
1. Abstract
This paper presents a design environment for cycle-based systems,
such as microprocessors, that permits modeling of these systems at
various levels, from the abstract system level, through the detailed
RTL level, to an actual implementation. The environment allows the
models to be refined to lower levels in a step-wise manner. The
environment provides the ability to obtain meaningful metrics from
abstract models of a processor’s architecture. This capability
allows design alternatives to be evaluated earlier in the design
cycle, thus eliminating costly redesign and reducing the processor
time to market.

2. Introduction
Currently within the design community there is an increasing
interest in the development of methodologies which reduce the time
to market for a given system under development. One area of
particular concern deals with the development of application
specific processors [1]. With integrated circuits projected to reach
the size of over 100 million transistors per die by the turn of the
century [2], this increasing complexity must be handled properly so
as not to adversely affect processor design time. One way to
address this problem of complexity management is through the use
of a top-down design methodology.

Top-down design methodologies have been used to design digital
hardware design since the early 1970’s [3]. A top-down design
methodology follows a design from the top level, usually the
specification level, of detail down to a detailed implementation.
Model refinement in these methodologies works by having each
level of detail serve as the design specification for the level of detail
immediately below. It is acknowledged that if this hierarchical
chain can be verified from one level of detail to the next, the
resulting behavioral implementation will be “right the first time”
[4]. Being able to develop systems that work on the first pass in a
timely manner helps address the time to market problem.
Unfortunately, there exists a lack of modeling environments which
promote complete top-down design and refinement of processors
from the system level.

This paper presents a timed cycle-based design environment which
is geared toward the development of pipelined datapaths for
processors and other synchronous systems. This cycle-based
environment permits the processor designer to model and

hierarchically refine pipelined processor datapaths from the system
level down through the RTL level until a behavioral implementation
has been developed. This paper focuses on the modeling and
development of pipelined datapaths because most modern
processor architectures contain considerable pipelining. The
remainder of this paper is organized as follows; Section 2 presents a
background of existing processor design environments. Section 3
presents an overview of the new design environment proposed
herein. Section 4 describes the intermediate level modeling
capability of the environment that provides a link between the
abstract system level of modeling and the detailed functional level
model. Finally, Section 5 presents an example of modeling a MIPS
R4000 processor using the environment and Section 6 presents
some conclusions.

3. Existing environments and methods
For a processor design environment to completely support top-
down design and refinement, the environment must have some
means of developing a system level processor model, some means
of refining the system level model to the RTL level, and some
means of providing abstract control to the datapath in order to
obtain meaningful results from the model. At each level of design
detail, different architectural analyses can be performed as detailed
in Figure 1. For instance, at the system level, datapath control is
often provided through the use of random distributions to exercise
all model paths. Resulting analyses which can be performed include
determination of cycle time and critical paths. At the RTL level, the
design is very detailed and control is provided by a explicit control
unit. At the RTL level, all functional and detailed performance
metrics can be obtained. The need for a methodology and
environment which supports the modeling and refinement of both
system level and RTL level datapath models has been expressed in
the literature [5,6].

Existing commercial design methodologies use a variety of tools to
analyze designs at varying levels of detail. For example, Sun
Microsystems uses architecture-specific simulators such as the
UltraSPARC Performance Simulator (UPS) [7] to examine
architectural trade-offs at a functional level. The UPS is a trace-
driven simulator designed to simulate the Ultra-SPARC
microarchitecture at a functional, RTL level of modeling. IBM uses
several modeling tools to satisfy different parts of its design
methodology during the development of its PowerPC line of
processors. IBM examines architectural trade-offs at the functional
level of detail by using the Basic RISC Architecture Timer (BRAT)
[8]. The BRAT tool is an architecture-specific simulator. IBM also
developed processor models using Verilog and their propriety
Design Structure Language (DSL) which were used to analyze
architectural trade-offs at the both the system and functional
levels.The DEC design methodology for the 100 MHz CISC NVAX
processor and the 200 MHz RISC Alpha AXP 21064 processor
[9,10] included the analysis of the processor architecture starting at
the RTL level using Digital’s in-house hardware description

A Top-down Design Environment for Developing Pipelined
Datapaths

Robert McGraw
RAM Laboratories

119 N. El Camino Real, Suite 175
Encinitas,CA 92024

rmcgraw@adnc.com

James H. Aylor
Department of Electrical Engineering

University of Virginia
Charlottesville, VA 22903

jha@virginia.edu

Robert H. Klenke
Department of Electrical Engineering

University of Virginia
Charlottesville, VA 22903
rhk2j@virginia.edu

35th Design Automation Conference ®
Copyright ©1998 ACM

1-58113-049-x-98/0006/$3.50 DAC98 - 06/98 San Francisco, CA USA

language (DECSIM) based simulator. AMD’s Am29000 processor
was modeled at the functional level, using a specifically designed,
C-based architectural language, and at the gate level to guide logic
design [11]. Additional processor design methodologies currently
being used deal with design starting at the functional level [12,13].
These methodologies are similar to bottom-up design strategies in
that they are often based on existing architectures.

Using existing methods, the complete design of a processor cannot
be performed in the same modeling and simulation environment.
The current methodologies require the construction of multiple,
disjoint, processor models at the system level and RTL level [14].
Typically these methodologies create system level models on a
processor-by-processor basis using some type of modeling
language or hardware description language. When a more detailed
model of the processor is required, a new model is developed at the
RTL level. There are several reasons for the creation of multiple
models. First, processor modeling tools above the RTL level are
relatively non-existent. Second, along with the need to address
design refinement issues, existing environments do not have
suitable methods for controlling an abstract datapath to produce
meaningful results.

Several approaches have attempted to address processor and
datapath modeling above the RTL level. Zhang and Grunbacher [5]
have developed a Petri Net based design approach for pipelined
processors. This approach allows for a design to be modeled at the
system level through the use of Petri Nets. In addition, Razouk [6]
has developed a timed Petri Net approach for detailed modeling of
a processor design at the system level. Unfortunately, these
methods lack the ability to link system level modeling
environments to the RTL level of development.

This paper presents a timed-cycle-based design environment which
allows for the modeling of processor datapaths above the RTL
level. In particular, this methodology and environment provides
datapath development constructs and control methods which link
system level and RTL level models together through the use of an
intermediate system/RTL level modeling domain. This
intermediate system/RTL level domain, detailed in the shaded row
of Figure 1, consists of a model of execution and datapath control
methods which allow for the analysis of pipelined datapaths.

4. Environment and Model of Execution
A timed cycle-based processor design environment which
specifically addresses the development of pipelined datapaths has
been constructed. This environment supports system level
processor modeling using abstract datapath constructs and
mechanisms to control the datapaths. This environment addresses
model refinement issues by providing modeling constructs and
abstract control methods which bridge the system/RTL level
modeling gap.

This design environment is based on the ADEPT performance
modeling environment [15]. ADEPT is based on the VHSIC
Hardware Description Language (VHDL) and provides a modeling
environment where high-level models can be refined down to an
implementation in an integrated manner. In the ADEPT
environment, a system model is constructed by interconnecting a
collection ofADEPT modules. The modules model the information
flow, both data and control, through a system. Each ADEPT
module is implemented in VHDL and communicates with other
modules by exchangingtokens which represent data being
transmitted in the system. The ADEPT modeling modules
communicate via a four-state token passing protocol (present,
acknowledged, released, removed). This protocol provides fully
interlocked handshaking between elements. This type of
asynchronous handshaking protocol is needed because the
communications between the existing ADEPT modules is
inherently asynchronous in nature. The VHDL code generated by
ADEPT can be simulated using any IEEE 1076-87 compliant
VHDL simulator. Facilities and programs to collect and analyze
the simulation results are provided as part of the ADEPT system.

4.1 Design Flow and Datapath Control
The timed cycle-based environment augments the existing ADEPT
environment to allow for the modeling of cycle-based systems,
while still including the concept of asynchronous delay for
combinational elements. The design flow using this timed cycle-
based environment takes an instruction set architecture and refines
it using modeling constructs of increasing detail through the RTL
level down to a behavioral implementation. The cycle-based
modeling constructs support datapath modeling at, or above, the
RTL level. In addition, the existing capabilities for mixed-level
modeling in ADEPT [15] allow RTL level models to be refined to
an actual implementation in a step-wise manner. The modeling
levels which are supported by the cycle-based modeling constructs
include an abstract system level, an intermediate system/RTL
level, and an RTL level. These modeling levels are unique in that
they are exercised using different means of datapath control as
more detail is entered into the datapath model. Figure 1 denotes the
modeling levels along with methods for controlling those levels,
means of exercising models developed at those levels, and the
types of functional and performance analyses which can be
performed at each level.

The system level modeling domain supports a very high-level of
abstraction (almost all data and control have been abstracted
away). This particular level of design can be equated to a “block-
diagram” level of design detail. At this particular level, all of the
clocked elements (registers, memories) are required to be present
in the design. These elements receive or source the information
tokens on every cycle. In addition, the combinational elements,
between the clocked elements, are modeled simply as delay
elements. The system level modeling constructs currently included
in the environment include clocked register constructs and various
routing elements which mainly deal with value-less (uninterpreted)
tokens. An example of a system level model of a four-stage
pipeline is shown in Figure 2(a). Datapath routing at this level is

 Design Flow

Modeling
Level

Datapath
Control

Model Input Type of Analyses

System Level Distribution-
based

Distribution-
based

Cycle, setup and hold
times, Critical Path
Analysis

Intermediate
System/RTL

Instruction-based
Control provided
through
reservation
tables or RTL
level
descriptions

Instruction
Trace or
Instruction Mix
Driven

Cycle-time, Critical
Path Analyses,
Latency, Throughput,
Concurrency, Register
Setup and Hold Times,
Determination of
MIPS bounds

Register
Transfer Level
(functional)

Based on
Modeled
Control Unit or
Datapath
Information

Instruction
Trace or
Instruction Mix
Driven

All Performance and
Functional Analyses

Figure 1. Design flow for methodologies

accomplished by using various stochastic methods. At this level,
datapath control is provided by using stochastic distributions to
make routing decisions as tokens arriveat the routing elements.
The main goal of modeling at such a level is to ensure that the
information flow between clocked elements meets the cycle time
requirements.

The RTL level of modeling is much more detailed than the system
modeling level. The RTL level modeling constructs include
various clocked memory and register elements along with
processor routing elements. An example of a RTL level model is
shown in Figure 2(b). These RTL level modeling constructs model
existing hardware elements such as multiplexers, demultiplexers
and combinational logic using a one to one mapping of hardware
signals to tokens or token values. The RTL level constructs are
value-based. The constructs at the RTL modeling level route
tokens based primarily on token values. The control for the RTL
level datapaths is typically provided through some modeled control
unit. In addition to having the responsibility of routing tokens from
register to register, the RTL modeling level unclocked constructs
also have the capability to operate on data (found on the token
color fields).

The intermediate system/RTL level modeling constructs are the
key to the environment in that they provide a link, through
refinement, between the system level of modeling and RTL level of
modeling. This intermediate system/RTL level modeling
constructs and control methods are discussed in Section 4. By
providing constructs which gradually incorporate more detail, the
cycle-based design environment facilitates step-wise refinement
from the system level to the RTL level.

4.2 Models of Execution
In order to communicate between various cycle-based modeling
constructs, each construct must have a consistent model of
execution. The model of execution refers to the way in which the
modeling constructs of this environment communicate with each
other. Because the modeling constructs must actually represent
real systems or elements in a synchronous environment, models of

execution for two types of elements are needed: clocked constructs
(for synchronous elements) and unclocked constructs (for
combinational elements).

Typically, existing processor datapaths can be represented using
pipelined stages in a manner similar to Figure 3 [16]. Such a
pipelined architecture is often implemented through stages of
clocked elements (registers) followed by unclocked elements
(combinational elements) as shown in Figure 3(b). Existing cycle-
based environments typically map this pipeline architecture into
the representation of Figure 3(a). Figure 3(a) shows each pipeline
stage as being comprised of buffer elements followed by some type
of operator element. The concept of buffering of information
between modules is important because it is this buffering which
separates the pipeline stages. In terms of the ADEPT four-way
handshaking protocol, the buffer is the element that acknowledges
the receipt of the token at the next stage of the pipeline. The
operator element is viewed as an element which simply “operates”
on arriving information before passing it on to subsequent pipeline
stages. The operator modules do not buffer or acknowledge the
receipt of information. The operator elements have an
asynchronous delay representing combinational blocks and are
known as the unclocked elements. In addition, the buffer elements
are only allowed to acknowledge receipt of information on cycle
boundaries. These are known as the clocked elements.

The model of execution for the unclocked elements is fairly
straightforward. The unclocked constructs operate via the four-
way interlocking handshake for asynchronous elements. These
constructs map their inputs to their outputs using some type of
control mechanism. This control mechanism may require inputs to
be joined, synchronized, or forked in order to map them to the
outputs. These constructs are also unbuffered in that they do not
generate an acknowledgment upon the receipt of information.
These constructs simply operate on arriving information and pass
the information to the next construct.

The model of execution for clocked constructs is more
complicated. The clocked elements are synchronized by some
clock signal (to identify the cycle boundaries), yet these constructs
must maintain a four-way interlocking handshake so they can
communicate with the unclocked elements. In addition, these
elements must contain buffering in order to acknowledge receipt of
information at the cycle boundaries for each pipeline stage. For
this reason, the model of execution for the clocked elements
handles the four-way handshake, the buffering and
acknowledgment of information, and the synchronizing of the
inputs and outputs with respect to some type of clock signal.

The model of execution for both the unclocked and clocked

Figure 2. 4-stage pipeline (a) system level, (b) intermediate

Clocked Construct

Distribution-based Routing Element

Control Unit (Possibly Distributed)

Clocked Construct

Control-based
Routing Element

fetch

decode execute

(a)

(b)

fetch

decode execute

(control provided in dataflow fashion)

Datapath and
instruction inputs

write back

write back

Figure 3. Dataflow representation of pipeline

R
E
G

R
E
G

R
E
G

clock

T W
P=T+W

Combin-
ational
Logic

Combin-
ational
Logic

BUFFEROPERATOR OPERATOR OPERATOR

(a)

(b)

BUFFER BUFFER

constructs for the cycle-based design environment is demonstrated
in Figure 4 using a single pipeline stage. Figure 4(a) shows the
clocked constructs outputting a token (tk0,tk1) at the cycle
boundary after the propagation delay of the clocked constructs.
This is represented by the token being present at the outputs of the
clocked constructs. Figure 4(b) shows the token (tk1) propagating
through the unclocked constructs after a delay ofX (equal to the
unclocked combinational delay). This results in the token,tk1,
being present at the output of the unclocked construct. Because the
unclocked constructs are unbuffered elements and do not generate
their own acknowledgment, the input of the unclocked constructs
still has token,tk1, present. The tokens remain in these “present”
states until the cycle boundary is reached.

At the cycle boundary (determined when the clock signal is
enabled), the clocked constructs copy the values on their input
tokens to an internal token and finish the four-state handshake on
their inputs. The clocked constructs then place their internal tokens
on their outputs after accounting for the propagation delayonly if
those outputs are clear. This is the normal operating model of
execution for the clocked constructs.

The models of execution for the clocked and unclocked constructs
were verified using several basic architecture configurations. These
basic configurations included linear pipelines, linear pipelines with
single feedback loops, and linear pipelines with multiple feedback
loops. In addition, each model of execution’s ability to handle a
stalled pipeline (due to resource contention issues or multiple cycle
delay stages) has also been examined and verified.

5. Intermediate System/RTL Level Modeling
 This new environment is set apart from the existing environments

in that it provides an intermediate system/RTL level of modeling
constructs which bridges the system level to RTL level modeling
gap for abstract processor datapaths.

5.1 Intermediate System/RTL Level Modeling
Constructs

 Datapaths developed using the intermediate system/RTL level
modeling constructs can provide the designer with a more detailed
datapath analysis than can be found using only a system level
model. While continuing to allow the designer to perform cycle-
time and critical path analyses, datapaths which are developed
using the more detailed intermediate system/RTL level modeling
constructs also allow the designer to examine concurrency issues
and perform latency and throughput analyses. Also, the system/
RTL modeling level can permit the designer to obtain an estimated
value for instructions per second before a detailed design or a
complete compiler for the processor are developed.

The intermediate system/RTL modeling level constructs route the
datapath information based on the desired datapath routes needed
to satisfy a particular instruction. Typically these datapaths will be
exercised using a statistical instruction mix, although an
instruction trace can also be used. Each element of the system/RTL
level datapath receives the active instruction, or instructions, for
the current cycle. Because a modeled control unit is typically
absent at early stages of the design cycle, the datapath control must
be solely based on this instruction and its associated instruction
fields. The current instruction is provided through the use of a
colored information token. The control for the system/RTL level
datapaths is dependent upon this current instruction and provided
in two ways, depending upon the type of datapath and analyses
required by the designer. Control for un-pipelined datapaths is
provided based on the register transfer description for each
instruction. Control for pipelined datapaths is provided using the
reservation tables which describe the stage to stage information
flow for each instruction. The reservation table-based control
methods and modeling constructs are described in Section 5.2.

5.2 Reservation Table Control Methods
The goals of analyzing such a pipelined datapath would be to
obtain latency and throughput information as well as a bounds for
instructions per second for a pipelined execution unit under a
given instruction mix or workload. One way of providing the
control information for pipelined units is to make use of design
methods concerning the design of pipelined execution units. In
order to analyze the operation of pipelined execution units (such as
integer pipelines and floating point units) system designers often
use reservation tables [17,18]. Reservation tables are used to
specify the use of given resources used by a instruction as it
proceeds through the pipeline. Reservation tables can be used to
determine instruction latency, or how long an instruction has to
wait at the “head” of the pipeline before entering without causing
resource contentions. These reservation tables can be used to give
the designer a rough idea of attainable throughput and latency
metrics concerning any pipelined unit.

The system/RTL level modeling constructs allow the designer to
encode these reservation tables in a file. Figure 5 shows the
reservation table for an integer instruction for the four-stage DLX
pipeline of Figure 6[19]. The intermediate system/RTL level
model of the four-stage pipeline is shown in Figure 6. The coded
reservation tables are accessed by the intermediate system/RTL
level routing elements and used to control the pipelined datapaths
on a cycle-by-cycle basis.

The reservation tables are employed at the pipeline’s clocked

Clocked

Clock

Construct
Clocked

Clock

ConstructUnclocked
Construct

pipeline stage boundary

Clocked

Clock

Construct
Clocked

Clock

ConstructUnclocked
Construct

pipeline stage boundary

Clocked

Clock

Construct
Clocked

Clock

ConstructUnclocked
Construct

pipeline stage boundary

token
present

token
present

token
present

presentx ns.

x ns.

tk1 tk0

tk1 tk1

x ns

Figure 4. Model of execution

t1: Cycle boundary + prop delay

t 2: t1 + combinational delay

t 3: 2nd Cycle boundary

(a)

(b)

(c)

Clocked

Clock

Construct
Clocked

Clock

ConstructUnclocked
Construct

pipeline stage boundary

token
present

token
present

x ns.
tk2 tk1

t1: 2nd Cycle boundary + prop delay

(d)

tk2 tk1

token
present
tk2

token

constructs to control instruction initiation within the pipeline. The
pipehead_cyc element, shown in Figure 7, is the clocked element
which has been developed to govern instruction initiations. The
pipehead_cyc modeling construct requires four generic properties:
i_tag, trig_tag, delay, andfilename1. The i_tag property specifies
the token color tag on which the instruction information is
contained. Thedelay property specifies the propagation delay
tokens encounter while passing through the pipehead_cyc element.
Thefilename1 property specifies the file which contains the names
of the coded reservation table data files and reference numbers for
all pipeline reservation tables which are used in the pipeline model.

The pipehead_cyc element is placed at the head of the top-level
pipeline. When instructions arrive at the pipehead_cyc construct,
they are checked for resource conflicts with all resources in the
pipeline. First, the pipeline status reservation table is accessed.
This pipeline status reservation table contains the status
information (stage and cycle markings) for the pipeline referenced
by the pipehead_cyc construct. This pipeline status reservation
table is intersected with the reservation table of the incoming
instruction to determine if a resource contention will occur if that
instruction is initiated. If a resource contention will occur if the
instruction is initiated, then no initiation is made for that cycle and
the instruction is left on the pipehead_cyc element’s input. This
allows the same instruction to be presented on the subsequent
cycle.

The reservation tables are also utilized at the pipeline’s unclocked
routing elements to control the stage-to-stage routing for each
instruction within the pipeline. The unclocked routing units have
their outputs bound (using defined properties and net
interconnections) to different stages of the modeled pipeline.
Tokens arriving at the unclocked elements are routed by accessing
their reservation tables, and identifying the stage(s) to which they
should be routed for that cycle. An example of such a routing
element is the piperoute2 element, which is shown in Figure 8. The
piperoute2 is used to route tokens internal to the pipeline execution
units using reservation tables. This element requires several

generics in order use reservation tables to assist in routing tokens.
The i_tag andfilename1 properties are the same as those found in
the pipehead_cyc element. In addition to these properties, the
piperoute2 element also has output binding properties
Outbindings1 andOutbindings2, amax_inst property, amaxclkcyc
property, apipelength property and acyc_no_tag property. The
max_inst property specifies the maximum number of instructions
to be handled by the pipeline containing this particular element.
The maxclkcyc property specifies the maximum number of cycles
required to complete any instruction. Thepipelength property
specifies the number of stages in the pipeline. Thecyc_no_tag
property specifies the token color tag field which contains the cycle
count for each instruction. TheOutbindings properties specify the
stage connectivity for each output. These properties are arrays
which list the stages which connect to the current stage. For
example, the four-stage DLX pipeline of Figure 6 contains a
piperoute2 construct after its decode stage (stage 2). This routing
element is required because information needs to be routed to the
write back (stage 4) or execution (stage 3) stages after the decode
stage. For this reason, theOutbindings properties of the piperoute2
construct are assigned to stages 3 and 4 respectively. When the
token arrives at the piperoute2 element, its reservation table is
accessed and the token is routed to the output which is referenced
in the reservation table for that cycle.

5.3 Hierarchical Modeling Using Reservation
Tables

In order to facilitate top-down design and refinement, the timed
cycle-based environment has the capability of modeling
hierarchical pipelines using the reservation table control methods.
The control methods developed allow for the insertion of a “low-
level” pipeline into a top-level pipelined datapath.

The pipelined cycle-based constructs were used to model a five-
stage DLX pipeline with multiple execution units. Figure 9 shows
the five-stage DLX pipeline (fetch, decode, execute, memory
access, write-back) where execution unit 2 (Ex-2) represents a
multi-function floating point unit that has its own underlying
reservation table. Ideally, once this pipelined stage has been
designed, it would be desired to hierarchically replace the single
Ex-2 stage in the top-level pipeline with the 3-stage multifunction
pipeline. In addition, it is also necessary to perform all routing at
this “lower-level” by routing this 3-stage pipeline locally using its
own reservation table. The original top-level reservation table is
then altered to reflect the extra cycles spent in the multi-function

cycle
stage 1 2 3 4 5

Fetch X
Decode X X

Ex X
WB X

Coded Reservation Table

i1
1 0 0 0 0
0 1 0 1 0
0 0 1 0 0
0 0 0 0 1

Figure 5. Reservation Table and Coded File for Figure 6

Write Back

Fetch Decode

Execute

Figure 6. Block Diagram of Pipelined Datapath

Figure 7. Pipehead_cyc Modeling Construct

Figure 8. Piperoute2

(3,0)
(4,0)

Property
Assignment
for 4-stage
example

ExP1 ExP2 ExP3

Fetch Decode Ex-I

Ex-2

MA WB

Figure 9. Block diagram for multifunction pipeline operation

Ex-2 unit.

The pipehead_cyc modeling constructs have the capability to
examine all levels of pipeline hierarchy to decide when instruction
initiations can be performed at the head of the top-level pipeline.
By allowing the pipehead_cyc modeling construct at the head of
the top-level pipeline to examine the reservation tables for all
levels of pipeline hierarchy, refined lower-level pipelines can be
simply “plugged in” to the top-level datapath model.

6. Example --- MIPS R4000 Processor
The timed cycle-based modeling environment’s intermediate
system/RTL modeling level has been verified through the use of
several examples. One such example involves the modeling of a
MIPS R-4000 processor [20]. The MIPS R-4000 is a 9-stage
pipelined processor. These stages include: instruction fetch 1,
instruction fetch 2, register fetch, execution, data fetch 1, data fetch
2, tag check and, write back. The execution units used for the
execution pipeline stage include both an single stage integer
execution unit and a floating point unit consisting of 8 pipelined
stages. The MIPS R-4000 was modeled in hierarchical fashion
with separate reservation tables developed for the integer and
floating point execution units.

The reservation tables for both the top-level MIPS DLX pipeline
and the internal pipeline execution unit were developed by hand
for each instruction. During simulation, each modeling element
accesses these reservation tables to determine if an instruction can
be initiated and where information needs to be routed to. The
MIPS R-4000 model was exercised using the SPEC95 benchmarks
[21]. The benchmark instruction traces were obtained by
compiling the SPEC95 source code on a Silicon Graphics MIPS
R4000 machine and outputting the symbolic assembly instruction
trace. This assembly language instruction trace was then mapped
to instruction tokens entering the DLX pipeline. The MIPS R-4000
DLX model was simulated using a Mentor Graphics QuickVHDL
simulator on a Sun Sparc-10 workstation. The simulation showed
that the R-4000 processor executing the SPEC benchmark
tomcatv.f, had a millions of instructions per second (MIPS) value
of 75.76 using a 100 MHz clock. The published performance
rating for the 100 MHz SGI R4000 was 76.5 indicating the abstract
model was useful in obtaining a ballpark performance metric for
millions of instructions per second. The model simulates at 16.4
cycles per minute of CPU time. It should be noted that this model
did not take into account such issues as cache hits and misses and
interrupts. Because this model was constructed at the intermediate
system/RTL modeling level, statistical probabilities were used to
help predict instruction branching. Exact branching values were
not used because this model is an abstract model and does not
contain the detail required to obtain those values. By using
distributions to predict when branches could by taken, the model
was able to use the SPEC benchmark traces in sequence to obtain a
representative workload.

7. Summary and Conclusions
This paper presented a timed cycle-based design environment
which provides a means for modeling and simulating processor
datapaths at high levels of design abstraction. This environment
was made possible by developing modeling constructs and abstract
control methods which facilitate the modeling and control of
processor datapaths above the RTL level. The methods for
controlling the abstract processor datapath models are rooted in
existing processor design methods and have been extended to
assist in exercising meaningful processor models at early stages of
the design. By obtaining meaningful metrics from abstract models
of the processor’s architecture, design decisions can be evaluated

earlier in the design cycle, thus eliminating costly redesign and
reducing the processor time to market.

8. References
[1] Proceedings, First Annual RASSP Conference, August 1994.

[2] Heaton, J., “Simulation - A Key to Smart Design,”. Proceed-
ings, Institution of Electrical Engineers, 1995.

[3] Rose, Charles. “The What and How of Top-Down System
Design” TD Technologies, 1993.

[4] Transcend Promotional Document, TD Technologies, Inc.

[5] Zhang, Q.and H. Grunbacher. “Petri Nets Modeling in Pipe-
lined Microprocessor Design,” Applications of Theory of
Petri Nets, pp. 582-591. 1993.

[6] Razouk, Rami R. “The Use of Petri Nets for Modeling Pipe-
lined Processors,” 25th ACM/IEEE Design Automation Con-
ference. pp. 548-553.

[7] Tremblay, Maturana, Inoue, and Kohn. “A Fast and Flexible
Simulator for Micro-architecture trade-off analysis on Ultra-
Sparc-I,” 32nd Design Automation Conference, 1995. pp. 2-6.

[8] Poursepanj, et al.”The PowerPC 603 Microprocessor: Perfor-
mance Analysis and Design Trade-offs,” IEEE Spring COM-
PCON 1994 pp. 316-323.

[9] Dutton, Todd A. “The Design of the DEC 3000 Model 500
AXP Workstation,” IEEE Digest of Papers, COMPCON,
Spring 1993. pp 449-454.

[10] Peng, Donchin, Yen. “Design Methodology and CAD Tools
for the NVAX Microprocessor,” IEEE International Confer-
ence on Computer Design: VLSI in Computers and Proces-
sors, 1992 pp. 310-313.

[11] “Simulation in the design of the Am29000 microprocessor,”
Electronic Engineering. November 1987. pp. 44-52.

[12] Taylor, Rekow, Radke, and Thompson. “A 100 MHz Floating
Point/ Integer Processor,” IEEE 1990 Custom Integrated Cir-
cuits Conference. pp. 24.5.1-24.5.4.

[13] Narita, Arakawa, Uchiyama, and Kawasaki. “Design Method-
ology for GMicro/500 TRON Microprocessor,” IEEE Interna-
tional Conference on Computer Design: VLSI in Computers
and Processors, 1993 pp. 253-257.

[14] Franke, D., Purvis, M., “Hardware/Software Codesign: A Per-
spective”, 13th International Conference on Software Engi-
neering, May 1991, pp. 344-352.

[15] Klenke, R. H., M. Meyassed, J. H. Aylor, B. W. Johnson, R.
Rao, A. Ghosh, “An Integrated Design Environment for Per-
formance and Dependability Analysis,” Proceedings of the
ACM Design Automation Conference, June 1997 pp. 184-
189.

[16] Kogge, Peter M. The Architecture of Pipelined Computers.
Hemisphere Publishing Corporation, 1981.

[17] Stone, Harold S. High-Performance Computer Architecture.
Addison-Wesley Publishing. 1993.

[18] Hayes, John P. Digital System Design and Microprocessors.
McGraw-Hill, Inc. 1984.

[19] Hennessey, John L. and David A. Patterson. Computer Archi-
tecture: A Quantitative Approach. Morgan Kaufmann, Pub-
lishers, San Francisco, Ca. 1996.

[20] MIPS R-4000 User’s Manual, Silicon Graphics, Inc.

[21] Standard Performance Evaluation Corporation. 1995 Bench-
marks.

	CDROM Home Page
	DAC98
	Front Matter
	Table of Contents
	Session Index
	Author Index

