
1. ABSTRACT
Cycle simulators, in-circuit emulators, and hardware accelerators
have made it possible to rapidly model the functionality of large
digital designs. But these techniques provide limited visibility of
internal design nodes, making debugging hard. Simulators run
slowly when all nodes are traced. Emulators provide full visibility
only with limited depth, or with greatly reduced speed. This paper
discusses software techniques for increasing design visibility while
reducing tracing overhead in simulation, and achieving 100% visi-
bility in emulation without reducing speed or compromising depth.

Keywords
Functional simulation, emulation, reconstruction, visibility.

2. INTRODUCTION
It is common to debug large designs with fast simulators “post-mor-
tem.” During simulation, a very large trace file is written, contain-
ing value-changes for every node in the design, or a subsystem
within the design. Upon completion, the designer has rapid access
to the entire simulation history, using a commercial waveform
viewer.

There are several reasons why this architecture is popular:

• Decoupling simulation from analysis speeds analysis.
• Long simulations can be run in the background.
• Expensive simulation licenses can be better managed by a

group of designers, while relatively cheap waveform-viewer

licenses can be purchased for everyone.
• Verilog’s VCD (Value Change Dump) file format [2] has cre-

ated a competitive market for waveform tools, greatly improv-
ing their quality. (Though each waveform vendor also has a
proprietary optimized file format which is generated using PLI
routines [3,10,12,13])

• The same waveform tool can be used with different simulators
(event-driven, cycle-based, gate-optimized, RTL-optimized,
analog, ...) and with emulation.

Performance Issues with Post-Mortem Debugging
The drawback of post-mortem debugging is the performance over-
head of tracing a large number of nodes during simulation. The
resultant VCD files (or vendor-specific optimized format) are very
large; they take a long time to write during simulation, and a long
time to read when debugging.

Depending on the value change density (defined here as the average
number of events per signal per clock edge), a 50,000 cycle simula-
tion of a million gate design can require tens, perhaps hundreds, of
gigabytes. This assumes 64-bit (8 byte) time-stamps, 4-byte signal
values, and no vendor-specific compression. Allowing for an order
of magnitude or so reduction in file size for compression and stor-
age of aggregate signals in one value-change, the file size is still
going to be huge -- hundreds of megabytes to tens of gigabytes.
This I/O bottleneck reduces the benefit of a fast simulator for the
debug phase.

The storage requirement is reduced if two-state data is stored at all
cycle boundaries (samples), rather than using timestamped value-
changes. In thisCycle Format, about 6 gigabytes is required
regardless of value-change density. This is still an awkward file to
maintain, back up, write, and read. In addition, commercial wave-
form tools developed for timing simulations don’t typically accept
this format, and a cumbersome data-expansion and file-translation
process would have to occur in order to debug.

Design
Netlist

Modeling
Engine

Signal Waveform
Tool

User

Trace

List of desired signals

Waveforms

Standard Post-Mortem Debug Architecture

Value Change Density
5% 10% 25% 50%

Disk file size (gigabytes) for 50K samples

300
150

60
30

of 1M nodes, without compression

1%

6

Value
Change
Format

Cycle
Format

Enhanced Visibility and Performance in Functional
Verification by Reconstruction

Joshua Marantz

Ikos Systems, Inc.
josh@ikos.com
1-781-370-1714

230 Third Ave.
4th Floor North

Waltham, MA 02154

35th Design Automation Conference ®
Copyright ©1998 ACM

1-58113-049-x-98/0006/$3.50 DAC98 - 06/98 San Francisco, CA USA

Post Mortem Debugging in Emulation
An in-circuit emulator is a programmable hardware device that
models a user design in the context of atarget system. The target
system may be the exact board for which the chip is intended, or it
may contain modifications to facilitate emulation. The emulator is
usually cabled to the target system as a surrogate for a chip that
may not yet be fabricated.

The target system supplies clock inputs and other stimuli to the
emulator. The emulator must respond to this stimuli inreal time. If
a configured emulator is determined to run at 1Mhz, then it can’t be
allowed to lag behind, or it will miss its inputs and fail.

Commercial emulators can also be used in a mode where the clock
is controlled by a host computer. For the purposes of this discus-
sion, we shall call thishardware-accelerated simulation. For the
moment, we are concerned with real-time, target-system driven
emulation.

Streaming samples of a million signals at 1Mhz into a disk drive is
not practical, so RAM must be used, either in a commercial logic
analyzer or on-board. In either case, 6 gigabytes of RAM is expen-
sive, and difficult to route to all design nodes in real time. Conse-
quently, emulation vendors are forced to compromise on either
sample depth, visibility, or speed. If speed is compromised, then
in-circuit emulation may be impossible due to target-system slow-
down limitations, arising from dynamic logic, timed bus protocols,
etc. If visibility or depth is compromised, then design debugging is
hard.

Visibility Obscured by Optimization
Simulators and emulators may transform the design to one that is
functionally equivalent, but whose intermediate nodes may be
altered or optimized away. The user can either disable these opti-
mizations or lose visibility. Again, performance is pitted against
debugging.

In this paper, we discuss the selection of a subset of nodes for trac-
ing that allows all design nodes to be transparentlyreconstructed on
demand in a commercial waveform tool. Reconstruction allows
modeling engines to optimize designs without compromising visi-
bility. It reduces real-time storage requirements enough to enable
100% visibility in a real-time emulation of a one million gate
design for a time-window of 50,000 samples.

In section 3 we describe the software reconstruction techniques. In
section 4 we discuss reconstruction in the context of functional sim-
ulation. In section 5 we discuss its application to an in-circuit emu-
lator. In section 6 we discuss further work: event-based storage,
reconstruction techniques with regard to timing simulation, and
RTL-based modeling.

3. On-Demand Reconstruction
The premise of reconstruction is that when debugging, designers
may need access toany signal in the design, but will not need
access toall of them. Storing all the signals on disk or in memory
is a waste of time and space. It is better to save a minimal subset of
signals and interpolate the stored results only when the designer
indicates interest in them. If this can be done quickly, the tools pro-
vide an illusion of having traced all nodes without incurring the
overhead.

Using the waveform tool, the designer will find that any signal he
chooses will be available for post-mortem analysis of its history.
However, no designer will want to look at more than a small frac-
tion of the signals in a design. No human can make sense of a mil-
lion waveforms, and no waveform tool can display that quantity of
data. So in all practicality, the enormous storage cost of full visibil-
ity will never be paid in full.

Choosing the Subset
In a digital design, it is simple to choose the subset of signals which
must be traced during simulation or emulation:

• State Outputs (flip-flops, latches, memory)
• Primary Inputs
• Asynchronous Feedback Loops -- one signal in the feedback

path must be traced.
This set of nodes comprises abasis setfrom which all others may
be combinatorially derived. We call this set of nodes thebasis nets.
Armed with a trace of these nets, thebasis trace, the reconstruction
engine can deliver on the promise of full visibility without storing a
full trace.

In large chip designs, we have observed that approximately 10% of
all nodes are state outputs; 100,000 for a million net design. There
are typically on the order of a thousand or fewer primary inputs,
due to pin limitations on most chip packages. Most designs that are
well-suited for fast functional simulation have a relatively small
number of asynchronous feedback loops. To a first approximation,
10% of the design nodes need to be traced. The remaining 90% are
combinational logic outputs that can be reconstructed on demand,
and never stored to disk.

Reconstructing Combinational Logic
To provide an environment in which the combinational logic out-
puts can be reconstructed on demand from an interactive waveform

BA C

A, C

optimization

B = ?

Trace Calculate On Demand

tool, the post-mortem debug architecture is modified:

In this architecture, the waveform tool is linked to areconstruction
enginewith access to the design netlist. When the designer selects
a set of signals for the waveform viewer, a cone of logic is traced
back to the basis nets. A set of equations is constructed from this
cone of logic, and is applied to the stored logic and input traces.
For the schematic above, the equations are:

• D = B & C
• E = D | A
The equation output is sent to the waveform tool for graphical dis-
play. There is no need to save this data on disk. Depending on the
complexity of the logic cone, it might be reconstructed from an in-
memory basis trace faster than it could be retrieved from disk.

Several issues must be addressed to ensure sufficient performance
to maintain the illusion of a full trace.

• The design netlist must be kept in memory to facilitate rapid
construction of logic cones for desired combinational out-
puts. The in-memory design representation must conserve
memory usage to avoid running out of virtual memory on 32-
bit machines when a large design is loaded.

• The design netlist should be loaded quickly to encourage inter-
active use.

• The equation evaluation must be fast to minimize the delay
between a user’s request for a new set of signals and the
appearance of their waveforms in the graphics display. The
evaluation resembles half of a two-phase cycle simulation
algorithm [10]. Hence many optimizations associated with
cycle-based simulators can be applied to reconstruction,
including the use of two-state logic and machine instructions
for logic operations.

If performance is poor, users will avoid using reconstruction, and
will suffer the debugging pain of huge trace files, incomplete visi-
bility, or a reduced number of samples.

Partial Reconstruction
In some cases, the designer may find that recording the entire basis
trace is burdensome, and may wish to focus on one or more design
subsystems. In this case, reconstruction is still very interesting.

By tracing the inputs to a subsystem, as well as the state outputs
and asynchronous feedback points within the subsystem, full visi-
bility within the subsystem can be achieved at a cost that’s much
lower than that of tracing all nodes. In a chip design, subsystem
inputs are not bounded in number like the primary inputs are. How-
ever, the total number of them, in most cases, should still be man-

ageable.

Waveform Tool Integration
The reconstruction engine needs to be very tightly integrated with
the waveform tool. This avoids a potential bottleneck in conveying
the large amount of waveform data for combinational outputs to the
graphics engine. It also avoids a user interface glitch where a user
might have to manually transfer the set of desired signals from the
waveform tool to the reconstruction engine, followed by a disk
write and file reload. If this flow is not transparent to the user, it
shatters the illusion of having traced all design nodes and makes
debugging cumbersome.

Ideally, the waveform tool selected should be one the designer is
already accustomed to using. Otherwise, established debugging
habits must be broken, making the solution less effective. Unfortu-
nately, this requirement is at odds with the tight integration. There
is no standard API for waveform tools.

At the expense of speed, VCD files can transmit waveforms from
the reconstruction engine to most waveform viewers. If the wave-
form tool supports a scripting language such as TCL, the interaction
between the waveform tool and the reconstruction engine can
potentially be hidden, avoiding the UI glitch.

Risks
Aside from performance, the biggest risk in using a reconstruction
engine is that an inconsistency with the modeling engine (simulator
or emulator) could result in incorrect data being displayed. Poten-
tial pitfalls include:

• Behavior of undriven nets
• Behavior of multiply driven nets
• Behavior of temporally undriven tri-state busses
• Behavior of unstable asynchronous feedback loops
When two-state logic is used, the modeling and reconstruction
engines must use the same policy for dealing with these conditions.
For example, if a two-state modeling engine grounds undriven nets
and lets tri-state busses float to 1 when all drivers are off, the recon-
struction engine must do the same thing. Otherwise, the waveform
display may show confusing results, where the Q output of a flop
does not match its D input following a clock edge.

4. RECONSTRUCTION IN FUNCTIONAL
SIMULATION
The main benefit of reconstruction for functional simulation is that
it creates a more favorable speed-visibility curve.

Design
Netlist

Modeling
Engine

Basis Trace

Reconstruction
Engine

Waveform
Tool

User

List of desired signals

Waveforms

Modified Post-Mortem Debug Architecture

Percentage of Signals Traced

Simulation Speed

0% 100%

With Reconstruction

No Reconstruction

Sim Speed vs. Visibility, with & without Reconstruction

In simulators where combinational outputs are optimized away, or
converted to Binary Decision Diagrams [6,9], reconstruction is
required to achieve full visibility, even for a small number of sam-
ples. Reconstruction is thus ideal for cycle simulators. It is partic-
ularly compelling when the simulator transforms the design into a
functionally equivalent one, so that “lost” signals can be recovered
during debug.

However, reconstruction can be easily used for event simulations
without timing. Of course, if the simulator provides multi-valued
logic (e.g. 0, 1, X, Z), then the reconstruction engine will have to
perform equation evaluation using table lookups rather than
machine instructions.

Beyond the reconstruction engine and simulator, a trace-selection
mechanism is needed. It takes a list of interesting subsystems from
the designer (possibly the entire design), finds the appropriate basis
nets, and enables tracing for those nets in the simulator. In Verilog,
this could be implemented via a PLI call and controlled by the user
from the test bench.

Simulation Results
We integrated a reconstruction engine with Cadence Verilog-XL
2.3.3. We tested it using three gate level designs synthesized to a
library of timing-free primitives. The designs have multiple asyn-
chronous clock domains, asynchronous feedback loops, wide multi-
ported RAMs, including asynchronous FIFOs, and include both
latches and flops. We simulated each design four times to deter-
mine how tracing impacts performance:

• No Trace - no signals are traced, no file is saved
• VCD Trace - write standard Value Change Dump file [2]
• VPD Trace - write Virsim’s optimized binary format [11]
• Basis Trace - write cycle-based, compressed binary file with

values for basis nets only.
We used an unloaded Sun Ultra 2/200 with 1 gig of memory, spool-
ing trace files to a file-server over NFS. The simulations fit com-

fortably in physical memory.

The times listed are measured in wall-clock time via the Unix
“time” command. The number of nets given includes the internals
of library elements, which may not be needed for debugging. The
simulation time includes netlist compilation, which is about a

minute. The file sizes given each include space required for design
hierarchy. A network disk was used for all software, design, and
output files.

From this data, we conclude that using the basis trace approach has
a profound impact on trace file size. But simulation speed is very
design and data dependent.

File Size Conclusions
The basis trace files were consistently dramatically smaller than the
VCD and VPD files. This arises from storing fewer signals, and the
use of a two-state cycle-based format rather than value changes. X
and Z values are stored as exceptions.

Simulation Speed Conclusions
In two of the three designs tested, using the reconstruction engine
improved simulation performance. In the 200k net design, the basis
trace simulation ran twice as fast as VCD or VPD. In the 12k net
design, it simulated 30% faster than VCD and 60% faster than
VPD. Some of the speed improvement may be due to the reduced
file system overhead for the smaller files, particularly using net-
work file servers. Another source of speed improvement is the need
to examine the values of about 90% fewer nets. The ratio of 1 basis
net for every 10 nets in the design appears to hold consistently.

In the 320k net design, the basis trace simulation was slower than
the VCD trace. This is a large design with a fairly small number of
vectors. Much of the design is not covered by these vectors, and
remains dormant. This favors an event-based storage approach,
where we are employing a cycle-based mechanism. Thus, while
the basis trace file is smaller than the VPD or VCD files, the ratio is
6:1, rather than the 50:1 or 20:1 that we see in the other designs.

This data dependency is an artifact of the current implementation,
rather than a fundamental limitation of reconstruction. An event-
based basis-trace storage mechanism optimized for four-state logic
would likely yield consistently superior results to VPD and VCD,
both in file size and simulation time.

Waveform Results
We used Summit Design’s Virsim waveform browser, with its opti-
mized VPD trace file, to characterize debug performance. Virsim
was also used with the reconstruction engine and the basis trace file
to compare performance, using a tight API-based integration

When using the basis trace to analyze waveforms, a Netlist data-
base file must be read. The size of the database for the three
designs is given in Table 2. The time to read this file is included in
the basis trace invoke time. The netlist connectivity information is
required by the reconstruction engine to recover values for untraced
nodes on demand.

Data is not included for Virsim displaying data from VCD files
because the it does not read VCD files directly; a translation tool is
used to convert to the vendor’s format.

Several operations were timed, in order to convey a feel for system
performance in typical debug scenarios. The clock nets, busses,
and modules chosen mostly had a medium to high value change

Table 1: Simulation Time (mm:ss) / File Size

Design
25k vectors
200k nets

650 vectors
320k nets

5k vectors
12k nets

File Size
 VCD Trace
 VPD Trace
 Basis Trace

2100 Meg
579 Meg
12 Meg

167 Meg
65 Meg
10 Meg

35 Meg
19 Meg
1 Meg

Simulation Time
 No Trace
 VCD Trace
 VPD Trace
 Basis Trace

16:00
54:00
61:00
30:00

4:30
6:58
14:17
11:01

0:27
1:08
1:40
0:54

Number Basis Nets 22,000 39,500 950

density, although this was not measured.

From this we conclude that there is comparable performance
between a debug environment where all signals are traced in a large
VPD file, compared to reading a smaller basis trace file and recon-
structing the combinational outputs. Which method is faster is
dependent on the number of equations that must be evaluated in
order to reconstruct the desired nets, locality of reference within the
large trace file, etc.

For large designs, basis-trace invocation time is penalized because
of the netlist database read step. The cost of this is justified when
the number of vectors is large, or when multiple simulation runs are
debugged in the context of a single netlist revision.

The memory footprint data was noted after all the operations in
Table 2. This verifies that holding the design netlist in memory is
not problematic.

The main benefits of reconstruction in simulation are:

• It can increase simulation performance without reducing visi-
bility (or increase visibility with minimal speed loss.)

• It creates dramatically smaller trace files.

5. RECONSTRUCTION IN EMULATION
Commercial emulators today offer the user several choices for
design-node visibility:

• Most emulators allow a probe-set of 1k-16k nodes for 10k-
100k samples using external or internal logic analyzers [4,
7,8]. The probe-set is hard to choose prior to going “in cir-
cuit”. When a problem is detected, it may be hard to debug if

you didn’t choose wisely. Re-running the test may prove diffi-
cult if the erroneous behavior was due to a combination of
internal state and real world stimulus that is not easily repeat-
able.

• Some emulators provide a mechanism for retrieving the value
of all nodes for one sample by using shadow registers and a
“readback” feature available on some FPGAs [8,14]. It is
often difficult to debug problems from a single snapshot. You
can answer “What?” but not “Why?”

• Record all nodes for all time by slowing the emulator to
reduce bandwidth requirements to bulk storage. It is unlikely
that such a configuration would run fast enough to respond to a
target system, so we label thissimulation acceleration.

• Some emulators allow rapid reconfiguration of the probe-set,
without taking the emulator out of circuit. This is convenient,
but you still may have the wrong set of probes selected when
real-world stimulus causes erroneous behavior, and you may
not get a second chance. You cannot rewind the real world.

Why is 100% Visibility in Emulation Hard?
The fundamental limitation of visibility in emulation isband-
width. Consider an emulation of a million gate design, running at
1Mhz. Assuming that only 2-state values are recorded on clock
edges, brute force 100% visibility of a 50ms (50,000 samples)
snapshot would require substantial resources:

The high storage requirement (6.25 gigabytes) makes it impractical
to satisfy with fast RAM. The high bandwidth requirement makes
it difficult to transmit to a disk in real time. Recall that the emulator
cannot be allowed to pause at any time for saving data because it
must respond in real time to an external clock.

Using the reconstruction engine cuts down the nets we need to trace
by 90%, reducing the trace memory requirement to 625 megabytes.
This is a more manageable quantity of memory to distribute in an
emulator box.

The bandwidth requirement is also cut down by 90% to 100 giga-
bits/sec. This can be spread across the emulation FPGAs or proces-
sors,

There are ways to further reduce the fast RAM requirements with-
out compromising visibility, depth, or emulation speed. They are
beyond the scope of this paper.

Limitations
Thanks to reconstruction, visibility of all nodes in a real-time emu-
lation is possible. But the sample depth available is still limited by
the depth of the trace memory in the logic analyzer.

6. FUTURE WORK

Experiment with Event-based Storage Mechanism
The results obtained using the two-state optimized cycle-storage
mechanism indicated uniformly superior file-size, but simulation

Table 2: Waveform Analysis Speed

Design
25k vectors
200k nets

650k vectors
320k nets

5k vectors
12k nets

Invoke Time
 VPD Trace
 Basis Trace

13 sec
30 sec

22 sec
40 sec

10 sec
7 sec

Netlist DB file size 25 Meg 30 Meg 2 Meg

Add 3-4 clock nets
 VPD Trace
 Basis Trace

12 sec
3 sec

1 sec
3 sec

1 sec
1 sec

Add 32-bit bus
 VPD Trace
 Basis Trace

1 sec
1 sec

1 sec
1 sec

1 sec
1 sec

Add 2-3k nets
 VPD Trace
 Basis Trace

27 sec
22 sec

13 sec
20 sec

Add 5-10k nets
 VPD Trace
 Basis Trace

28 sec
47 sec

65 sec
11 sec

22 sec
15 sec

Memory Footprint
 VPD Trace
 Basis Trace

118 Meg
115 Meg

120 Meg
114 Meg

47 Meg
52 Meg Storage 106

nodes 50ms 1Mhz×× 5 1010
bits×= =

Bandwidth 106
nodes 1Mhz× 1012

bits sec⁄= =

speed has proved more data dependent. An event-based storage
mechanism should be incorporated into the basis trace and recon-
struction engine to see the impact on simulation speed and file size
over a wide range of value change densities and a predominance of
4-state logic. We believe that this will result in a consistent speed
and file-size advantage over a full VCD or VPD trace.

Reconstruction with RTL Modeling Engines
There are several species of RTL modeling engines. The first is
based on direct compilation or interpretation, where the RTL code
is compiled to C, native code, p-code, or emulation processor
instructions [7]. The second is compile-to-gates, where a fast syn-
thesis engine is used to translate the RTL description to a gate-level
description with a translation table between RTL names and gate
names.

In compile-to-gates, the reconstruction engine can be used with lit-
tle modification. A translation table should be used in the wave-
form viewer so that the user is presented with familiar design
names.

To support direct compilation, the reconstruction engine could use a
Control Data Flow Graph in place of the logic cone to generate the
equation list for the desired nodes. This graph can be used prior to
simulation to enumerate the basis nets. Alternatively, with the extra
semantic knowledge available from an RTL flow analysis, a smaller
basis set can potentially be found, offering further reductions in
trace overhead [5].

Timing Simulation
Adding timing capabilities to the reconstruction engine is not pro-
hibitively complex, although it’s not clear whether the result would
be fast enough to be usable interactively.

In a timing simulation that includes back-annotated net delays from
layout, state elements will all change when their clock edge arrives,
and each state element may see its clock edge at a slightly different
time. A timing accurate waveform display will need to reflect this.

Consequently, the basis trace would have to be value-change based,
rather than cycle based. As we have noted above, this approach
may prove superior in any case.

The equation-list would need to be augmented with a delay map
from the basis nets to the user’s desired combinational outputs.
This would allow reconstruction to report the correct transition
times for each signal to the waveform viewer.

If the user requests waveforms for a large number of signals simul-
taneously, it might be prohibitively slow to evaluate all equations
every time any state element transitions. We may then want to par-
tition the logic cone in some fashion, triggering the evaluation of
each a given partition when any of its state inputs change. This
selective trace methodology [1] is another step along the spectrum
from pure cycle-based simulation to pure event-based simulation.

The question of whether the end result of these changes will be fast
enough may be superseded by the question of whether designers
wish to debug functionality in a timing simulation environment.

7. CONCLUSION
The reconstruction engine presented here provides an opportunity
to dramatically improve the debugging environment for both fast
functional simulation and emulation. Simulation users can see
more of their design with reduced tracing overhead. Emulation
users can achieve 100% visibility with significant depth in a real-
time emulation. This represents an opportunity for unprecedented
debugging power of hard-to-reproduce system-level problems.

8. ACKNOWLEDGEMENTS
Thanks to Jason Campbell, Pat Julik, and crew at Summit Design
for providing the tight integration path into Virsim and for exten-
sive support and cooperation. Thanks to Charley Selvidge, Mark
Seneski, and others at Ikos for ideas, infrastructure, test cases, and
draft review.

9. REFERENCES
[1] M. A. d’Abreu, “Gate Level Simulation”, IEEE Design and

Test, pp 63-71, December, 1985A.L. Sangiovanni-Vincentelli
et al., “Verification of Electronic Systems”, 33rd DAC, pp
106-111, 1996

[2] Cadence Design Systems Inc., “Verilog-XL Reference Man-
ual”, Version 2.3, 1995

[3] Design Acceleration Inc., Signalscan Database, http://
www.designacc.com/Products/sst2db/sst2db.html

[4] Ikos Systems Inc, VirtuaLogic Data Sheet, http://
www.ikos.com/products/vsli/index.html

[5] D. Kirovski, M. Potkonjak, “A Quantitative Approach to Func-
tional Debugging”, ICCAD 1997, pp 170-173

[6] P.C. McGeer, et al, “Fast Discrete Function Evaluation using
Decision Diagrams”, ICCAD 1995, pp 402-407

[7] Quickturn Design Systems, Cobalt Data Sheet, http://
www.quickturn.com/products/cobalt.htm

[8] Quickturn System Realizer Data Sheet, http://www.quick-
turn.com/products/systemrealizer.htm

[9] A.L. Sangiovanni-Vincentelli et al., “Verification of Electronic
Systems”, 33rd DAC, pp 106-111, 1996

[10] Speedsim Inc, Cycle simulation technology, http://
www.speedsim.com/technology/cbs.htm

[11] Summit Design Inc, Virsim Data Sheet, http://www.sd.com/
products/verification/virsim.html

[12] Systems Science Inc, Magellan Data Sheet, http://www.sys-
tems.com/

[13] Veritools, Undertow Data Sheet, http://www.veritools-
web.com/towv.htm

[14] XILINX, Inc., “The XC4000 Data Book”, Aug. 1992

	CDROM Home Page
	DAC98
	Front Matter
	Table of Contents
	Session Index
	Author Index

