A Tool for Performance Estimation of Networked Embedded End-Systems

Asawaree Kalavade Pratyush Moghé
DSP and VLSI Systems Research Dept., Network and Service Management Research Dept.
Bell Labs, Holmdel, NJ 07733. Bell Labs, Holmdel, NJ 07733.
kalavade@bell-labs.com pmoghe@bell-labs.com
Abstract ed, a video application manager adapts the video application to send

Networked embedded systems are expected to support adaptiled lower frame rate, trading off bandwidth for perceptual quality
streaming audio/video applications with soft real-time constraints[3]. When network conditions improve, a higher frame rate may be
These systems can be designed in a cost efficient manner onlyp§ed. Different frame rates are referred tadaptation levelsThe

their architecture exploits the “leads” suggested by clever compile2udio application can also have adaptive behavior; one of PCM,
time performance estimators. However, performance estimation d{DM, LPC, and GSM compression algorithms can be selected at
networked embedded systems is a non-trivial problem. The compiith time depending on network feedback [4]. These algorithms trade
tational requirements of such systems show statistical variation8ff output bit rates with computation load. For example, the relative
that stem from several interacting factors. At the slowest time scal@rocessing loads of PCM and LPC is 1:100. This adaptive behavior
applications can adapt to network bandwidth by configuring theS one characteristic of “smart networked” embedded systems.
processing functionality of their tasks (e.g. compression parame- In addition to adaptive behavior, the applications running on
ters). Also, there could be significant execution time variationghese end-systems also tend to have varying performing constraints
within a task. Thus, it is tricky to compute the net processinganging from relatively strict real-time (e.g. audio) to tolerating
demand of several such applications on a system architecture, esg@oser constraints (e.g video). The heterogeneous demands of these
cially if the system schedules these applications using prioritize@pPplications are typically managed using sophisticated run-time
run-time schedulers. schedulers on the end-systems.

In this paper, we describe an analytical tool called AsaP for fast ~ Our focus in this paper is on the system-level design of such
performance estimation of such embedded systems. AsaP buiRistems. We believe that estimating the performance of a set of
approximate models of these systems and characterizes the proceddaptive applications on a particular architecture is one of the key
ing load on the system as a stochastic process. The output of AsBFpblems in system-level design of networked end-systems. Further,
is an exact distribution of the processing delay of each applicatiorthe estimation has to account for the particular run-time scheduling
This is a powerful result that can be leveraged for efficient design dfolicy that may be used to prioritize applications. Performance esti-
multimedia networked systems requiring soft real-time guaranteegnation is difficult since:

It is also the first known framework that quantifies the effect of runl. Each adaptation level offers a different processing load.

time schedulers (FCFS, RM, EDF) on the performance of such sys- Data- and architecture-dependent variations (cache misses, bus
tems. contention, communication overhead, ...) lead to variable execu-

tion times of tasksvithin each application
1. Introduction

Examples of networked embedded end-systems include slim video § ¥ Audio
hosts like personal digital assistants and network computers [1]. I __Networked Embedded System end
their next generation, these systems are expected to support multipe//deo processing | [audio processing | system
concurrent continuous media (CM) applications like audio, video : - * feedback | A
and graphics. These applications are computation-intensive, periogl- Packetized data RTCP ia RTCP
ic, and becoming network-aware. Figure 1 shows two networked using RTP |- — — — =

embedded systems. The transmitter captures data, encodes it, pajgk= -
Video Processing (select one of several frame rates)

D
B

etizes it using the particular transport protocol, and sends it over th
network. One candidate protocol is RTP (Real-time Transport Pro- 7.5 fps (133msfframe)
10 fps (100ms/frame)
complementary protocol, RTCP (Real-time Transport Control Pro
. L . . 15 fps (66.7mslf
tocol), is used by the receiving end to provide feedback regarding adaptation levels s (66.7msfframe)

tocol [2]), where packets are tagged with timing information. A
packet loss, delay, jitter, etc. This feedback is used by the sender sylsaudio Processing (select one of several audio coders)

tem toadaptaudio and video applications. If the network is congest- 5| audio | echo 7 fsilence |, compression [channel |
input [”| cancellation[*|detection encoding
< »
loss -
feedback | PCM (64kbs) Pulse Code Modulation

ADM (16-48 kbps) Adaptive Delta Modulation

| LPC (4.8 kbps) Linear Predictive Coding

a,gsg,fgﬂoq GSM (13 kbps)

Figure 1. Networked Embedded Systems. Examples of
adaptive applications.

35" Design Automation Conference ®
Copyright ©1998 ACM
1-58113-049-x-98/0006/$3.50 DAC98 - 06/98 San Francisco, CA USA

3. The scheduling policy used by th-time scheduleand appli- cached systems using integer linear programming. Gatpa [6]

cation priorities impact the processing delay. use stochastic techniques to analyze execution times of single tasks,

The contribution of this paper is to propose an analytical frameespecially to estimate the execution times of loops with non-deter-

work to estimate the performance of a set of concurrent adaptive aptinistic behavior. Henkett al [7] propose fast simulation-based
plications on a given architecture and run-time scheduler, whereitechniques, for use in hardware/software partitioning, that estimate
the dynamics at any of the above three categories can be captutbée execution times for tasks mapped to hardware and software.
systematically. The output of performance estimation is several met- Kim et al [8] and Liet al[9] compute the distribution of pro-
rics including theprocessing delay(time taken to process one iter- cessing delay of an application by convolving density functions of
ation of the application), probability of soft deadline misses, andndividual tasks. Our approach differs in several aspects: First, we
resource utilization. Our approach is as follows. The first step corsupport a more general model for tasks; execution times of tasks are
sists of modeling the adaptation of each application according to netot constrained to have an identical distribution [8] but can have an
work feedback by a time-varying dynamic process called tharbitrary distribution. Second, their methods assume a single appli-
adaptation process The transitions of this process indicate the cation; we support concurrent applications under different run-time
probability of jumping from one adaptation level to another and apscheduling policies. Finally, our approach is to model the system-
proximate the behavior of the network state and the adaptation algevdde behavior through a single stochastic process. The statistics fall
rithm being employed. The second step is to model each adaptiweit of the characterization; intensive convolutions are not needed.
application as a task graph with several alternative execution paths, The work by Yenret al [10] focuses on computing the worst
each path corresponding to a particular adaptation level. Only one ose processing delay of concurrent applications, where each appli-
several paths in the task graph is activated at run time, depending oation is made up of tasks and the execution time of a task is speci-
the current adaptation level. This provides the link between the adied as a tuple, representing the lower and upper bound. Note that
aptation levels and their processing requirements. Unfortunatelyur formulation, in contrast, models the execution time of a task as
this dependence makes the analysis of the computation complicateddistribution, which is more powerful in expressing variations in
We assume that task-level changes (order of milliseconds) are muekecution time; worst case execution times can be one or two orders
faster than changes in the adaptation levels (order of minutes). Thi§ magnitude larger than the actual execution times [8]. We compute
assumption makes it much simpler to characterize the state of corie distribution of the processing delay, in addition to the worst-case
putation on the end-system between two consecutive changes in theecution time. We comment more on this in the results section.
adaptation process. In the third step we characterize the state of com- In a related area of real-time operating systems (RTOS's), stat-
putation between changes in the adaptation levels by another prig-analysis of RTOS’s using deterministic models has been studied
cess called theomputation process The computation process extensively [11][12] The RTOS community has also focussed on de-
captures dynamics due to the tasks and the run-time scheduler. 3igning schedulers to give guarantees to multimedia tasks [13][14].
characterize this process, we need to capture the task-level resoufidee problem of automated generation of RTOS’s has been ad-
requirements within each application. We assume that each task dinessed in the context of hardware/software codesign [15][16][17].
an application has an execution time with an arbitrary known distriTo the best of our knowledge, our paper is the first that analytically
bution. This distribution captures data-dependent variations as wedikplores the combined impact of different scheduling policies, task
as other architecture-dependent variations such as cache misseariations, and network feedback on the effective processing time of
Communication costs are modeled by adding dummy nodes beeoncurrent applications using a probabilistic framework.
tween tasks. The run-time environment on the end-system is
assumed to activate tasks to be run according to a specified sched8l- Modeling and analysis methodology
ing policy. Policies such as earliest deadline first, first-come first o o .
served, and rate-monotonic scheduling can be modeled. We shotvl. Application specification and architecture
that the computatiqn process ?s a se'mi-Markov stoc_:ha_stic Process. \ye assume that each application is specified by a task graph
The exact processing delay distribution of the applications can Bgnsisting of nodes representing task-level computations and arcs
derived in terms of the stationary distribution of the jumps made b)épecifying precedences between nodes (Figure 2). When multiple

the computation and adaptation processes. The processing delay digss merge into a node, the node is set to run only when it receives
tribution can be used to compute #aecess delay probabilitghe

probability that the delay exceeds a specified threshold. This is execution path 1 (LPC encoding)
powerful metric for computing soft deadline misses. Other metrics 2 —» 3 < \ sink SPaCdef
_ ource node

such as average delay anq worst case delay can also be (.:omputecf1Ode execution path 2 (PCM encoding) ¥ node

The rest of the paper is organized as follows. In Section 2, we 12
discuss related work. In Section 3, we propose our analytical frame- 1 v
work (AsaP. In Section 4, we describe three experiments that dem} _execution path 3 (GSM encoding) N
onstrate the use of AsaP for exploring design tradeoffs. \ 7 8 9 i probabilllty

\
2. Related Work ‘* alternative 10
_ . _ execution paths Arbitrary distribution to o

There has been considerable work reported in the literature gn of execi/nion time for exec time
estimation of execution times of individual tasks and entire applicafprocessing delay of 1 iteration each node ((t,, p,), (ta, P2). (ta. Pa)}
tions in both softh_ire qnd hardware communltlegtlal_[S] study _ T:igure 2. Application task graph with alternative execution
the problem of estimating the worst-case execution time of tasks ifpaths. Each node has an arbitrarily distributed execution time.

data from all |ts_|nc:|(_jent arcs. Wlthput Iqss of generality, We asSUME, - tion Level Ma RTCP reports
that the execution time of a node is a discrete random variable thain? A Transition M2 adaptation level of
takes one of the valuesg t,, .. t, with probabilitiespy, p,, .. py re- 30fps probability vy, appln a at time t

spectively, where these probabilities sum to 1. Such a distributiof15 fps
can approximately model execution time variations due to data and
architectural dependencies. Note that the framework can model dge fpsm[
pendencies in execution time across different nodes; we will not 9P7 5fos

into details due to lack of space. A final note on distributions: Al- n'qagm > v of a[l appins)

. . .~ ¥m: Fraction of long-term time
though they are dependent on the nature of input data, we belieye Interval between tMme spent by the joint adaptation
that reasonable distributions can be obtained for specific classes of RTCP reports process in level m
applications such as video conferencing and action-dominated moy- Figure 4. Adaptation process for application a.
ies. Analysis using such traffic models has been quite successful ftgvel by different probabilities (Figure 4). Transitions between adap-
network design. tation levelsm andn are assumed to occur with a probabilify,

Due to the repetitive behavior of CM applications, we assumd his probability is determined by profiling the adaptation of appli-
that data samples arrive at the source node at a fixed period dictat@@fions [3]. Note that these transition probabilities are time-homoge-
by the input rate (e.g. 33ms for 30fps video). We assume non-pip&€ous; this may not be a valid approximation in practice, but we
lined execution, i.e., the next iteration of an application starts onljpelieve it is reasonable as a starting point. The interval between
after the current iteration finishes. The deadline constraint on eaddmps corresponds to the interval between consecutive RTCP re-
application is assumed to be equal to the period. The actual tinRorts [2] and is modeled as a uniformly distributed random variable.
when new samples are taken in by the source node for processing #eM;® represents the adaptation level of applicagianinstant, the
pends on when the earlier samples finish processing. This behavi@int proces = {M}, M2, .. M} represents the joint adaptation
is modeled through the artifice of a dumspacer nodethat is as- level of all the applications currently running on the end-system.
sumed to run in each iteration after the sink node. The executidance the transition probabilitiesare computed, the stationary dis-
time of the spacer node changes based on the elapsed time in el##iition Ap, is computed by solving the linear equatich#\n, Vimn
iteration. If the processing delay of an iteration is less than the intef Am, andZ Ap, = 1. Due to constant intervals between jumps, the
arrival period, the spacer node models the idle wait of the applicsgteady-state distributiop, is equal toAy,. Intuitively, the steady
tion until new samples arrive. If the processing delay is more thaftate distributioryy, is the fraction of long-term time spent by the
the period, new samples are made to wait and the execution time jefnt adaptation procesd in levelm.

the spacer node is 0. _ _ 3.3. Computation process
An application consists of several alternative execution paths

corresponding to adaptation levels. To model concurrent applica- W€ model the state of computation in the end-system for a par-
tions, task graphs of individual applications are combined into a sirficular combination of adaptation levels asamputation process.

gle aggregated graphNote that the measurement interval for the ThiS process is shown to be@mi-Markov stochastic procesauch
aggregated graph i®tthe LCM of the periods, which has been tra- & Process has a one-step memory and the stationary probability dis-
ditionally used in literature [12]. Since the execution times of task§/ioution of its jumps to a particular state can be exactly computed.
are variable, the LCM does not account for all possible scenarios (aliS in turn enables us to compute the processing delay of an appli-
so observed by Wolt al. [10]). Instead, we defineregeneration ~ cation. Now for the details. _

state which is the time when all applications finish execution atthe L€t us define a few variables that characterize the state of com-

same time. Section 3.3 explains how to compute this. The procegdutation as a function of time. Let the transition sequérregAn},

ing delay is computed over the regeneration interval. n = 0,1,.. be the time-instants when the state of the computation
Figure 3 shows the assumed system architecture consisting gfianges. Define a vector sequerce{ Yy}, n =0,1,.. wherer, = (,

programmable processors and hardware accelerators communic) = (St of nodes ready and waiting at transition #giethe delay

ing over a user-selected communication fabric. In this work we adncurred by these nodes thus far), whifedenotes the time just pri-

sume that the number and types of processors and hardwefEtC thenth transition time. Define the sequerte {Z,},n=0,1,..

accelerators and the mapping of nodes is known. Each process¥pereZ, =, 1) = (set of nodes running &', remaining execution

runs a RTOS that selects the next task to run. The framework cdine of these nodes). SequenZeandY capture information about

model different scheduler policies (e.g. rate monotonic, earliedt!nning and waiting nodes. Define a sequedce {Up} n = 0,1,..

Vmn: probability of transition
from level mto n

M={MZ, MZ, ..., M/, ..}
: Joint Adaptation level

deadline first, ...). Tasks are assumed to be non-preemptive. whereUp, = {(App mAppv.tAp?) for all applications} = (application,
. adaptation level of application &}, elapsed time of application at
3.2. Adaptation process A;). tAPPis set to zero at the start of each application iteration, and

The adaptation process approximates the changes in the adapincremented at transitions when nodes in that iteration finish run-
tation level of applications by an adaptation process. We approxRing or finish waiting. {, Z, U) models the state of computation in

mate the possibility of different feedback reports in an adaptatiothe system and is called the computation process.
Figure 5 illustrates the computation process for a simple exam-

wRTOS RTOS KRTos _ omp CESS | > _
programmable . Yl I:I\E 5 Aooo o ple with two concur_rer_n appllcatlons. F_or smphcny of |IIustr_at|on,
processors 3 3 'g -~ suppose that the distribution of execution time for node 4tjg, {(
hardware 3 $ communi Cati;n pa), (tan, 1-pa)}. All other nodes are assumed to have deterministic
accelerators | HW1 ee | HWKk fabric execution times;. Initially, nodes 1 and 2 start running on proces-

Figure 3. System architecture. sorsP1andP3. The state aby is: {(), ((119), (21), (1,my, 0), (2,

)) computation process. We omit the proof due to lack of space.
pa | 3?;’0? a?i);encfgfg gath of app 1, Theorem: The joint sequence (Y, Z, U) represents the state of
a) 4a « node 4 has 2 execfmon times computation at each transition and is a Markov chain. By joining the
3 —» —» 8 state of computation between transitions by straight lines, we obtain
4b the computation process X. X is a continuous-time stochastic pro-
1-pa cess and since its underlying jump process (Y, Z, U) is Markovian,
« active execution path of app 2 X'is a semi-Markov proce$s8][19].
2 7 —_ adaptation level m, The implications of this theorem are that the performance sta-
/VIZI tistics can be computed on this process by analyzing the behavior of
6 a single traversal through the state space of X using the Markov re-
newal theory. This is much faster than simulating the system, since
(b) 2 _ several simulation runs are needed to get reliable statistics of the
System architecture processing delay, due to variable execution times. Our approach is
(c) P2 much faster since a single exploration of the state space can be done
@ state at Ay (Y,Z,U) (@3 done, 5 done efficiently even for a large state space. Further, this approach is
{(waiting nodes time waited), 7 starts on P2 much more efficient than the convolution approach [8][9], which is

i i ini 4a starts on P3
((gj;;'l';?/e'}ogleasp';'zdeﬁﬁg’)"’}“”'”g)' © & g e £ especially unwieldy for arbitrary distributions.

A ; Mfaiﬁ]’;e%or P2) (7. 59, 6.0), AIsp, for a given set of task-level distriputions, the processing
X) sstatson PL/ (7, t), (4a, t1y)) delay dlstrlbutlon compqted by the m'eth.od is exact. We are currept-
e @0, ((1,m, t1+3),(2, My, b))} ly e_valuatlng hqw effgctlvely these distributions capture real appl_l-
(B, t5- t19), (5, t5)), cations. The simulations done so far show a close match with

3 done, 5 done
7 starts on P2
4b starts on P3

(L.my.t1),(2.ma,)}

(0,
D Guwen
((Lmy)20}

o

{0
(1,), (2,),
((1,my,0),(2,m,0)}

computed results.
A second key observation is that the computation process is
6 waiting for P3 Markovian under several scheduling policies. An exact proof is
omitted for lack of space. Consequently, the impact of different
l-pa {((7, t23), (6, 0))) . - ot
(7, 1), (4b, tay)) scheduling policies can be analyzed within this framework.

Qli+a) (22)} 3.4. Performance metrics
A tmin O T A Ry dime

1t We first compute the stationary distribution of the computation
Figure 5. a) Selected execution paths for two apps b) process. Roughly speaking, the stationary distribution specifies the
architecture, mapping ¢) Computation process. probability of a transition into each state, given that a jump occurs.

myp, 0)} which is elaborated as: {(no waiting nodes), (1 running withStationary distribution of ('Y, Z, U) We have stated earlier that, for
remaining timet;, 2 running with remaining time), (application 1 a particular adaptation vali, the joint processY{ Z, U) is a dis-
in levelm; and elapsed time 0, application 2 in lewgland elapsed crete-time Markov chain. This means that wh&nZ, U) jumps
time 0). Suppose thaf < t,. At ty, 1 finishes and there is a state from statei(j, a) to (, I, ¢) its future evolution is independent of the
change in the system. Only one transition is possible at this time: @ast, given staté, (, a). This chain is therefore completely specified
starts running o2 with remaining timez. 2 is still running with in terms of its transition probability function defined Byaklc,
remaining timet,-t;. At time ty, 2 finishes. 5 and 7 are “ready”. which is the probability thaty(Z, U) moves from a state, {, a) to
Since 7 is mapped ®2which is currently running 3 (tasks are non- (k, I, ¢) in a single jump. This one-step probability can be determined
preemptive), 7 goes on the waiting list, while 5 starts running. Sugfor a particular set of applications from the computation process.
pose that 3 and 5 finish gitt3, 7, 6, and 4 are ready to run. Since 4 The stationary distributiomrijaM is the probability that, Z, U)
and 6 are mapped to the same processor, the run-time schedulerjseaps to statei(j, a), given that Y, Z, U) changes states and can be
lects one based on priorities. Suppose that a static priority schemecsmputed fronR, since it satisfies the equatiois;; 4 in STq-aMR-
used, where application 1 has a higher priority. In this case, nodeijgk'c =V for all (k) in state spacg andZy ¢ insTc ' = 1.
is set to run and node 6 goes on the waiting list. (Other scheduling To obtain the stationary distribution unconditioned of adapta-
policies can similarly be modeled. Note that the selection of the nexion levelM we assume that the adaptation process converges to a
node to run is typically made using information carried in the currengteady-state distributiop) as described earlier. Hexg, is roughly
state only; thus the computation process retains the Markovian protie long-term fraction of time the adaptation process spends in level
erty.) There are two possible execution times for 4, leading to twél. y can be computed from the transition matrix of the adaptation
possible states at this point, with probabilifiasand 1pa This pro- process and the interval of RTCP reports. Assumpiagletermined,
cess is continued until all the applications end at the same time ithe unconditioned stationary distributiogy, =4 v mjaM YMm-
stant. This is called the regeneration point, after which theNext we derive an expression for the processing delay distribution,
computation process repeats its evolution. Note that the dependearhich gives the probabilities for different values of processing delay
cies in execution times across different nodes can be modeled in thigr an application. This is a powerful result.
framework by introducing additional paths. Although this increase®rocessing Delay distribution: Suppose we wish to determine the
the size of the state space, the method is quite fast and has been ysedbability that the processing delay (PD) of a particular execution
to analyze realistic systems quite efficiently, as demonstrated in thgathm of an application exceeds a vallid_et nodeb be the prede-
results section. cessor to the spacer node on the executionmaithen, Pr{PD of

We now state the following theorem that characterizes thg@ath m >T} = max Pr{PD of path m >T, for all M}]. Note that the

right hand side is maxoperator over all adaptation vectors of which a table-tennis sequence. We are currently exploring systematic
pathmis an element. The expression insiderttaxoperator is the methods to compute task-level distributions.

ratio of the number of times the processing delay of themak- The adaptation level changes were profiled based on experi-
ceedsT to the number of times pathis activated. Recall thagja"" mental results reported in [3], where a video conferencing applica-
represents the probability of a jump of the underlying procéss (- tion VIC [23] is modified to adapt its bit rate based on network
U) to the statei(j, a) conditioned on a jump. If we focus only on the feedback. The steady state distribution for each adaptation level was

jumps to state where nobéegins running, it is clear that: calculated by profiling the adaptation level changes over a period of
PHPD of path m > T}= —number oftimes PD> T 300 seconds (Table 1). Although such a profile should actually be
number of times path m activated R .
M 0 computed over a much larger time window, this is an illustrative ex-
Dz "ia A ample
ija bOdr =t t"PPer ST : . .
= b_ b b The output oAsaPis shown in the last two columns of Table 1.
DZ U Mi For example, in level 3, the excess delay probability is 0.1, i.e. 10%
JES bOJ =1, of the samples miss their deadlines. The last column in Table 1 rep-
Having Computed the processing de|ay of paﬂm the app“_ resents the effective miss probablllty for each |eVe|, by faCtOfing in
cation, the processing delay of the entire application is computed Be probability of the level itself. While the deadlines are missed
Choosing the worst-case processing de|ay among all paths. quite often in level 4, |eVe| 4 itself is much less frequent. Figure 7
Excess delay probability Pre,cess The probability of processing ' archl P
delay exceeding the deadliig is simply computed by setting ool ach2 A |

equal toD in the above expression.

The above analytical framework has been implemented as
software prototype calledsaP AsaPis about 10k lines of C code
and has a Tcl/Tk GUI. Applications can be specified either textually
or by using the Ptolemy [21] front-end. The state space for a give
set of applications is generated using a recursive procedure. Tt
transition probability matriR is computed from the generated state & Adaptation
space. The Jacobi iterative power series method [20] is used to sol' 3 5fps 0'5 6fpls 7,5f2ps 10f3ps 3'515f,‘;s Levels
for the stationary distributior. Several other performance metrics Figure 7. Excess delay probability vs. adaptation levels for
such as nodal wait and resource utilization can also be derived. two architectures. archl 1.3 times as fastas arch2.

Adaptive video application | | |
[Fmodeling Berkeley-MPEG Encoder - --- /- - - RN y---—
on a table-tennis sequence |

Terminal run-time environment modelg

o
Y

o
=
I
i

m adaptation level
%miss constraint

Pr{Delay exceeds 1/frame rate}

o
= o
[l)

15 25

4. Results plots the probability of deadline misses for different adaptation lev-
els on two architecturearchlandarch2 The processing delay in-
We illustrate the use @saPfor system-level design with three dicates sustainable adaptation levels. Thus, for a 10% acceptable
examples. In the first example, the processing delay for an adaptivaiss ratearchlsupports adaptation levels 1 through 3, whiteh2
video application is computed for different adaptation levels. This isupports levels 1 and 2 only.
used to compute the maximum sustainable adaptation level. In the

second example, the variation in the processing delay due to mulfi-Adaptation Level| steady state distributipn Preycess | VX Plaxcess
ple concurrent applications is quantified. This shows how to trade 05 Y) S0 5o =5
off quality and computation between audio and video application i i i
In the third example, the impact of different run-time scheduling] 1 (6 fps) 0.0909 0.0 0.0
policies on the processing delay is studied. In all three cases, we 2 (7.5 fps) 0.2181 0.0 0.0
demonstrate results for a single processor system, although the ama=—3 (10 fps) 0.5454 01 0.05454
lytical framework can also handle multiprocessor systems.

4 (15 fps) 0.0727 0.994 0.0722

4.1. Example 1: Impact of adaptation levels on
processing delay of MPEG

Table 1: (Ex. 1) Adaptation levels (frame rates), steady-state
distribution of adaptation process, excess delay probability.

We use a MPEG video encoder as an example of an adapti\@z Example 2: Impact of adaptation levels on
application, where adaptation levels correspond to frame rates of :

7.5fps, 10 fps, and 15 fps. Figure 6 shows the application and the ep(_rocessmg delay of concurrent applications

ecution time distributions. The execution times for each node were In this experiment, we consider two concurrent applications:
obtained by profiling the Berkeley MPEG-1 video encoder [22] onvideo (adapting between 7.5 fps and 15 fps) and audio (adapting be-
tween PCM and LPC, with a constant period of 20ms). Table 2 sum-

(20, 1.0)) ! . L .
squree (10.1.0) (30,1.0) (10, 1.0) (30, 1.0) marizes the processing delay for different combinations of audio
@) frame _,,~ motion et _p quant —p yje o (2) frame algorithms and video frame rates. This data is used to determine fea-
processing compensation processing . o

v i v sible combinations of adaptation levels. Consider the combination
o = — (10, 1.0) iquant Tezxgc P(;f’b- (LPC, 7.5fps), with audio missing 24% of its deadlines. If a higher
estimation Z)Bec 01 : (30, 1.0) idct* 50 8% frame rate is desired, switching to (LPC, 15fps) leads to an unac-
60 03 T £ 20193 ceptable 46% miss rate for audio. The application manager should
- sink instead step down to (PCM, 15fps). Such statically computed infor-
Figure 6. MPEG video encode. Exec. time dist. in 10 4 cycles.

mation may be used to design “smart” application managers. time scheduling policies also impact the performance of the end-sys-
tem. We propose an analytical framework to estimate the perfor-
(audio, video) | (PCM, 7.5fps) (PCM,15fps) (LPC,7.5fps) (LPC,15fpsimance of a set of concurrent adaptive applications for a particular
i architecture and run-time scheduler. The framework can efficiently
(Deadiines 18cycles) (200, 1330)] (200, 660) (200, 133) (200, 660) compute the exact distribution of the processing delay of applica-
Ploxcess (0.00046,0) (0.01,0)] (0.241,0) (0.462, 0.007}ions. This result can be used to synthesize cost-efficient solutions
PDyyein 107 cycles| (16.2, 344.1 (32.1, 344/1) (146.2, 509.7) (198, 500.9%" systems requiring soft real-time guarantees. We demoqstrate the
. use of this framework to explore the system-level tradeoffs in select-
PDinayin 10° cycles| (240, 486)] (240, 486) (440, 675) (450, 640) ing adaptation levels for applications, designing smart application
Number of states 19856 16070 6457 20767 managers, and in selecting an appropriate run-time environment.
State space time 1393.29 s 856.96 s 122.16 s 144627 s

Analysis time 194853s| 862374 4o403s as21is O- References

Table 2: (Example 2) Performance metrics for audio (PCM, LPC) [1] PDA Buyer's Guide, Pen Computing Magazine, vol. 3, no. 11, July/
August 1996, pp. 84.

and video (7.5fps, 15fps). [2] H. Schulzrinnegt al “RTP: A Transport Protocol for Real-Time Appli-

4.3, Examp|e 3: Impact of run-time schedulers cations”, RFC 1889, Audio/Video Transport WG, Jan. 1996.
[3] I. Busse,et al “Dynamic QoS Control of Multimedia Applications

Table 3 summarizes the processing delay distribution when based on RTP'Computer Communicatiord®:1, Jan. 1996, pp. 49-58.
video is at 15fps and audio uses LPC (LPC 15fps) under three difé] J.-C. Bolot, A. Vega-Garcia, “Control Mechanisms for Packet Audio in

ferent run-time scheduling policies. In FCFS, nodes are set to run tg] ;.hes.lnlfiems?t:\lxljar\(l)iﬁl EE\I,EV(ELOCPF?; ;}%ﬁ%ﬁh ﬁgrilzslt?ig'tigﬂ ngZE-r?q'be dded

the order in which they become “ready”. RMS and EDF are priori- " ggsware with Instruction Cache ModelingGCCAD 95

tized schemes, where nodes with higher priority are selected to ryg) R. K. GuptaCo-synthesis of Hardware and Software for Digital Embed-

first. In RMS, priorities of the nodes are set according to rates. In this ded System«luwer Academic, 1995. o ‘

particular example, audio has a higher priority over video. In EDF|] J- ﬁz‘g'&} SI' "tTthe !”t‘ﬁfg'ay 0(‘; %Unggzgsﬂﬂmatfqggg Gfag;'%”ty
HPRC _ti . « » 1N artitioning",Froc. Codes , Marc , PP. -0.

Fhe pr!ormes are_ compu_teql at run-time; th_e ,nOde whose “due dat?S] J. Kim, K. G. Shin, “Execution Time Analysis of Communicating Tasks

is earliest gets higher priority. Note how shifting from FCFS to RMS' i,y Distributed Systems’|EEE Trans. on Computersol. 45, no. 5,

improves the mean and worst-case delays and probability of dead- May 1996, pp. 572-9.

line misses for audio, while degrading the performance of video. Ud9] Y. Li, J. Antonio, “Estimating the Execution Time Distribution for a

; ; it Task Graph in a Heterogeneous Computing SystBnot. Sixth Heter-
ing EDF seems to be a good compromise for both applications. To ogeneous Computing Works W '97), Switzerland. pp. 172-84.

reitgrate_ the importance of a distributi_on of the processing dela 0] Ti Yen, W. Wolf, “Performance Estimation for Real-time Distributed
against just the worst case value, consider the (LPC, 15fps) case for Embedded SystemsProc. of ICCD 95 pp. 64-69.

RMS scheduler in Table 2. The worst case processing delay is 2901] C. L. Liu, J. W. Layland, “Scheduling Algorithms for Multiprogram-
However, the distribution tells us that the mean is 118, the standard_Ming in a Hard Real Time Environmen§ACM, v20, 1973, pp. 46-61.

c . . . A 2] K. Ramamrithanet al, “Scheduling AlgOI’ith s and Operating Sys-
0,
deviation is 29, and or |y 2% of all samples miss deadlines. This tems Support for Real-Time SystemBroc. of the IEEEvol. 82, no. 1,

much more valuable than knowing that the worst case execution jan 1994, pp. 55-66.

time is 290. Typically, CM applications have constraints such as “n13] D. K.Y. Yau,et al “Adaptive Rate-Controlled Scheduling for Multime-

dia Applications”,Proc. ACM Multimedia’96Boston, MA, Nov. 1996.

Perf. metrics [14] R. Yavatkar, K. Lakshman, “A CPU Scheduling Algorithm for Continu-
Do FCFS RMS EDF ous Media ApplicationsProc. of NOSSDAWpril 1995, pp.223-6.

(audio, video [15] V. Mooneyet al, “Run-Time Scheduler Synthesis for Hardware-Soft-

2 ware Systems and Application to Robot Control DesiQ@ODES 97
Plexcess (0.462,0.007) | (0.0235,057) (0.175,0.227) [16] F. Balarinet al, “Automatic Generation of a Real-Time Operating Sys-

PDave (198.0, 501.0) | (118.4, 685.9) (169.3, 615.7) tem for Embedded System#&oc. of CODES 97.
[17] P. Chouet al, “Software Scheduling in the Co-synthesis of Reactive
o (77.5,54.3) (29.34,94.72) (61.59,58.07 Real-time SystemsPRroc. of DAC June 1994, pp 1-4.
PDmax (450,680) (290,980) (380,840) [18] E. Cinlar,Introduction to Stochastic Process@sentice-Hall, 1975.
[19] S. Rosslintroduction to Probability Mode|sAcademic Press., 1985.
Table 3: Example 3: Impact of run-time scheduling policy on the [20] V. L. Wallace, R. S. Rosenberg, “Markovian Models and Numerical
performance delay of LPC audio and video at 15fps Analysis of Computer System Behavior”, AFIPS Spring Joint Com-

. . . ter Conf. P dings, 141-148, 1966.
more than 10% samples should miss deadlines”. Using worst-ca]ll)::ioei:emsr;htt;;(:)/(/:r?tilelzr;g;e[éig.ebserkeley.edu

leads to very conservative and hence inefficient architecture desigme2] http://bmrc.berkeley.edu/projects/mpeg/mpeg_encode.html
[23] S. McCanne, V. Jacobsomi¢: a flexible framework for packet video”,
5. Conclusions Proc. of ACM Multimedia95, CA, Nov 1995, pp. 511-522.

We have identified system-level design issues for next-genera-
tion networked embedded systems in the context of adaptive appli-
cations and run-time schedulers. Applications adapt in order to
reduce the output bit rate. However, adaptations impose different
processing demands on the end terminal. This variation, in addition
to task-level processing variations, manifests by making the pro-
cessing delay of each application variable and unpredictable. Run-

	CDROM Home Page
	DAC98
	Front Matter
	Table of Contents
	Session Index
	Author Index

