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Abstract
Memory modules dominate the cost, performance, and power
of embedded systems that process multidimensional signals,
typically present in image and video processing. Therefore,
studying the impact of parallelism on memory size is crucial
for trading off system performance against area cost, to
enable intelligent system partitioning and exploration. We
propose a memory size estimation method for algorithmic
specifications containing multidimensional arrays and
parallel constructs, intended as part of a high-level
partitioning and exploration methodology. The system
designer can trade-off estimation accuracy for increased run
time. We present the results of our estimation approach on a
number of image and video processing kernels. and discuss
some preliminary results on the influence of parallelism on
storage requirement.

1 Introduction

In the design of embedded HW/SW systems, the high level
design space exploration step is critical for obtaining a cost
effective implementation. Decisions at this level have the
highest impact on the final result. The step of partitioning the
initial specification into HW/SW, as well as between
different processing units, together with decisions regarding
the parallelism inherent in such designs, allow trading-off the
system performance against cost. To drive this process, a set
of fast estimation tools is crucial.

Varying the code parallelism by means of code
transformations [2] (e.g., instruction reordering, loop
splitting, fusion, fission, interchanging, skewing [14D, or by
assigning code portions to different partitions, may result in
significant performance variations for the system
implementation. More instructions executed in parallel lead
usually to higher performance, but hardware cost may grow
substantially.

In the algorithmic specifications of image and video
applications the multidimensional variables (signals) are the
main data structures. These large arrays of signals have to be
stored in on-chip and off-chip memories. In such
applications, memory often proves to be the most important
hardware resource. Therefore it is important to be able to
predict after a set of (parallelizing) transformations and
partitioning steps the memory requirements for every design
alternative.

We propose a method for memory size estimation,
targeting specifications with multidimensional arrays,
containing both instruction level (fine-grain) and coarse-.This research is partially supported by NSF Grant MIP-9708067.

1092-6100/98 $10.00 (Q 1998 IEEE

grain parallelism [2], [14]. The impact of parallelism on
memory size has not been previously studied in a consistent
way. Together with tools for estimating the area of functional
units and the performance of the design, our memory
estimation approach can be used in a high level exploration
methodology to trade-off performance against system cost.

Our paper is organized as follows. Section 2 briefly
reviews some major results obtained in the field of memory
estimation. Section 3 defines the memory size estimation
problem. Our approach is presented in Section 4. In Section 5
we discuss the influence of parallelism on memory size. Our
experimental results are summarized in Section 6, followed
by the conclusions and our future directions of research in
Section 7.

2 Previous work

One of the earliest approaches to memory estimation is the
left edge algorithm [5], which assigns the scalar variables to
registers. This approach is not suited for multidimensional
signal processing applications, due to the prohibitive
computational effort.

One of the earliest approaches of handling arrays of
signals is based on clustering the arrays into memory modules
such that a cost function is minimized [9]. The possibility of
signals with disjoint life times to share common storage
locations is however ignored, the resulting memory
requirements often significantly exceeding the actual storage
needed. More recently, [10] proposed a more refined array
clustering, along with a technique for binding groups of
arrays to memory modules drawn from a given library.
However, it seems that the technique does not perform in-
place mapping within an array.

Approaches which deal with large multidimensional
arrays operate on non-procedural [I] and stream models [7].
Non-procedural specifications do not have enough
information to estimate accurately the memory size, since by
changing the instruction sequence, large memory variations
are produced. For example, assuming the code in Figure la is
non-procedural, the memory size could vary between 100 and
150 locations, as in Figure lb. [13] uses a data-flow oriented
view, as [1], but has good results for simpler specifications
(constant loop bounds, simpler indices). [12] modified the
loop hierarchy and the execution sequence ofthe source code,
by placing polyhedrons of signals derived from the operands
in a common space and determining an ordering vector in that
space. None of the above techniques addresses parallel
specifications.
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Other memory management approaches use the access
frequencies to balance the port usage [11], and to optimize the
partitioning between on-chip scratch-pad and cache-accessed
memories [6]. They do not consider the memory size though.

3 The memory estimation problem

The problem of memory size estimation is, given an input
algorithmic specification containing multidimensional
arrays, predict what is the number of memory locations
necessary to satisfy the storage requirements of the system.

The ability to predict the memory characteristics of
behavioral specifications without synthesizing them is vital to
producing high quality designs with reasonable turnaround.
During the HW ISW partitioning and design space exploration
phase the memory size varies considerably. For example, in
Figure 1, by assigning the second and third loop to different
HW/SW partitions, the memory requirement changes by 50%
(we assume that array a is no longer needed and can be
overwritten). Here the production of the array b increases the
memory by 50, without consuming values. On the other hand,
the loop producing array c consumes 100 values (2 per
iteration). Thus, it is beneficial to produce the array c earlier,
and reuse the memory space made available by array a. By
producing band c in parallel, the memory requirement is 100.

memory requirement = 100

b) Partitioned code.memory requirement = 150

a) Initial code

Figure 1. Memory size variation during
partitioning/parallelization

Our estimation approach considers such reuse of space,
and gives a fast estimate of the memory size. To allow High-
Level design decisions, it is very important to provide good
memory size estimates with reasonable computation effort,
without having to perform complete memory assignment for
each design alternative. During synthesis, w~en the memory
assignment is done, it is necessary to make sure that different
arrays (or parts of arrays) with non-overlapping lifetimes
share the same space. The work in [3] addresses this problem,
obtaining results close to optimal. Of course, by increasing
sharing between different arrays, the addressing becomes
more complex, but in the case of large arrays, it is worth
increasing the cost of the addressing unit in order to reduce
the memory size.

Our memory size estimation approach uses elements of
the polyhedral data-flow analysis model introduced in [1],
with the following major differences:
(1) The input specifications may contain explicit constructs
for parallel execution. This represents a significant extension
required for design space exploration, and is not supported by
any of the previous memory estimation lallocation
approaches mentioned in Section 2.
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(2) The input specifications are interpreted procedurally, thus
considering the operation ordering consistent with the source
code. Most of the previous approaches operated on non-
procedural specifications, but in practice a large segment of
embedded applications market (e.g., DSPStone benchmark
suite [15]) operates on procedural descriptions, so we
consider it is necessary to accommodate also these
methodologies. .

Our memory size estimation tool handles specifications
containing nested loops having affine boundaries. The
operands can be multidimensional signals with (complex)
affine indices. The parallelism is explicitly described by
means of cobegin-coend and forall constructs. This
parallelism could be described explicitly by the user in the
input specification, or could be generated through
parallelizing transformations on procedural code. We assume
the input has the single-assignment property (this could be
generated through a preprocessing step).

The output of our memory estimation tool is a range of
the memory size, defined by a lower- and upper-bound. The
predicted memory size for the input algorithm lies within this
range, and in most of the cases it is close to the lower-bound
(see the experiments). Thus, we see the lower bound as a
prediction of the expected memory size, while the upper
bound gives an idea of the accuracy of the prediction (i.e., the
error margin). When the two bounds are equal, an "exact"
memory size evaluation is achieved (by exact we mean the
best that can be achieved with the information available at
this step, without doing the actual memory assignment). In
order to handle complex specifications, we provide a
mechanism to trade-off the accuracy of predicting Utestorage
range against the computational effort.

4 Memory estimation approach
Our memory estimation approach (called MemoRex) has two
parts. Starting from a high level description which may
contain also parallel constructs, the Memory Behavior
Analysis (MBA) phase analyzes the memory size variation,
by approximating the memory trace, as shown in Figure 2,
using a covering bounding area. Then, the Memory Size
Prediction (MSP) computes the memory size range, which is
the output of the estimator. The backward dotted arrow in
Figure 2 shows that the accuracy can be increased by
subsequent passes.

The memory trace represents the size of the occupied
storage in each logical time step during the execution of the
input algorithm. When dealing with complex specifications,
we do not determine the exact memory trace (the continuous
line in the graphic from Figure 2) due to the high
computational effort r~quired. A bounding area
encompassing the memory trace -the shaded rectangles from
the graphic in Figure 2 - is determined instead.

The storage requirement of an input specification is
obviously the peak of the (continuous) trace. When the
memory trace cannot be determined exactly. the
approximating bounding area can provide the lower- and
upper- bounds of the trace peak. This range of the memory
requirement represents the result of our estimation tool.

The MemoRex algorithm (Figure 3) has five steps.
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Employing the terminology introduced in [12], the first step
computes the number of array elements produced by each
definition domain and consumed by each operand domain.
The definition/operand domains are the array references in
the left/right hand side of the assignments.

Memory Behavior Analysis

I. Perform data-dependence

analysis

2. Compute memory size

between loop nests

3. Detennine bounding

area for the memory trace
Memory Size Prediction

4. Determine memory size
range

Accuracy increase

5. Ifmore accuracy needed,
split the critical rectangles

and goto step I

Figure 3. The
MemoRex algorithm

for 1=1to 10 do

a[I]=I;
forI=1 to 10 do

b[l]=a[l]+a[lI-I];
for 1=1 to 5 do

c[l]=a[2 *1]+b[2*I]+

b[2*I+ I];

Figure 2. Flow of the MemoRex Figure 4. Illustrative
algorithm example

Step 2 determines the occupied memory size at the
boundaries between the loop nests. For instance, such an
imaginary boundary succeeds the two nested loops and
precedes the [oral! loop in the code from Figure 2. In fact,
Step 2 determines a set of points on the memory trace. To
determine or approximate the unkn9wn parts of the trace,
Step 3 determines a set of covering bounding rectangles,
represented as shaded rectangles in Figure 2. This is the
output of the Memory Behavior Analysis part of our
algorithm. Based on the memory behavior, Step 4
approximates the trace peak, determining the range for the
memory requirement.

Step 5 refines the bounding area of the memory trace by
breaking up the larger rectangles into smaller ones. The
resulting bounding area approximates more accurately the
shape of the memory trace, and the resulting range for the
memory requirement will get narrower.

In the following, we will employ for illustration the
simple code in Figure 4.

4.1 Data-dependence analysis
By studying the dependence relations between the array
references in the code, this step determines the number of
array elements produced (born) or consumed (dying) during
each assignment.

The number of array elements produced by an
assignment is given by the size of the corresponding
definitiondomains. In the illustrative example, the number of
array elements produced in the three loops are Card{al/J.
l<=I<=JOj = 10. Card{bl/j. l<=I<=1Oj = 10, and

for 1=0 to 99 do

for J=O to 99 do

cobegin

a[I,J]=b[J,I+5];

coend;
forail k=1 to 100 do

f uu_-_u_~,

11 Memory Behavior Analysis,,,,,,,,,,,,,,,,,,
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CardIel/I. 1<=1<=5j = 5. respectively. In general though,
the size of signal domains is more difficult to compute, for
instance, when handling array references within the scope of
loop nests and conditions: our tool employs the algorithm
which determines the size of linearly bounded lattices,
described in [I].

On the other hand, the number of array elements
consumed by an operand domain, is not always equal to the
size of the operand domain, as some of the array elements
may belong also to other operands from subsequent
assignments. For instance, only two array elements are
consumed by the operand domain alII (i.e., allJ. al9]) and
three other array elements (allJ. al3J. al5]) by the operand
domain al 11-/J, as the other a array elements of even index
are read also by the operand al2*/J in the third loop.

In general, the computation of dying signals is more
complicated when dealing with loop nests and conditions. We
perform the computation employing a symbolic time function
for each assignment, which characterizes (in a closed form
formula) when each array element is read, thus allowing us to
find the last read of each array element, i.e., the domain
consuming that element.

4.2 Computing the memory size between loop nests
For each nest of loops, the total number of memory locations
produced/consumed is the sum of the locations produced/
consumed in each domain within that loop nest. The memory
size after executing a loop nest is the sum of the memory size
at the beginning of the loop nest, and the number of array
elements produced minus the number of array elements
consumed within the loop nest:

mem(end_loop) = mem(begin_loop) + sum(prod's) - sum(consmp's)

As shown in Figure 5a, the memory size for our example is 0
at the beginning of the first loop, 10 after the execution of the
first loop (because this loop produces 10 array elements and
does not consume any), and 15 at the end of the second loop,
as to new array elements are produced (bl 1..10]), while the
five odd-index array elements a are no longer necessary.

4.3 Detennining the bounding rectangles
Based on the inform3ation already acquired in Steps 1 and 2,
our algorithm constructs bounding rectangles for each loop
nest in the specification. These rectangles are built such that
they cover the memory trace (see Figure 5b). Thus, they
characterize the behavior of the memory size for the portion
of code under analysis.

Occupied
mem,jl
size

15
10

5
!22tL!L

10

Figure 5. Memory estimation
flow for the illustrative

exam ple - loop I loop "1.loop 3 ~ti=
c)

We illustrate the construction of the bounding
rectangles for the second loop in Figure 4. It is known from
Step I that 10 array elements (bl 1..1O})are produced, while
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the operand domain all) consumes 2 array elements, and the
operand domain alII-I) consumes 3. Since at most 7 out of
the 10assignments may not consume any values (the other 3
will consume at least I value), the maximum storage
variation occurs, if the first 7 assignments generate one new
value each, without consuming any, and all the consumptions
occur later. Knowing from Step 2 that the memory size is 10
at the beginning of loop 2, it follows that the upper-bound of
the memory size for this loop is 10+7= 17 locations. With
similar reasoning, one can conclude that during the execution
of this loop, the memory trace could not go below 8 locations
(see Figure 5c). Thus, the bounding rectangle for this loop has
the upper edge 17, and lower edge 8.

4.4 Determining the memory size range
The memory requirement for a specification is the peak of the
memory trace. Since the peak of the trace is contained within
the bounding rectangles (along with the whole memory
trace), the highest point among all the bounding rectangles
represents an upper-bound of the memory requirement. For
our illustrative example, the memory requirement will not
exceed 17 - the highest upper-edge of the bounding rectangles
(see Figure 5c).

Since the memory size at the boundaries between the
loop nests is known, the memory requirement will be at least
the maximum of these values. The maximum memory size at
the boundary points thus represents the lower-bound of the
memory requirement. For our illustrative example, the
memory requirement is higher than IS (the lower dotted line
in Figure 5c), which is the maximum of the values at the
boundaries of the three loops (Figure Sa). Therefore, the
actual memory requirement will be in the range [15..17]. This
memory requirement range represents the result of the first
pass of the algorithm. The last step of our algorithm decides
whether a more accurate approximation is necessary, in such
case initiating an additional pass.
4.5 Improving the estimation accuracy
If the current estimation accuracy is not satisfactory, for each
loop nest whose rectangle may contain the memory trace
peak (the uppecedge higher than the previous memory
lower-bound), a split of the iteration space is performed (by
gradually splitting the range of the iterators, thus fissioning
the loop nest). The critical rectangles corresponding to these
loop nests will be replaced in a subsequent pass of the
estimation algorithm by two new rectangles covering a
smaller area (Figure 6a) and, therefore, following more
accurately the actual memory trace, thus yielding a more
accurate memory behavior analysis, and a more exact
estimation. This process is iteratively repeated until a
convenient estimation accuracy is reached. Figure 6a shows
the refined bounding area, and 6b presents the actual memory
trace for our example.

occu

~
'ed

memo
size

15 ..
10 .

5 .

a) time b) time
Figure 6. a) Accuracy refinement

b) complete memory trace
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5. Discussion on parallelism vs. memory size
In the following we present a more complex example (Figure
7), which shows the utility of the estimation tool. This code
contains a forallioop and multiple instructions executed in
parallel (using cobegin-coend).

By analyzing the memory behavior of this code
assuming the forallioop actually as a simple for, executed
sequentially (we did not replicate the code due to lack of
space), we obtain "the behavior in Figure 8, and after the
second pass we determine that the memory size is between
[396..398].

By allowing the forallioop to be executed in parallel, the
memory behavior becomes the one depicted in Figure 9, and
the memory size is 300. Thus, the memory size for the
parallel version of the code is 25% less than for the sequential
case.

Having the parallel version require 25% less memory
than the sequential one is a surprising result, since common
sense would suggest that more parallelism in the code would
need more memory. We have done some preliminary
experiments in this direction, and they all seem to imply that
more parallelism does not necessarily mean more memory.
Moreover, we could not find (or produce) any example where
the most parallel version of the code needs more memory
than all the sequential versions. For most of the examples, the
most parallel version had less memory requirement than most
of the sequential ones. A possible explanation could be the
fact that when instructions are executed in parallel, values are
produced early, but also consumed early, and early
consumption leads to low memory requirement. We intend to
continue our work in this direction.

for 1=0 to 97 do

a[2*I, 0] = 0; a[2*1+ 1,0] = I;

for J=O to 99 do cobegin

a[2*I,J+I]=a[2*1+1)];

a[2*1+ I,J+ I ]=a[2*I,J];

coend;

Occupied
f(lem. Memory size =398
sIze

400
300
200
100

forall 1=98 to 99 do

a[2*I, 0] = 0; a[2*1+ 1,0] = I;

for J=O to 99 do cobegin

a[2*1,J+I]=a[2*1+I,J];

if(I!=99) a[2*1+I,J+I]=a[2*1,J]

else a[2*1+ 1)+ I ]=a[2*I,J]+a[2*1-2,J];

coend;

for J=O to 99 do

for 1=0 to 99 do cobegin

a[2*I,J+IOI]=a[2*1+I,j+100];

a[2*1+I,J+IOI]=a[2*1,J+ 100]+

a[2*I,J+99];

loop I loop 2 loop 3 ~ time

Figure 8. Memory behavior
for example with

simple for loop
Occupied .
f(lem. MemorysIze= 300
sIze

tMem.
- size

range200

loop I loop 2100p 3 time

Figure 9. Memory
behavior for example

with foral/loop

coend;

Figure 7. Input specification
with parallel instructions

6 Experimental results
We compared our algorithm against a memory estimation
tool based on symbolicexecution,which assigns the signals
to memory ona scalarbasis to maximizesharing.Weran both
algorithms on a SPARCstation5, on 7 applicationkernels:
image compressionalgorithm (Compress), linear recurrence
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solver (Linear), image edge enhancement (Laplace), successive
over-relaxation algorithm [8] (SOR), two filters (Wavelett,
Low-pass), and red-black Gauss-Seidel method [8]. These
examples are typical in image and video processing. Some of
them (e.g., SOR, Wavelett, G-S) exhibit complex affine indices
and conditionals.

The results of our tests are displayed in Table 1. Columns
2 and 3 show the memory requirement and the computation
time obtained with the symbolic execution method. This
memory size represents the optimal in tenns of locations
sharing. Column 4 represents the memory size estimate obtained
with our algorithm (note that this is a lower-bound for the
optimal value). For all the examples, the memory prediction is
veryclose to the optimal value from column 2. The upper bound
from Column 5 is used mainly as a measure of the confidence
in the prediction. If this value is closer to the lower-bound
estimate, the prediction is more accurate. Column 6 represents
the percentile range:

loo*(uppecbound - lower_bound)/uppecbound.
Table 1: Experimental results

The lower thIS value, the more confidence we can have in the
estimation. For most applications, high confidence is obtained
withinvery reasonable time. A 0 percentile range means that the
lower-bound is equal to the upper-bound, producing the exact
value. When there is some slack between the two, the optimal
value is usually very close to the lower-bound (the memory
estimate), but in worst case, depending on the memory behavior
complexity, it can be anywhere within that range.

For the Wavelett example, even though we obtained a
very good estimate (48002 vs. 48003) from the first pass, we
needed 3 passes to reduce the percentile range and increase the
confidence in the estimation, due to the complexity of the
memory behavior (the memory trace inside the loops is very
irregular).

7 Conclusions

We presented a technique for estimating the memory size for
multidimensional signal processing applications, as part of a
design space exploration environment. Different from previous
approaches, we have addressed this problem considering that
the algorithmic specifications written in a procedural style may
also contain explicit parallel constructs. Even if the initial input
does not contain explicit parallelism, partitioning and design
space exploration may introduce explicit parallelism in an
attempt to achieve higher performance. Our method, based on
an analysis of the memory size behavior, takes into account that
signals with non-overlapping lifetimes can share the same

storage locations (we assume that the assignment of arrays to
the memory space is done at a later stage, and accounts for such
sharing, e.g., [3]). Our experiments on typical video and image
processing kernels show close to optimal results with very
reasonable time. More details are available in [4].

We have also discussed some preliminary results on the
influence of parallelism on the memory size, and shown that
even though (parallelizing) transfonnations entail large
variations, more parallelism does not necessarily mean more
memory locations. A surprising result is that often the opposite
is true. We plan to continue our research in this direction.
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Symbolic exec. MemoRex algorithm

Application Optimal TIme
Mem.

Upper- TIme
memo

[s]
estimate

bound
%

[s]size (I-b)
Compress 10000 133 10000 I()()()() 0 0.01
Linear 20002 389 20002 20002 0 0.02

Laplace 10404 87 10404 10404 0 I
SOR 38265 205 38265 38205 0 0.01
Wavelett 48003 1265 48002 72002 33 0.02

48002 54002 II 0.15
48002 51002 5 0.42

Low-pass 10100 384 10099 10297 I 0.27
Gauss-Seidel 13870 197 13870 13917 -0 5
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