A Top-down Design Environment for Developing Pipelined
Datapaths

Robert McGraw James H. Aylor Robert H. Klenke
RAM Laboratories Department of Electrical Engineering Department of Electrical Engineering
119 N. El Camino Real, Suite 175 University of Virginia University of Virginia
Encinitas,CA 92024 Charlottesville, VA 22903 Charlottesville, VA 22903
rmcgraw@adnc.com Jjha@virginia.edu rhk2j@virginia.edu
1. Abstract hierarchically refine pipelined processor datapaths from the system

This paper presents a design environment for cycle-based systemle?,vel down through the RTL level until a behavioral implementation
such as microprocessors, that permits modeling of these systems @S been developed. This paper focuses on the modeling and
various levels, from the abstract system level, through the detailecd€velopment of pipelined datapaths because most modern
RTL level, to an actual implementation. The environment allows th@rocessor architectures contain considerable pipelining. The
models to be refined to lower levels in a step-wise manner. The remainder of this paper is organized as follows; Section 2 presents a

environment provides the ability to obtain meaningful metrics frombackground of existing processor design environments. Section 3
abstract models of a processor’s architecture. This capability presents an overview of the new design environment proposed
allows design alternatives to be evaluated earlier in the design ~ erein. Section 4 describes the intermediate level modeling
cycle, thus eliminating costly redesign and reducing the processorcapability of the environment that provides a link between the

time to market. abstract system level of modeling and the detailed functional level
model. Finally, Section 5 presents an example of modeling a MIPS
2. Introduction R4000 processor using the environment and Section 6 presents

Currently within the design community there is an increasings®me conclusions.

interest in the development of methodologies which reduce the ti P :
to market for a given system under development. One arearr?f' EXIStIng environments and methods

particular concern deals with the development of applicatiorfOf & Processor design environment to completely support top-
specific processors [1]. With integrated circuits projected to reacoWn design and refinement, the environment must have some
the size of over 100 million transistors per die by the turn of thén€ans of developing a system level processor model, some means
century [2], this increasing complexity must be handled properly s8f refining the system level model to the RTL level, and some
as not to adversely affect processor design time. One way f§€ans of providing abstract control to the datapath in order to

address this problem of complexity management is through the u§¥tain meaningful results from the model. At each level of design
of a top-down design methodology. detail, different architectural analyses can be performed as detailed

.in Figure 1. For instance, at the system level, datapath control is
Top-down design methodologies have been used to design digit}en provided through the use of random distributions to exercise

hardware design since the early 1970's [3]. A top-down design| model paths. Resulting analyses which can be performed include
methodology follows a design from the top level, usually thegetermination of cycle time and critical paths. At the RTL level, the
specification level, of detail down to a detailed implementationgesign is very detailed and control is provided by a explicit control
Model refinement in these methodologies works by having eacfnit " At the RTL level, all functional and detailed performance
level of detail serve as the design specification for the level of detailetrics can be obtained. The need for a methodology and
immediately below. It is acknowledged that if this hierarchicalgpnyironment which supports the modeling and refinement of both

chai?_ canb bhe \(erifile_d frlom one IeveI_”oL d%rt_]ai' hto ft_he r_1e>g, thesystem level and RTL level datapath models has been expressed in
resulting behavioral implementation will beight the first tim tpe literature [5,6].

[4]. Being able to develop systems that work on the first pass in
timely manner helps address the time to market problemExisting commercial design methodologies use a variety of tools to
Unfortunately, there exists a lack of modeling environments whiclanalyze designs at varying levels of detail. For example, Sun
promote complete top-down design and refinement of processolicrosystems uses architecture-specific simulators such as the
from the system level. UltraSPARC Performance Simulator (UPS) [7] to examine
chitectural trade-offs at a functional level. The UPS is a trace-
riven simulator designed to simulate the Ultra-SPARC
g’&croarchitecture at a functional, RTL level of modeling. IBM uses
aeveral modeling tools to satisfy different parts of its design
methodology during the development of its PowerPC line of
processors. IBM examines architectural trade-offs at the functional
level of detail by using the Basic RISC Architecture Timer (BRAT)
[8]. The BRAT tool is an architecture-specific simulator. IBM also
developed processor models using Verilog and their propriety
Design Structure Language (DSL) which were used to analyze
architectural trade-offs at the both the system and functional
levels.The DEC design methodology for the 100 MHz CISC NVAX
processor and the 200 MHz RISC Alpha AXP 21064 processor
[9,10] included the analysis of the processor architecture starting at
the RTL level using Digital's in-house hardware description

This paper presents a timed cycle-based design environment whi
is geared toward the development of pipelined datapaths fi
processors and other synchronous systems. This cycle-bas
environment permits the processor designer to model an

35" Design Automation Conference ®
Copyright ©1998 ACM
1-58113-049-x-98/0006/$3.50 DAC98 - 06/98 San Francisco, CA USA

Design Flow
Modeling Datapath
Model Input| Type of Analyses
Level Control P yp y
System Level Distribution- Distribution- Cycle, setup and hold
based based times, Critical Path
Analysis

Intermediate Instruction-based| Instruction Cycle-time, Critical
System/RTL Control provided|| Trace or Path Analyses,
through Instruction Mix || Latency, Throughput,
reservation Driven Concurrency, Register
tables or RTL Setup and Hold Times,
level Determination of
descriptions MIPS bounds
Register Based on Instruction All Performance and
Transfer Level Modeled Trace or Functional Analyses
(functional) Control Unit or Instruction Mix
Datapath Driven
Information

Figure 1. Design flow for methodologies

language (DECSIM) based simulator. AMD’s Am29000 processor
was modeled at the functional level, using a specifically designed,
C-based architectural language, and at the gate level to guide logi
design [11]. Additional processor design methodologies currently
being used deal with design starting at the functional level [12,13].
These methodologies are similar to bottom-up design strategies i

that they are often based on existing architectures.

4. Environment and Model of Execution

A timed cycle-based processor design environment which
specifically addresses the development of pipelined datapaths has
been constructed. This environment supports system level
processor modeling using abstract datapath constructs and
mechanisms to control the datapaths. This environment addresses
model refinement issues by providing modeling constructs and
abstract control methods which bridge the system/RTL level
modeling gap.

This design environment is based on the ADEPT performance
modeling environment [15]. ADEPT is based on the VHSIC
Hardware Description Language (VHDL) and provides a modeling
environment where high-level models can be refined down to an
implementation in an integrated manner. In the ADEPT
environment, a system model is constructed by interconnecting a
collection ofADEPT modulesThe modules model the information
flow, both data and control, through a system. Each ADEPT
module is implemented in VHDL and communicates with other
modules by exchangingokens which represent data being
transmitted in the system. The ADEPT modeling modules
communicate via a four-state token passing protocol (present,
acknowledged, released, removed). This protocol provides fully

interlocked handshaking between elements. This type of

@synchronous handshaking protocol is needed because the

communications between the existing ADEPT modules is

inherently asynchronous in nature. The VHDL code generated by
DEPT can be simulated using any IEEE 1076-87 compliant
HDL simulator. Facilities and programs to collect and analyze

the simulation results are provided as part of the ADEPT system.

Using existing methods, the complete design of a processor cannot .

be performed in the same modeling and simulation environment.4.1 Design Flow and Datapath Control

The current methodologies require the construction of multiple, The timed cycle-based environment augments the existing ADEPT
disjoint, processor models at the system level and RTL level [14]. environment to allow for the modeling of cycle-based systems,
Typically these methodologies create system level models on awhile still including the concept of asynchronous delay for
processor-by-processor basis using some type of modelingcombinational elements. The design flow using this timed cycle-
language or hardware description language. When a more detailetbased environment takes an instruction set architecture and refines
model of the processor is required, a new model is developed at thé using modeling constructs of increasing detail through the RTL
RTL level. There are several reasons for the creation of multiplelevel down to a behavioral implementation. The cycle-based
models. First, processor modeling tools above the RTL level aremodeling constructs support datapath modeling at, or above, the
relatively non-existent. Second, along with the need to addressRTL level. In addition, the existing capabilities for mixed-level
design refinement issues, existing environments do not havemodeling in ADEPT [15] allow RTL level models to be refined to
suitable methods for controlling an abstract datapath to producean actual implementation in a step-wise manner. The modeling
meaningful results. levels which are supported by the cycle-based modeling constructs

Several approaches have attempted to address processor ar?'aCIUde an abstract system level, an intermediate S.VS‘e'.m/RTL
datapath modeling above the RTL level. Zhang and Grunbacher [5 evel, and an R.TL Ieve_l. Thgse modeling levels are unique in that
have developed a Petri Net based design approach for pipelined€Y are exercised using different means of datapath control as
processors. This approach allows for a design to be modeled at th8'0"€ detail is entered into the datapath model. Figure 1 denotes the
system level through the use of Petri Nets. In addition, Razouk [6] modeling levels along with methods for controlling those levels,
has developed a timed Petri Net approach for detailed modeling of "€&NnS Of exercising models developed at those levels, and the
a processor design at the system level. Unfortunately, thesdYP€S Of functional and performance analyses which can be
methods lack the ability to link system level modeling performed at each level.

environments to the RTL level of development. The system level modeling domain supports a very high-level of

. .)) : . . abstraction (almost all data and control have been abstracted
This paper presents a timed-cycle-based design environment Whlc@way). This particular level of design can be equated to a “block-

allows for the modeling of processor datapaths above the RTLY. ,,
level. In particular, this methodology and environment provides diagram” level of de5|gn detail. At th's particular _Ievel, all of the
datapath development constructs and control methods which Iink.CIOCI(ecj elements (registers, memories) are required to be present

in the design. These elements receive or source the information
system level and RTL level models together through the use of antokens on gevery cycle. In addition, the combinational elements

intermediate system/RTL level modeling domain. This betw the clocked el i deled simpl del
intermediate system/RTL level domain, detailed in the shaded row etween the clocked elements, areé modeled simply as delay
elements. The system level modeling constructs currently included

of Figure 1, consists of a model of execution and datapath control; . - ; .
methods which allow for the analysis of pipelined datapaths in the environment include clocked register constructs and various
' routing elements which mainly deal with value-less (uninterpreted)

tokens. An example of a system level model of a four-stage
pipeline is shown in Figure 2(a). Datapath routing at this level is

accomplished by using various stochastic methods. At this level,
datapath control is provided by using stochastic distributions to
make routing decisions as tokens arratethe routing elements | |
The main goal of modeling at such a level is to ensure that the | |
information flow between clocked elements meets the cycle time | €)) |

BUFFEROPERATORBUFFER (oo 1 BUFFER OPERATOR

requirements.
decod Rl [Combin{ |R| |[Combin{ |R
S B ——»|E{p-jational Errational [|E|l—p»
G [|Logic G| |[Logic G
] clock M M =

fetch

P
DL
P=T+W (b)

N . Figure 3. Dataflow representation of pipeline
Distribution-based Routing Element - -
(control provided in dataflow fashion) execution for two types of elements are needed: clocked constructs

(@) write back (for synchronous elements) and unclocked constructs (for

combinational elements).

Al Clocked Construct

decode execute

Typically, existing processor datapaths can be represented using
pipelined stages in a manner similar to Figure 3 [16]. Such a
pipelined architecture is often implemented through stages of
clocked elements (registers) followed by unclocked elements
(combinational elements) as shown in Figure 3(b). Existing cycle-

fetch write back

Clocked COI‘IB’[I’ltJCt th based environments typically map this pipeline architecture into
A inst%gign ir%lut the representation of Figure 3(a). Figure 3(a) shows each pipeline
stage as being comprised of buffer elements followed by some type

Control-based - - — of operator element. The concept of buffering of information
|:| Routing Elemenk Control Unit (Possibly DISt”bUte'h) between modules is important because it is this buffering which
(b) separates the pipeline stages. In terms of the ADEPT four-way

Figure 2. 4-stage pipeline (a) system level, (b) intermediate handshaking protocol, the buffer is the element that acknowledges
—) the receipt of the token at the next stage of the pipeline. The
The RTL level of modeling is much more detailed than the system gperator element is viewed as an element which simply “operates”
modeling level. The RTL level modeling constructs include on arriving information before passing it on to subsequent pipeline
various clocked memory and register elements along with stages. The operator modules do not buffer or acknowledge the
processor routing elements. An example of a RTL level model is receipt of information. The operator elements have an
shown in Figure 2(b). These RTL level modeling constructs model agsynchronous delay representing combinational blocks and are
existing hardware elements such as multiplexers, demultiplexersknown as the unclocked elements. In addition, the buffer elements
and combinational logic using a one to one mapping of hardwareare only allowed to acknowledge receipt of information on cycle
signals to tokens or token values. The RTL level constructs arepoundaries. These are known as the clocked elements.
value-based. The constructs at the RTL modeling level route
tokens based primarily on token values. The control for the RTL
level datapaths is typically provided through some modeled control

The model of execution for the unclocked elements is fairly
straightforward. The unclocked constructs operate via the four-

unit. In addition to having the responsibility of routing tokens from way interlocking hQ“qShake for a_synchronous_elements. These
constructs map their inputs to their outputs using some type of

register to register, the RTL modeling level unclocked constructs ; . ' L
control mechanism. This control mechanism may require inputs to

also have the capability to operate on data (found on the tOke%e joined. synchronized, or forked in order to map them to the

color fields). .

]]) outputs. These constructs are also unbuffered in that they do not
The intermediate system/RTL level modeling constructs are thegenerate an acknowledgment upon the receipt of information.
key to the environment in that they provide a link, through These constructs simply operate on arriving information and pass
refinement, between the system level of modeling and RTL level of the information to the next construct.
modeling. This intermediate system/RTL level modeling Th del of . f locked .
constructs and control methods are discussed in Section 4. By' '€ I_mo % '?h exfcit'%n lor clocke conﬁtruc_ts dISb more
providing constructs which gradually incorporate more detail, the cOMPlicated. The clocked elements are synchronized by some

cycle-based design environment facilitates step-wise refinementCloCk signal (to identify the cycle boundaries), yet these constructs
from the system level to the RTL level must maintain a four-way interlocking handshake so they can

communicate with the unclocked elements. In addition, these
4.2 Models of Execution elements must contain buffering in order to acknowledge receipt of
In order to communicate between various cycle-based modelinginformation at the cycle boundaries for each pipeline stage. For
constructs, each construct must have a consistent model ofhiS reason, the model of execution for the clocked elements
execution. The model of execution refers to the way in which the handles the four-way handshake, the buffering and
modeling constructs of this environment communicate with each acknowledgment of information, and the synchronizing of the
other. Because the modeling constructs must actually represeninputs and outputs with respect to some type of clock signal.

real systems or elements in a synchronous environment, models ofhe model of execution for both the unclocked and clocked

- in that it provides an intermediate system/RTL level of modeling
t1: Cycle boundary + prop delay constructs which bridges the system level to RTL level modeling

;A:/ pipelirie stage bound_% gap for abstract processor datapaths.
Slocked Slocked o 5.1 Intermediate System/RTL Level Modeling
| ket Constructs
tko Datapaths developed using the intermediate system/RTL level
Cllock 'Clock modeling constructs can provide the designer with a more detailed
- —— datapath analysis than can be found using only a system level
It2. t+ Cgi?e?i'r?gg%gzl éjo(ﬂﬁgqm model. While continuing to allow the designer to perform cycle-
IA/ | time and critical pat_h ar)alyses, .datapaths which are develo.ped
o Clocked Unclocked O gloclgedt using the more detailed intermediate system/RTL level modeling
O|_| Construt Construct | construgt constructs also allow the designer to examine concurrency issues
token tokem X Ns, -~ token and perform latency and throughput analyses. Also, the system/
resen resen 1
‘?ﬁ%ser}t I i h\\(b)/ e F TClock RTL modeling level can permit the designer to obtain an estimated
Clock ! oc value forinstructions per secontiefore a detailed design or a
t 3: 2nd Cycle bol_und?ry bound complete compiler for the processor are developed.
pipeline stage boundary . . .
|
-« —» The intermediate system/RTL modeling level constructs route the
| Clocked | T Clocked datapath information based on the desired datapath routes needed
Construt %%Cr!g%%? | | Construgt to satisfy a particular instruction. Typically these datapaths will be
| O k2 X NS 1 O exercised using a statistical instruction mix, although an
| instruction trace can also be used. Each element of the system/RTL
! Clock (c) ' Clock level datapath receives the active instruction, or instructions, for
. the current cycle. Because a modeled control unit is typically
+ h
tll' 2nd Cyf,'igekﬁﬂg g?zfgg boﬁﬂ%grde'ay Sbsenlt flit (te)arly gtageshpf the design cyc(ljeZ the data.patrclj control must
—L‘ e solely based on this instruction and its associated instruction
| Clocked Clocked fields. The current instruction is provided through the use of a
|| Construé Construgt_ © colored information token. The control for the system/RTL level
| torléggm datapaths is dependent upon this current instruction and provided
| Bt in two ways, depending upon the type of datapath and analyses
Cllock 'Clock required by the designer. Control for un-pipelined datapaths is
Figure 4. Model of execution provided based on the register transfer description for each

- - - instruction. Control for pipelined datapaths is provided using the
.cons.tructs for t.he cyclg-baseq d‘?s'gn enV|r0n.ment is demonstrate eservation tables which describe the stage to stage information
in Figure 4 using a single pipeline stage. Figure 4(a) shows theflow for each instruction. The reservation table-based control
clocked constructs outputting a toketkQ(tkl) at the cycle methods and modeling constructs are described in Section 5.2.
boundary after the propagation delay of the clocked constructs. .

This is represented by the token being present at the outputs of th®.2 Reservation Table Control Methods

clocked constructs. Figure 4(b) shows the tokkt) propagating The goals of analyzing such a pipelined datapath would be to
through the unclocked constructs after a dela) ¢équal to the obtain latency and throughput information as well as a bounds for
unclocked combinational delay). This results in the tokkmh, instructions per secondor a pipelined execution unit under a
being present at the output of the unclocked construct. Because thgiven instruction mix or workload. One way of providing the
unclocked constructs are unbuffered elements and do not generateontrol information for pipelined units is to make use of design
their own acknowledgment, the input of the unclocked constructs methods concerning the design of pipelined execution units. In
still has tokenikl, present. The tokens remain in these “present” order to analyze the operation of pipelined execution units (such as
states until the cycle boundary is reached. integer pipelines and floating point units) system designers often
. . . use reservation tables [17,18]. Reservation tables are used to
At the cycle boundary (determined when the clock signal is specify the use of given resources used by a instruction as it

enabled), the clocked constructs copy the values on their input o -
tokens to an internal token and finish the four-state handshake orgroceeqls through _the pipeline. Reservation tab_les can be used to
etermine instruction latency, or how long an instruction has to

their inputs. The clocked constructs then place their internal tokens_ . p " . : : :
on their outputs after accounting for the propagation deféyif wait at the “head” of the pipeline before entering without causing
those outputs are clear. This is the normal operating model of
execution for the clocked constructs.

resource contentions. These reservation tables can be used to give
the designer a rough idea of attainable throughput and latency
o dels of tor the clocked and ocked metrics concerning any pipelined unit.

The models of execution for the clocked and unclocked construct . .
were verified using several basic architecture configurations. Thes?aThe system/RTL level r_nodellng co.nstruc.ts allgw the designer to
basic configurations included linear pipelines, linear pipelines with encode _these reservau_on tablt_es in a file. Figure 5 shows the
single feedback loops, and linear pipelines with multiple feedback reservation table for an integer instruction for the four-stage DLX
loops. In addition, each model of execution’s ability to handle a Pipeline of Figure 6[19]. The intermediate system/RTL level
stalled pipeline (due to resource contention issues or multiple cyclemodel of the four-stage pipeline is shown in Figure 6. The coded

delay stages) has also been examined and verified. reservation tables are accessed by the intermediate system/RTL
. . level routing elements and used to control the pipelined datapaths
5. Intermediate System/RTL Level Modeling on a Cyde_ﬁy_cyde basis. PP P

This new environment is set apart from the existing envwonmentsThe reservation tables are employed at the pipeline’s clocked

constructs to control instruction initiation within the pipeline. The generics in order use reservation tables to assist in routing tokens.
pipehead_cyc element, shown in Figure 7, is the clocked elemenfThei_tag andfilenamelproperties are the same as those found in
which has been developed to govern instruction initiations. Thethe pipehead_cyc element. In addition to these properties, the
pipehead_cyc modeling construct requires four generic propertiespiperoute2 element also has output binding properties
i_tag, trig_tag, delay andfilenamel Thei_tag property specifies OuthindingslandOutbindings2 amax_instproperty, amaxclkcyc

the token color tag on which the instruction information is property, apipelengthproperty and ayc_no_tagproperty. The
contained. Thedelay property specifies the propagation delay max_instproperty specifies the maximum number of instructions
tokens encounter while passing through the pipehead_cyc elemento be handled by the pipeline containing this particular element.
Thefilenamelproperty specifies the file which contains the names The maxclkcycproperty specifies the maximum number of cycles
of the coded reservation table data files and reference numbers forequired to complete any instruction. Tipgelength property

all pipeline reservation tables which are used in the pipeline model. specifies the number of stages in the pipeline. @y no_tag

The pipehead_cyc element is placed at the head of the top-IeveProperty specm_es the t_oken color t_ag_fleld Whlch_conta|n§ the cycle
t’count for each instruction. Th@utbindingsproperties specify the

pipeline. When instructions arrive at the pipehead_cyc construc ; tivity h outout. Th i
they are checked for resource conflicts with all resources in theS!@9€ Connectivity for each oulput. These properties are arrays
which list the stages which connect to the current stage. For

pipeline. First, the pipeline status reservation table is accessed. le. the f A DLX pipeli f Ei 6 A
This pipeline status reservation table contains the status€X@mplé, the four-stage PIp€lin€ of Figure b contains a

information (stage and cycle markings) for the pipeline referenced PiPeroute2 construct after its decode stage (stage 2). This routing

by the pipehead_cyc construct. This pipeline status reservationelemem is required because information needs to be routed to the

table is intersected with the reservation table of the incoming Write back (stage 4) or execution (stage 3) stages after the decode
instruction to determine if a resource contention will occur if that stagi. Fct>r this rea_son,dt?mtb;ndlngsgropgrﬂes of tht?[_pul)erwtt]ez "
instruction is initiated. If a resource contention will occur if the CONSrUCt are assigned 1o stages S an respectvely. en the

instruction is initiated, then no initiation is made for that cycle and [°KeN arives at the piperoute2 element, its reservation table is
the instruction is left on the pipehead_cyc elements input. This gccessed and_the token is routed to the output which is referenced
y n the reservation table for that cycle.

allows the same instruction to be presented on the subsequeri

cycle. 5.3 Hierarchical Modeling Using Reservation

The reservation tables are also utilized at the pipeline’s unclocked Tables

routing elements to control the stage-to-stage routing for eachin order to facilitate top-down design and refinement, the timed
instruction within the pipeline. The unclocked routing units have cycle-based environment has the capability of modeling

their outputs bound (using defined properties and net hierarchical pipelines using the reservation table control methods.
interconnections) to different stages of the modeled pipeline. The control methods developed allow for the insertion of a “low-

Tokens arriving at the unclocked elements are routed by accessingevel” pipeline into a top-level pipelined datapath.

their reservation tables, and identifying the stage(s) to which they -)
should be routed for that cycle. An example of such a routing The pipelined cycle-based constructs were used to model a five-
element is the piperoute2 element, which is shown in Figure 8. TheSt29€ DLX pipeline with multiple execution units. Figure 9 shows

piperoute2 is used to route tokens internal to the pipeline executiorne f'Ve'St"%?ebDle(plhpellne (feti.h‘ degct)dze, Eexezcute, memtory
units using reservation tables. This element requires severaficCess, write-bac) where execution unit 2 (Ex-2) represents a
multi-function floating point unit that has its own underlying

e Coded Reservation Table resgrvation table. Ideally,. once this pipglined stage has 'been
%\tﬁe 11 21 31 4| 5 designed, it would be desired to hierarchically replace the single
B i1 Ex-2 stage in the top-level pipeline with the 3-stage multifunction
Fetch 10000 pipeline. In addition, it is also necessary to perform all routing at
Decode X X this “lower-level” by routing this 3-stage pipeline locally using its
Ex X 01010 own reservation table. The original top-level reservation table is
WE % 00100 then altered to reflect the extra cycles spent in the multi-function
00001
Figure 5. Reservation Table and Coded File for Figure 6 piperoute? b
TN N ropert
Execute N cveoro-tag: tea2 580 (3.0) A55|pgnn)1/ent
"] e e (4.0)for 4-stage
| nex_inst: 2 e exampie
mexclkcyc: S /
/\ /\ /\ XXX

Fetch Decode

Figure 8. Pperoute2
Write Back A_
Figure 6. Block Diagram of Pipelined Datapath
Fetch Decode |Ex-l
pipehead_cyc r— == = — 9
e e tag | | WB
¢>m,w out _1 e | A_ MA
dFeLLag: 11‘ ns | Ex-2
e st | |
_BPL EXP2 _ ExP

Figure 7. Pipehead_cyc Modeling Construct Figure 9. Block diagram for multifunction pipeline operation

Ex-2 unit. earlier in the design cycle, thus eliminating costly redesign and

The pipehead_cyc modeling constructs have the capability toreducing the processor time to market.

examine all levels of pipeline hierarchy to decide when instruction 8. References
initiations can be performed at the head of the top-level pipeline. : .

By allowing the pipehead_cyc modeling construct at the head 0f[l] Proceedings, First Annual RASSP Conference, August 1994.
the top-level pipeline to examine the reservation tables for all [2] Heaton, J., “Simulation - A Key to Smart Design,”. Proceed-
levels of pipeline hierarchy, refined lower-level pipelines can be ings, Institution of Electrical Engineers, 1995.

simply “plugged in” to the top-level datapath model. [3] Rose, Charles. “The What and How of Top-Down System

6. Example --- MIPS R4000 Processor pesign TdD TeChn9|°g'|es’ 1993. hnolodi

The timed cycle-based modeling environment's intermediate [4] Transcend Promotional Document, TD Techno olgle.s, Inlc.
system/RTL modeling level has been verified through the use of[5] Zhang, Q.and H. Grunbacher. “Petri Nets Modeling in Pipe-
several examples. One such example involves the modeling of a lined Microprocessor Design,” Applications of Theory of
MIPS R-4000 processor [20]. The MIPS R-4000 is a 9-stage Petri Nets, pp. 582-591. 1993.

pipelined processor. These stages include: instruction fetch 1,[6] Razouk, Rami R. “The Use of Petri Nets for Modeling Pipe-
instruction fetch 2, register fetch, execution, data fetch 1, data fetch lined Processors,” 25th ACM/IEEE Design Automation Con-
2, tag check and, write back. The execution units used for the ference. pp. 548-553.

execution pipeline stage include both an single stage integer7; rremplay, Maturana, Inoue, and Kohn. “A Fast and Flexible
execution unit and a floating point unit consisting of 8 pipelined Simulator for Micro-architecture trade-off analysis on Ultra-
stages. The MIPS R-4000 was modeled in hierarchical fashion Sparc-1,” 32nd Design Automation Conference, 1995. pp. 2-6.

with separate reservation tables developed for the integer and) .,)
floating point execution units. [8] Poursepanj, et al."The PowerPC 603 Microprocessor: Perfor-

) o mance Analysis and Design Trade-offs,” IEEE Spring COM-
The reservation tables for both the top-level MIPS DLX pipeline PCON 1994 pp. 316-323.

and the internal pipeline execution unit were developed by hand “ .
for each instruction. During simulation, each modeling element (9] Dutton, Todd A. “The Design of the DEC 3000 Model 500
AXP Workstation,” IEEE Digest of Papers, COMPCON,

accesses these reservation tables to determine if an instruction can .

be initiated and where information needs to be routed to. The SP'iNg 1993. pp 449-454.

MIPS R-4000 model was exercised using the SPEC95 benchmark$10] Peng, Donchin, Yen. “Design Methodology and CAD Tools
[21]. The benchmark instruction traces were obtained by for the NVAX Microprocessor,” IEEE International Confer-
compiling the SPEC95 source code on a Silicon Graphics MIPS ence on Computer Design: VLSI in Computers and Proces-
R4000 machine and outputting the symbolic assembly instruction sors, 1992 pp. 310-313.

trace. This assembly language instruction trace was then mappegh 1] “Simulation in the design of the Am29000 microprocessor,”
to instruction tokens entering Fhe DLX pipeline. The MIP_S R-4000 Electronic Engineering. November 1987. pp. 44-52.

DLX model was simulated using a Mentor Graphics QuickVHDL [12] Taylor, Rekow, Radke, and Thompson. “A 100 MHz Floating

simulator on a Sun Sparc-10 workstation. The simulation showed d " >
. Point/ Integer Processor,” IEEE 1990 Custom Integrated Cir-
that the R-4000 processor executing the SPEC benchmark cuits Conference. pp. 24.5.1-24.5.4.

tomcatv.f, had a millions of instructions per second (MIPS) value)))]
of 75.76 using a 100 MHz clock. The published performance [13] Narita, Arakawa, Uchiyama, and Kawasaki. “Design Method-
rating for the 100 MHz SGI R4000 was 76.5 indicating the abstract ~ ©0logy for GMicro/500 TRON Microprocessor,” IEEE Interna-
model was useful in obtaining a ballpark performance metric for tional Conference on Computer Design: VLSI in Computers
millions of instructions per second. The model simulates at 16.4 and Processors, 1993 pp. 253-257.

cycles per minute of CPU time. It should be noted that this model[14] Franke, D., Purvis, M., “Hardware/Software Codesign: A Per-
did not take into account such issues as cache hits and misses and spective”, 13th International Conference on Software Engi-
interrupts. Because this model was constructed at the intermediate neering, May 1991, pp. 344-352.

system/RTL modeling level, statistical probabilities were used to [15] Klenke, R. H., M. Meyassed, J. H. Aylor, B. W. Johnson, R.
help predict instruction branching. Exact branching values were Rao. A Ghosh. “An Integratéd Design Environment for Per-
not used because this model is an abstract model and does not form’ance and bependability Analysis," Proceedings of the
contain the detail required to obtain those values. By using ACM Design Automation Conference’June 1997 pp. 184-
distributions to predict when branches could by taken, the model ' ’
was able to use the SPEC benchmark traces in sequence to obtain a

representative workload. [16] Kogge, Peter M. The Architecture of Pipelined Computers.
Hemisphere Publishing Corporation, 1981.
7. Summary and Conclusions [17] Stone, Harold S. High-Performance Computer Architecture.

This paper presented a timed cycle-based design environment Addison-Wesley Publishing. 1993.

which provides a means for modeling and simulating processory1g] Hayes, John P. Digital System Design and Microprocessors.
datapaths at high levels of design abstraction. This environment' ~ \jcGraw-Hill, Inc. 1984.

was made possible by developing modeling constructs and abstra
control methods which facilitate the modeling and control of - o
processor datapaths above the RTL level. The methods for tecture: A Quantltqtlve Approach. Morgan Kaufmann, Pub-
controlling the abstract processor datapath models are rooted in lishers, San Francisco, Ca. 1996.

existing processor design methods and have been extended tf20] MIPS R-4000 User's Manual, Silicon Graphics, Inc.

assist in exercising meaningful processor models at early stages 0f21] Standard Performance Evaluation Corporation. 1995 Bench-
the design. By obtaining meaningful metrics from abstract models marks.

of the processor’s architecture, design decisions can be evaluated

c[t19] Hennessey, John L. and David A. Patterson. Computer Archi-

	CDROM Home Page
	DAC98
	Front Matter
	Table of Contents
	Session Index
	Author Index

