign [15][16][17].
To the best of our knowledge, our paper is the first that analytically
explores the combined impact of different scheduling policies, task
variations, and network feedback on the effective processing time of
concurrent applications using a probabilistic framework.

3. Modeling and analysis methodology

3.1. Application specification and architecture
We assume that each application is specified by a task graph

consisting of nodes representing task-level computations and arcs
specifying precedences between nodes (Figure 2). When multiple
arcs merge into a node, the node is set to run only when it receives

source

7

exec time

probability

t i

p i

 Figure 2. Application task graph with alternative execution
paths. Each node has an arbitrarily distributed execution time.

{(t1, p1), (t2, p2), (t3, p3)}

sink

1
6

execution path 2 (PCM encoding)

execution path 3 (GSM encoding)

 alternative
Arbitrary distribution
of execution time for

8 9

2 3 4

5

10

11

12

execution path 1 (LPC encoding)

execution paths

each node

node

spacer
node

 node

processing delay of 1 iteration

data from all its incident arcs. Without loss of generality, we assume
that the execution time of a node is a discrete random variable that
takes one of the valuest1, t2, .. tk with probabilitiesp1, p2, .. pk re-
spectively, where these probabilities sum to 1. Such a distribution
can approximately model execution time variations due to data and
architectural dependencies. Note that the framework can model de-
pendencies in execution time across different nodes; we will not go
into details due to lack of space. A final note on distributions: Al-
though they are dependent on the nature of input data, we believe
that reasonable distributions can be obtained for specific classes of
applications such as video conferencing and action-dominated mov-
ies. Analysis using such traffic models has been quite successful for
network design.

Due to the repetitive behavior of CM applications, we assume
that data samples arrive at the source node at a fixed period dictated
by the input rate (e.g. 33ms for 30fps video). We assume non-pipe-
lined execution, i.e., the next iteration of an application starts only
after the current iteration finishes. The deadline constraint on each
application is assumed to be equal to the period. The actual time
when new samples are taken in by the source node for processing de-
pends on when the earlier samples finish processing. This behavior
is modeled through the artifice of a dummyspacer node that is as-
sumed to run in each iteration after the sink node. The execution
time of the spacer node changes based on the elapsed time in each
iteration. If the processing delay of an iteration is less than the inter-
arrival period, the spacer node models the idle wait of the applica-
tion until new samples arrive. If the processing delay is more than
the period, new samples are made to wait and the execution time of
the spacer node is 0.

An application consists of several alternative execution paths
corresponding to adaptation levels. To model concurrent applica-
tions, task graphs of individual applications are combined into a sin-
gle aggregated graph. Note that the measurement interval for the
aggregated graph isnot the LCM of the periods, which has been tra-
ditionally used in literature [12]. Since the execution times of tasks
are variable, the LCM does not account for all possible scenarios (al-
so observed by Wolfet al. [10]). Instead, we define aregeneration
state, which is the time when all applications finish execution at the
same time. Section 3.3 explains how to compute this. The process-
ing delay is computed over the regeneration interval.

Figure 3 shows the assumed system architecture consisting of
programmable processors and hardware accelerators communicat-
ing over a user-selected communication fabric. In this work we as-
sume that the number and types of processors and hardware
accelerators and the mapping of nodes is known. Each processor
runs a RTOS that selects the next task to run. The framework can
model different scheduler policies (e.g. rate monotonic, earliest
deadline first, ...). Tasks are assumed to be non-preemptive.

3.2. Adaptation process
The adaptation process approximates the changes in the adap-

tation level of applications by an adaptation process. We approxi-
mate the possibility of different feedback reports in an adaptation

level by different probabilities (Figure 4). Transitions between adap-
tation levelsm andn are assumed to occur with a probabilityνmn.
This probability is determined by profiling the adaptation of appli-
cations [3]. Note that these transition probabilities are time-homoge-
neous; this may not be a valid approximation in practice, but we
believe it is reasonable as a starting point. The interval between
jumps corresponds to the interval between consecutive RTCP re-
ports [2] and is modeled as a uniformly distributed random variable.
If Mt

a represents the adaptation level of applicationa at instantt, the
joint processM = {Mt

1, Mt
2, .. Mt

k} represents the joint adaptation
level of all the applications currently running on the end-system.
Once the transition probabilitiesν are computed, the stationary dis-
tributionΛm is computed by solving the linear equations:Σ Λm νmn
= Λm, andΣ Λm = 1. Due to constant intervals between jumps, the
steady-state distributionγm is equal toΛm. Intuitively, the steady
state distributionγm is the fraction of long-term time spent by the
joint adaptation processM in levelm.

3.3. Computation process
We model the state of computation in the end-system for a par-

ticular combination of adaptation levels as a computation process.
This process is shown to be asemi-Markov stochastic process. Such
a process has a one-step memory and the stationary probability dis-
tribution of its jumps to a particular state can be exactly computed.
This in turn enables us to compute the processing delay of an appli-
cation. Now for the details.

Let us define a few variables that characterize the state of com-
putation as a function of time. Let the transition sequenceA = {An},
n = 0,1,.. be the time-instants when the state of the computation
changes. Define a vector sequenceY = {Yn}, n = 0,1,.. whereYn = (I,
wI) = (set of nodes ready and waiting at transition timeAn

-, the delay
incurred by these nodes thus far), whereAn

- denotes the time just pri-
or to thenth transition time. Define the sequenceZ = {Zn}, n = 0,1,..
whereZn = (J, rJ) = (set of nodes running atAn

-, remaining execution
time of these nodes). SequencesZ andY capture information about
running and waiting nodes. Define a sequenceU = {Un} n = 0,1,..
whereUn = {(App, mApp, tApp) for all applications} = (application,
adaptation level of application atAn

-, elapsed time of application at
An

-). tApp is set to zero at the start of each application iteration, and
is incremented at transitions when nodes in that iteration finish run-
ning or finish waiting. (Y, Z, U) models the state of computation in
the system and is called the computation process.

Figure 5 illustrates the computation process for a simple exam-
ple with two concurrent applications. For simplicity of illustration,
suppose that the distribution of execution time for node 4 is {(t4a,
pa), (t4b, 1-pa)}. All other nodesi are assumed to have deterministic
execution timesti. Initially, nodes 1 and 2 start running on proces-
sorsP1 andP3. The state atA0 is: {(), ((1,t1), (2,t2)), (1,m1, 0), (2,

hardware

programmable

communication

processors

accelerators

RTOS

 Figure 3. System architecture.

HW1 HW k

PE 1 PE 2 PE n

 fabric

RTOS RTOS

Adaptation Level Mt
a

ma
max

ma
min

m

time

n

RTCP reports

Transition

Interval between
RTCP reports

probability νmn

 Figure 4. Adaptation process for application a.

Mt
a: adaptation level of

νmn: probability of transition

: Joint Adaptation level

M = {Mt
1, Mt

2, ..., Mt
i, ...}

γm: Fraction of long-term time

 process in level m

7.5fps

10 fps

15 fps
30fps

from level m to n

appln a at time t

of all applns

spent by the joint adaptation

m2, 0)} which is elaborated as: {(no waiting nodes), (1 running with
remaining timet1, 2 running with remaining timet2), (application 1
in levelm1 and elapsed time 0, application 2 in levelm2 and elapsed
time 0). Suppose thatt1 < t2. At t1, 1 finishes and there is a state
change in the system. Only one transition is possible at this time: 3
starts running onP2 with remaining timet3. 2 is still running with
remaining timet2-t1. At time t2, 2 finishes. 5 and 7 are “ready”.
Since 7 is mapped toP2which is currently running 3 (tasks are non-
preemptive), 7 goes on the waiting list, while 5 starts running. Sup-
pose that 3 and 5 finish at t1+t3, 7, 6, and 4 are ready to run. Since 4
and 6 are mapped to the same processor, the run-time scheduler se-
lects one based on priorities. Suppose that a static priority scheme is
used, where application 1 has a higher priority. In this case, node 4
is set to run and node 6 goes on the waiting list. (Other scheduling
policies can similarly be modeled. Note that the selection of the next
node to run is typically made using information carried in the current
state only; thus the computation process retains the Markovian prop-
erty.) There are two possible execution times for 4, leading to two
possible states at this point, with probabilitiespa and 1-pa. This pro-
cess is continued until all the applications end at the same time in-
stant. This is called the regeneration point, after which the
computation process repeats its evolution. Note that the dependen-
cies in execution times across different nodes can be modeled in this
framework by introducing additional paths. Although this increases
the size of the state space, the method is quite fast and has been used
to analyze realistic systems quite efficiently, as demonstrated in the
results section.

We now state the following theorem that characterizes the

computation process. We omit the proof due to lack of space.
Theorem: The joint sequence (Y, Z, U) represents the state of

computation at each transition and is a Markov chain. By joining the
state of computation between transitions by straight lines, we obtain
the computation process X. X is a continuous-time stochastic pro-
cess and since its underlying jump process (Y, Z, U) is Markovian,
X is a semi-Markov process [18][19].

The implications of this theorem are that the performance sta-
tistics can be computed on this process by analyzing the behavior of
a single traversal through the state space of X using the Markov re-
newal theory. This is much faster than simulating the system, since
several simulation runs are needed to get reliable statistics of the
processing delay, due to variable execution times. Our approach is
much faster since a single exploration of the state space can be done
efficiently even for a large state space. Further, this approach is
much more efficient than the convolution approach [8][9], which is
especially unwieldy for arbitrary distributions.

Also, for a given set of task-level distributions, the processing
delay distribution computed by the method is exact. We are current-
ly evaluating how effectively these distributions capture real appli-
cations. The simulations done so far show a close match with
computed results.

A second key observation is that the computation process is
Markovian under several scheduling policies. An exact proof is
omitted for lack of space. Consequently, the impact of different
scheduling policies can be analyzed within this framework.

3.4. Performance metrics
We first compute the stationary distribution of the computation

process. Roughly speaking, the stationary distribution specifies the
probability of a transition into each state, given that a jump occurs.
Stationary distribution of (Y, Z, U) We have stated earlier that, for
a particular adaptation valueM, the joint process (Y, Z, U) is a dis-
crete-time Markov chain. This means that when (Y, Z, U) jumps
from state (i, j, a) to (k, l, c) its future evolution is independent of the
past, given state (i, j, a). This chain is therefore completely specified
in terms of its transition probability function defined byRija

klc,
which is the probability that (Y, Z, U) moves from a state (i, j, a) to
(k, l, c) in a single jump. This one-step probability can be determined
for a particular set of applications from the computation process.
The stationary distributionπija

M is the probability that (Y, Z, U)
jumps to state (i, j, a), given that (Y, Z, U) changes states and can be
computed fromR, since it satisfies the equations:Σ(i,j,a) in S πija

MR-

ija
klc = πklc

M for all (k,l,c) in state spaceS, andΣ(k,l,c) in Sπklc
M = 1.

To obtain the stationary distribution unconditioned of adapta-
tion levelM we assume that the adaptation process converges to a
steady-state distributionγ, as described earlier. Here,γM is roughly
the long-term fraction of time the adaptation process spends in level
M. γ can be computed from the transition matrix of the adaptation
process and the interval of RTCP reports. Assumingγ is determined,
the unconditioned stationary distributionπija = Σall M πija

M γM.
Next we derive an expression for the processing delay distribution,
which gives the probabilities for different values of processing delay
for an application. This is a powerful result.
Processing Delay distribution : Suppose we wish to determine the
probability that the processing delay (PD) of a particular execution
pathm of an application exceeds a valueT. Let nodeb be the prede-
cessor to the spacer node on the execution pathm. Then, Pr{PD of
path m >T} = max[Pr{PD of path m >T, for all M}]. Note that the

timeA0 A1 A2

1, 2 running

{(),
((1, t1), (2, t2)),

1 done,

{(),
((3, t3), (2, t2 - t01))

3 starts on P2

2 done,

{(7, 0),
((3, t3 - t12), (5, t5)),

7 waiting for P2

4a starts on P3

{((7, t23), (6, 0)),
((7, t7), (4a, t4a))

7 starts on P2

A3

pa

1-pa

t01 = min(t1, t2) t12 t23

{((7, t23), (6, 0)))
((7, t7), (4b, t4b))

X

((1,m1,0),(2,m2,0))}

((1,m1,t1),(2,m2,0))}

(1,m1,t1),(2,m2,t2))}

((1,m1,t1+t3),(2,m2,tfs))}

 Figure 5. a) Selected execution paths for two apps b)
architecture, mapping c) Computation process.

(c)

5 starts on P1

3 done, 5 done

6 waiting for P3

state at Ak (Y,Z,U)
{(waiting nodes,time waited),
(running nodes,time remaining),
(app,level, elapsed time)}

0

1 3

• active execution path of app 1,
pa

1-pa

8
4b

4a(a)
• node 4 has 2 execution times

7
9

2

5 6

adaptation level m1

• active execution path of app 2
adaptation level m2

((1,m1,t1+t3),(2,m2,t2))}

P1

P2

P3
System architecture

(b)

1

2

3

4

5

4b starts on P3
7 starts on P2
3 done, 5 done

6 waiting for P3

right hand side is amax operator over all adaptation vectors of which
pathm is an element. The expression inside themax operator is the
ratio of the number of times the processing delay of the pathm ex-
ceedsT to the number of times pathm is activated. Recall thatπija

M

represents the probability of a jump of the underlying process (Y, Z,
U) to the state (i, j, a) conditioned on a jump. If we focus only on the
jumps to state where nodeb begins running, it is clear that:

=

Having computed the processing delay of pathm in the appli-
cation, the processing delay of the entire application is computed by
choosing the worst-case processing delay among all paths.
Excess delay probabilityPrexcess: The probability of processing
delay exceeding the deadlineD, is simply computed by settingT
equal toD in the above expression.

The above analytical framework has been implemented as a
software prototype calledAsaP. AsaP is about 10k lines of C code
and has a Tcl/Tk GUI. Applications can be specified either textually
or by using the Ptolemy [21] front-end. The state space for a given
set of applications is generated using a recursive procedure. The
transition probability matrixR is computed from the generated state
space. The Jacobi iterative power series method [20] is used to solve
for the stationary distributionπ. Several other performance metrics
such as nodal wait and resource utilization can also be derived.

4. Results

We illustrate the use ofAsaP for system-level design with three
examples. In the first example, the processing delay for an adaptive
video application is computed for different adaptation levels. This is
used to compute the maximum sustainable adaptation level. In the
second example, the variation in the processing delay due to multi-
ple concurrent applications is quantified. This shows how to trade
off quality and computation between audio and video applications.
In the third example, the impact of different run-time scheduling
policies on the processing delay is studied. In all three cases, we
demonstrate results for a single processor system, although the ana-
lytical framework can also handle multiprocessor systems.

4.1. Example 1: Impact of adaptation levels on
processing delay of MPEG

We use a MPEG video encoder as an example of an adaptive
application, where adaptation levels correspond to frame rates of
7.5fps, 10 fps, and 15 fps. Figure 6 shows the application and the ex-
ecution time distributions. The execution times for each node were
obtained by profiling the Berkeley MPEG-1 video encoder [22] on

a table-tennis sequence. We are currently exploring systematic
methods to compute task-level distributions.

The adaptation level changes were profiled based on experi-
mental results reported in [3], where a video conferencing applica-
tion VIC [23] is modified to adapt its bit rate based on network
feedback. The steady state distribution for each adaptation level was
calculated by profiling the adaptation level changes over a period of
300 seconds (Table 1). Although such a profile should actually be
computed over a much larger time window, this is an illustrative ex-
ample.

The output ofAsaP is shown in the last two columns of Table 1.
For example, in level 3, the excess delay probability is 0.1, i.e. 10%
of the samples miss their deadlines. The last column in Table 1 rep-
resents the effective miss probability for each level, by factoring in
the probability of the level itself. While the deadlines are missed
quite often in level 4, level 4 itself is much less frequent. Figure 7

plots the probability of deadline misses for different adaptation lev-
els on two architectures,arch1 andarch2. The processing delay in-
dicates sustainable adaptation levels. Thus, for a 10% acceptable
miss rate,arch1 supports adaptation levels 1 through 3, whilearch2
supports levels 1 and 2 only.

4.2. Example 2: Impact of adaptation levels on
processing delay of concurrent applications

In this experiment, we consider two concurrent applications:
video (adapting between 7.5 fps and 15 fps) and audio (adapting be-
tween PCM and LPC, with a constant period of 20ms). Table 2 sum-
marizes the processing delay for different combinations of audio
algorithms and video frame rates. This data is used to determine fea-
sible combinations of adaptation levels. Consider the combination
(LPC, 7.5fps), with audio missing 24% of its deadlines. If a higher
frame rate is desired, switching to (LPC, 15fps) leads to an unac-
ceptable 46% miss rate for audio. The application manager should
instead step down to (PCM, 15fps). Such statically computed infor-

Pr{PD of path m > T} number of times PD > T
number of times path m activated
--=

πi ja
M

b J∈ rb tb= t
App

rb+ T>, ,

⋅
i ja∀
∑

πi ja
M

b J∈ rb, tb=i ja∀
∑

--

source

motion
estimation

dct quant

idct

iquant

vle

Texec Prob.
50
60
70

0.1
0.3
0.6

motion
compensation

frame
processing

frame
processing

(20, 1.0)
(10, 1.0) (30, 1.0) (10, 1.0)

(10, 1.0)

(30, 1.0)

(30, 1.0)

Texec Prob.
20
50
100

0.1
0.5
0.3
0.1200

sink

 Figure 6. MPEG video encode. Exec. time dist. in 10 4 cycles.

(1) (2)

Adaptation Level steady state distributionγ Prexcess γ x Prexcess

0 (5 fps) 0.0727 0.0 0.0

1 (6 fps) 0.0909 0.0 0.0

2 (7.5 fps) 0.2181 0.0 0.0

3 (10 fps) 0.5454 0.1 0.05454

4 (15 fps) 0.0727 0.994 0.0722

Table 1: (Ex. 1) Adaptation levels (frame rates), steady-state
distribution of adaptation process, excess delay probability.

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4
P

r{
D

el
ay

 e
xc

ee
ds

 1
/fr

am
e

ra
te

}
Video adaptation levels

g y

Adaptive video application
modeling Berkeley MPEG Encoder
on a table-tennis sequence
Terminal run-time environment modeled
as a non-preemptive, fcfs scheduler

Pr{D>1/rate}: arch1
Pr{D>1/rate}: arch2

 Figure 7. Excess delay probability vs. adaptation levels for
two architectures. arch1 1.3 times as fast as arch2 .

Maximum adaptation level
for a 10%miss constraint

Adaptation
5fps 6fps 7.5fps 10fps 15fps

arch1

arch2

0.1

 Levels

mation may be used to design “smart” application managers.

4.3. Example 3: Impact of run-time schedulers
Table 3 summarizes the processing delay distribution when

video is at 15fps and audio uses LPC (LPC 15fps) under three dif-
ferent run-time scheduling policies. In FCFS, nodes are set to run in
the order in which they become “ready”. RMS and EDF are priori-
tized schemes, where nodes with higher priority are selected to run
first. In RMS, priorities of the nodes are set according to rates. In this
particular example, audio has a higher priority over video. In EDF,
the priorities are computed at run-time; the node whose “due date”
is earliest gets higher priority. Note how shifting from FCFS to RMS
improves the mean and worst-case delays and probability of dead-
line misses for audio, while degrading the performance of video. Us-
ing EDF seems to be a good compromise for both applications. To
reiterate the importance of a distribution of the processing delay
against just the worst case value, consider the (LPC, 15fps) case for
RMS scheduler in Table 2. The worst case processing delay is 290.
However, the distribution tells us that the mean is 118, the standard
deviation is 29, and only 2% of all samples miss deadlines. This is
much more valuable than knowing that the worst case execution
time is 290. Typically, CM applications have constraints such as “no

more than 10% samples should miss deadlines”. Using worst-case
leads to very conservative and hence inefficient architecture design.

5. Conclusions

We have identified system-level design issues for next-genera-
tion networked embedded systems in the context of adaptive appli-
cations and run-time schedulers. Applications adapt in order to
reduce the output bit rate. However, adaptations impose different
processing demands on the end terminal. This variation, in addition
to task-level processing variations, manifests by making the pro-
cessing delay of each application variable and unpredictable. Run-

time scheduling policies also impact the performance of the end-sys-
tem. We propose an analytical framework to estimate the perfor-
mance of a set of concurrent adaptive applications for a particular
architecture and run-time scheduler. The framework can efficiently
compute the exact distribution of the processing delay of applica-
tions. This result can be used to synthesize cost-efficient solutions
for systems requiring soft real-time guarantees. We demonstrate the
use of this framework to explore the system-level tradeoffs in select-
ing adaptation levels for applications, designing smart application
managers, and in selecting an appropriate run-time environment.

6. References

[1] PDA Buyer’s Guide, Pen Computing Magazine, vol. 3, no. 11, July/
August 1996, pp. 84.

[2] H. Schulzrinne,et al. “RTP: A Transport Protocol for Real-Time Appli-
cations”, RFC 1889, Audio/Video Transport WG, Jan. 1996.

[3] I. Busse,et al, “Dynamic QoS Control of Multimedia Applications
based on RTP”,Computer Communications 19:1, Jan. 1996, pp. 49-58.

[4] J.-C. Bolot, A. Vega-Garcia, “Control Mechanisms for Packet Audio in
the Internet”,Proc. IEEE Infocom ‘96, CA, April 1996, pp. 232-9.

[5] Y. S. Li, S. Malik, A. Wolfe, “Performance Estimation of Embedded
Software with Instruction Cache Modeling”,ICCAD 95.

[6] R. K. Gupta,Co-synthesis of Hardware and Software for Digital Embed-
ded Systems, Kluwer Academic, 1995.

[7] J. Henkelet al, “The Interplay of Run-time Estimation and Granularity
in HW/SW Partitioning”,Proc. Codes96, USA, March 1996, pp. 52-8.

[8] J. Kim, K. G. Shin, “Execution Time Analysis of Communicating Tasks
in Distributed Systems”,IEEE Trans. on Computers, vol. 45, no. 5,
May 1996, pp. 572-9.

[9] Y. Li, J. Antonio, “Estimating the Execution Time Distribution for a
Task Graph in a Heterogeneous Computing System”,Proc. Sixth Heter-
ogeneous Computing Workshop (HCW ‘97), Switzerland, pp. 172-84.

[10] Ti Yen, W. Wolf, “Performance Estimation for Real-time Distributed
Embedded Systems”,Proc. of ICCD 95, pp. 64-69.

[11] C. L. Liu, J. W. Layland, “Scheduling Algorithms for Multiprogram-
ming in a Hard Real Time Environment”,JACM, v20, 1973, pp. 46-61.

[12] K. Ramamrithamet al., “Scheduling Algorithms and Operating Sys-
tems Support for Real-Time Systems”,Proc. of the IEEE, vol. 82, no. 1,
Jan. 1994, pp. 55-66.

[13] D. K.Y. Yau,et al. “Adaptive Rate-Controlled Scheduling for Multime-
dia Applications”,Proc. ACM Multimedia’96, Boston, MA, Nov. 1996.

[14] R. Yavatkar, K. Lakshman, “A CPU Scheduling Algorithm for Continu-
ous Media Applications”,Proc. of NOSSDAV, April 1995, pp.223-6.

[15] V. Mooneyet al., “Run-Time Scheduler Synthesis for Hardware-Soft-
ware Systems and Application to Robot Control Design”, CODES 97.

[16] F. Balarinet al., “Automatic Generation of a Real-Time Operating Sys-
tem for Embedded Systems”,Proc. of CODES 97.

[17] P. Chouet al., “Software Scheduling in the Co-synthesis of Reactive
Real-time Systems”,Proc. of DAC, June 1994, pp 1-4.

[18] E. Cinlar,Introduction to Stochastic Processes, Prentice-Hall, 1975.
[19] S. Ross,Introduction to Probability Models, Academic Press., 1985.
[20] V. L. Wallace, R. S. Rosenberg, “Markovian Models and Numerical

Analysis of Computer System Behavior”, AFIPS Spring Joint Com-
puter Conf. Proceedings, pages 141-148, 1966.

[21] Ptolemy athttp://ptolemy.eecs.berkeley.edu
[22] http://bmrc.berkeley.edu/projects/mpeg/mpeg_encode.html
[23] S. McCanne, V. Jacobson, “vic: a flexible framework for packet video”,

Proc. of ACM Multimedia ‘95, CA, Nov 1995, pp. 511-522.

(audio, video) (PCM, 7.5fps) (PCM,15fps) (LPC,7.5fps) (LPC,15fps)

(Deadlines 104 cycles) (200, 1330) (200, 660) (200, 1330) (200, 660)

Prexcess (0.00046, 0) (0.01, 0) (0.241, 0) (0.462, 0.007)

 PDave in 104 cycles (16.2, 344.1 (32.1, 344.1) (146.2, 509.7) (198, 500.93)

 PDmaxin 104 cycles (240, 486) (240, 486) (440, 675) (450, 680)

Number of states 19856 16070 6457 20767

State space time 1393.29 s 856.96 s 122.16 s 1446.27 s

Analysis time 1948.53 s 862.37 s 494.03 s 352.11 s

Table 2: (Example 2) Performance metrics for audio (PCM, LPC)
and video (7.5fps, 15fps).

Perf. metrics
(audio, video)

FCFS RMS EDF

Prexcess (0.462, 0.007) (0.0235, 0.52) (0.175, 0.227)

 PDave (198.0, 501.0) (118.4, 685.9) (169.3, 615.7)

σ (77.5, 54.3) (29.34, 94.72) (61.59, 58.07)

PDmax (450,680) (290,980) (380,840)

Table 3: Example 3: Impact of run-time scheduling policy on the
performance delay of LPC audio and video at 15fps

	CDROM Home Page
	DAC98
	Front Matter
	Table of Contents
	Session Index
	Author Index

