
Optimistic Distributed Timed Cosimulation Based on Thread
Simulation Model

Sungjoo Y00 Kiyoung Choi

School of Electrical Engineering
Seoul National University

Seoul 151-742, Korea
{ysj ,kchoi}@poppy.snu.ac.kr

Abstract

In this paper, we present thread-based optimistic
distributed timed cosimulation methods which reduce
the overhead of optimistic simulation. First, we
present thread simulation model to facilitate efficient
distributed cosimulation. To reduce the overhead of
optimistic simultion, we focus on the reduction of
state saving overhead. Based on the thread simula-
tion model, we perform thread-level state saving with-
out saving the whole state of processor at each check-
point. Especially, single checkpoint property based on
the proposed thread model minimizes the number of
state savings for HW threads. We give preliminary
experimental results to show the efficiency of the pro-
posed methods.

1 Introduction

In the current design practice of HW-SW systems,
cosimulation is a representative method for covalida-
tion. As the complexity of HW-SW systems grows,
the covalidation of given system specification gets
more difficult and time-consuming, and becomes the
bottleneck of achieving shorter time-to-market. Dis-
tributed cosimulation is an attractive approach to im-
prove cosimulation performance through performing
parallel simulation on a distributed simulation envi-
ronment such as a multi-processor workstation and a
network of workstations.

In timed cosimulation, synchronization overhead
caused by the frequent exchange of local times be-
tween simulators becomes dominant in cosimulation

run-time [1]. In distributed timed cosimulation, the
synchronization overhead gets bigger due to high over-
head communication between simulators on different
processors or workstations. Moreover, as the simu-
lation performance of simulator itself gets better by
performing simulation at higher abstraction levels or

1092-6100/98 $10.00 @ 1998 IEEE

~ -

using a simulation accelerator [2] [3], the relative por-
tion of synchronization overhead in total cosimulation
run-time gets much bigger. In such a case, consepla-
tive distributed timed cosimulation may suffer from
high synchronization overhead to give less simulation
speedup than expected [4].

Optimistic simulation has advantage in such a case
that synchronization overhead is dominant [5]. How-
ever, in optimistic simulation, maximum simulation
performance is determined by the overhead of opti-
mistic simulation such as state saving overhead. In
this paper, we present efficient state saving methods
based on thread model to reduce the overhead of op-
timistic distributed timed cosimulation.

This paper is organized as follows. In section 2, we
give a review on distributed cosimulation. In section
3, we give a thread simulation model. In section 4,
we propose methods to reduce the overhead of opti-
mistic distributed timed cosimulation. We show the
efficiency of our methods in a case study in section 5.
We give conclusion and future work in section 6.

2 Related Work
To improve simulation performance, distributed

simulation concept has been applied to cosimulation.
Thomas [6] exploits the parallelism of a pipelined sys-
tem performing dual process cosimulation. Ghosh
[7] presents a cosimulation environment in which dis-
tributed cosimulation can be performed in a lock step
manner. Hines [8] uses selective focus to improve the
performance of geographically distributed cosimula-
tion. Valderrama [9] presents a distributed cosimula-
tion environment based on VCI, an automatic cosim-
ulation interface generation tool.

There have been few research work on applying op-
timistic simulation concept to timed cosimulation. In
[1], optimistic simulation is performed to minimize the

71

f

From
other
LP's

To
other
LP's

State Queue

Figure 1: Logical Process.

number of simulator synchronization in single proces-
sor timed cosimulation. [8] allows optimistic simula-
tion to be performed locally in a component simula-
tion and synchronization between components is per-
formed in a synchronous manner.

3 Thread as A Simulation Model
In our work, we consider a thread as a code seg-

ment of instructions in SW (SW thread) and a set of
physical components in HW (HW thread) satisfying
the following assumptions.

Assumption 3.1 Threads communicate by initia-
tion/interrupt/resumption signals and read/write op-
erations.

The execution of an instance of a thread is initiated,
interrupted, and resumed by initiation signal, inter-
rupt signal, and resumption signal coming from other
threads. Interrupt signal is sent to only SW threads.
If a SW thread receives an interrupt signal, its exe-
cution is interrupted and an interrupt service thread
starts to execute. An interrupted thread resumes its
execution when it receives a resumption signal.

Assumption 3.2 A thread reads data from input
bufJer(s) only when the execution of its instance starts.
It writes results to output bufJer(s) only just before the
execution of the instance ends.

Assumption 3.2 holds in practical systems such as
embedded real-time systems in which tasks starts their
execution reading data from input buffers and fin-
ishes the execution writing results to output buffers
and done signal to a status register [10]. For SW
threads, however, Assumption 3.2 can be too restric-
tive in such cases as semaphores are used to serialize
the access to critical sections. We apply Assumption
3.2 only to HW threads and allow SW threads to per-
form read/write operations at any point of their exe-
cution.

..,

In optimistic simulation, a set of logical processes
(LP's) execute concurrently and communicate by ex-
changing timestamped events, or messages. A mes-
sage is represented by a tuple <msg_id, msg_type,
time, event>, where msg_id enables each message
to be distinguished, msg_type can be positive message
or negative (or anti-) message, and time is the time
when event w1ll be evaluated. As a component of
message, event represents a signal or read/write op-
eration described in Assumption 3.1. For each thread,
we define state as the simulation image of the thread.

We assign a logical process to each thread. An LP
contains several objects as shown in Figure 1. In Fig-
ure 1, Local Virtual Time (LVT) is the time associated
with the LP. Future Event Queue (FEQ) is an event
queue used when there are internal events scheduled
within the LP itself. Input Queue (IQ) is a message
queue which has messages sent to the LP by other
LP's. Output Queue (OQ) is a message queue which
has messages sent to other LP's. State Queue (SQ)
contains states stored for the case of rollback.

IQ contains incoming messages which have times-
tamps earlier than LVT as well as messages having
timestamps later than LVT. Messages having times-
tamps earlier than LVT are kept in IQ for the case
of rollback of the LP. OQ also contains messages sent
to other LP's for the case of rollback of the LP. The
queue manager and the simulation model of thread
work as follows.

1. The queue manager looks up messages in IQ.

(a) If it finds a straggler message (a message hav-
ing timestamp earlier than LVT) in IQ, then it
restores from SQ the latest state having times-
tamp earlier than or equal to the timestamp of
the straggler message and sets LVT to the time
of the restored state.

(b) If we take aggressive cancellation to output mes-
sages, then the queue manager sends a canceling
message per each message in OQ having times-
tamp earlier than that of the straggler message.

2. The simulation model of thread executes events
scheduled at the present LVT including the events
in messages in IQ. LVT is updated after executing
event(s).

3. (a) Send output messages (if any) to other LP's.
If we take lazy cancellation to output message,
then new output messages are compared to old
ones to be canceled. For old output messages
which do not match new ones and have times-

tamps equal to LVT, anti-messages are sent to
the corresponding LP's.

(b) If LVT is a checkpoint, then the current state of
the LP is stored in SQ. Goto Step 1.

72

--

An anti-message to a message having a signal as its
event represents that since the previous signal was not
correct, the initiation/interrupt/resumption of an in-
stance should be canceled. For the case of read/write
operation, an anti-message represents that since the
previous data read/written or the time when the data
is read/written was not correct, read/write operation
should be performed again.

Globalvirtual time (GVT) is defined as the mini-
mum of timestamps of in-transit messages1 and local
virtual times of all LP's. Messages and states having
timestamp earlier than GVT are removed since a log-
ical process will never be rolled back to a timestamp
earlierthan GVT [11]. However, only one state having
the latest timestamp earlier than or equal to GVT is
kept for the case of rollback.

4 Reduction of State Saving Overhead

In a physical viewpoint, the state of a thread rep-
resents the content stored in memory and registers of
processors (SW or HW processors) of the simulated
system while the thread is executing. In embedded
systems such as multimedia systems the size of mem-
ory accessed by SW and HW processors can be several
megabytes. In such a case, state saving overhead can
be dominant in optimistic distributed cosimulation.
To reduce the overhead of state saving, the amount of
content to be stored should be as small as possible.

Thread model enables state saving to be performed
on a thread basis, which makes it possible that only
the states of currently running threads need to be
practically stored at each checkpoint. Moreover, uti-
lizing the non-interruptible nature of HW threads we
can minimize the number of state saving in case of HW
threads. Note that our methods assume Copy State
Saving which stores states by copying the simulation
image after the execution of each event or periodically.

4.1 State Saving ofHW Threads

Property 4.1 For a HW thread, we have only to per-
form single checkpoint at the end of execution of each
instance.

During the execution of i-th instance of HW thread
I(i), a straggler message arriving at the LP which sim-
ulates the instance I(i) represents one of two cases:

. Case 1 : The previous initiation signal to I(i)
should be canceled.

. Case 2 : The data read by I(i) was not correct.

1Messages which are in the communication channels between
LP's, or not processed yet in input queues.

[

Time Thread A Thread B

I(B,j)(\
Lhl

:':~1:~"~--=--:~
,(c!2l n nnnmmm EB3

T,(k +~_n n m m__-

I(A. i+11(\

T ,(k~nn___n tJA;?n m_n_nnn__n

Figure 2: State Saving of SW Threads.

For Case 1, the LP must cancel the execution of
I(i). For Case 2, the LP must re-execute I(i) by read-
ing the correct data. For each case, the LP cancels
all the execution since the initiation of I(i), and rolls
back to the initiation point of the instance execution
due to Assumption 3.2 for HW threads. Since the LP
rolls back only to the initiation point of instance exe-
cution, we have only to keep the state of the thread at
the end of execution of the previous instance I (i - 1)
to support the rollback.
4.2 State Saving ofSW Threads

Since SW threads can read/write at any point of
their execution, single checkpoint property can not be
applied to them. Figure 2 shows how states of SW
threads are stored on a thread basis. We assume that
two threads, thread A and B are running on the same
SW processor and the execution of the j-th instance of
thread B, I(B,j) is interrupted by the i-th instance of
thread A, I(A, i). Checkpoints are set at time points
Tc(k), Tc(k + 1), Tc(k + 2), and Tc(k + 3). LP(A)
and LP(B) represent logical processes which simulate
thread A and B, respectively.

At checkpoint Tc(k), thread A is running and
thread B is interrupted. LP(A) stores state AI,
the state of running thread A. LP(B) stores state
Bl, the state of interrupted thread B. At check-
point Tc(k + 1), since the execution of instance I(A, i)
ended before the checkpoint, LP(A) stores state A2
which was stored at the end of execution of instance

I(A,i). LP(B) stores state B2 of running thread B.
At checkpoint Tc(k + 2), since both of two threads fin-
ished the execution of their instances before Tc(k + 2),
LP(A) and LP(B) store the states A2 and B3, respec-
tively.

In this example, since LP(A) stores the same state
A2 at Tc(k + 1) and Tc(k + 2), we do not have to save
state A2 at the later checkpoint Tc(k + 2). Instead,
we have only to keep the same state A2 at the two

73

Stored States

LP(A) LP(B)

Al BI

A2 B2

A2 B3

A3 B3

checkpoints. From a viewpoint of simulator imple-
mentation, we have only to store the pointer to the
memory allocated to store state A2 at the later check-
point. In this example, we can reduce the number
of state savings by two (LP(B) stores the same state
B3 at Tc(k + 2) and Tc(k + 3». As the number of
threads gets larger, the reduction of state saving over-
head through the proposed thread simulation model
gets larger.

When the thread rolls back to a single checkpoint,
the length of rollback can be long. In this case, when
a new message comes in after rollback occurs, we can
jump forward to the timestamp of the new message.

5 Experiment
In our experiment, we use a compiled model of

TMS320C50 DSP processor [1] for SW simulation,
and a cycle-based simulator2 for HW simulation. We
developed a distributed simulation library and com-
piled HW and SW simulator with the library. We use
UNIX socket for the communication between simu-
lators.

We performed two types of timed cosimulation:
uni-processor synchronous timed cosimulation and op-
timistic distributed timed cosimulation. In optimistic
distributed timed cosimulation, we used two SUN
Sparcstation-4's (32 Mbyte main memory) on 10 Mbps
Ethernet LAN. The SW simulator and the motor sim-
ulator are allocated on one workstation and the HW
simulator is on the other. We assume that the SW
processor has 4 Kbyte memory.

5.1 Example: A CNC machine
As an example system, we use a real-time servo

control system, a CNC (Computer Numerical Control)
machine [12]. The system controls a mechanical device
(cutter) which moves on a flat two-dimensional plane.
Motions on the X and Y axes are carried out by two
separate servo motors. The system consists of 7 tasks.
In our experiment, one task is implemented in HW,
the others are in SW. Since tasks in the CNC machine
satisfy the assumptions in Section 3, we treat each
task as a thread.

For the timed cosimulation of the CNC machine, we
use a CNC motor simulator [12] together with the SW
simulator and the HW simulator. Between the motor
simulator and the SW simulator, the location value
of the cutter (from motor to SW) and the command
for motor control (from SW to motor) are transferred,
which is repeated at the rate of 30 J-tSin reality. We set
the system clock of the controller to 10 MHz. We per-
form timed cosimulation of one rotation of the plant

2Developed at Seoul National Univ.

Table 1: Speedup Comparison between Two Types of
Timed Cosimulation (in see).

which takes 0.6 second in reality.
Since the motor simulator is a synchronous simu-

lator which does not perform optimistic simulation,
the SW simulator sends the command to the motor
when the global virtual time of HW and SW simu-
lators becomes greater than or equal to the periodic
synchronization points set by the motor simulator.

5.2 Comparison of Simulation Run-time
Table 1 shows the run-time of two types of timed

cosimulation. Comparing the computation load of uni-
processor synchronous cosimulation (135+50+211 =
396 seconds without IPC overhead) and the simulation
run-time of distributed cosimulation (325 seconds), we
obtained 1.22 times speedup through optimistic dis-
tributed cosimulation. In terms of the total simula-
tion run-time, optimistic distributed timed cosimula-
tion gives more than 15 times speedup.

In Table 1, OV represents the overhead of opti-
mistic simulation in HW and SW simulation. The
overhead includes managing input/output queues,
state saving, rollback, and re-execution. Since we as-
sume the SW processor has a quite small memory, 4K
byte memory, state saving overhead is very low (less
than 1%) in this experiment. We will show how the
size of SW processor memory affects the total simula-
tion run-time in the next subsection.

In uni-processor synchronous timed cosimulation,
interprocess communication (IPC) overhead domi-
nates in simulation run-time. It is because each of
HW and SW simulators sends/receives synchroniza-
tion information to/from the other simulator on ev-
ery clock tick. Although the communication overhead
between processes on the same workstation is much
smaller than the overhead over an Ethernet LAN, the
number of synchronization is very high (in this exam-
ple, 12,000,000) in synchronous timed cosimulation [1].

In optimistic distributed timed cosimulation, the
number of simulator synchronization reduces dramat-
ically as shown in Table 2. Among the types of mes-
sage, the number of messages to request GVT calcula-
tion dominates. It is because the optimistic SW simu-
lator should synchronize with the synchronous motor
simulator at every 30 J-tSof simulated time.

74

synchronous optimistic
SW 135 135 + 31 (OV)

Motor 50 50
IPC 4551 107 (SW), 80 (HW)
HW 211 211 + 34 (OV)

Total 5012 325

Table 2: Message Statistics in Optimistic Distributed
Timed Cosimulation.

1.4

1.2 Single Checkpoint (HW)

Speedup =I

0.8 r'~

0.6

.~ ~ Thread-based SS (SW)" "-

Sim;;~-~?cHwr-.~.,~~~I~yle~ (SW)-'~='~'"
[Kbytel

0.4

0.2

0

0 5000 10000 15000 20000

Figure 3: Speedup V.s. Size of Memory.

5.3 State Saving Overhead
To show the overhead of state saving of the pro-

posed method as the size of memory used in the target
system increases, we performed experiments varying
(1) the size of memory used in the HW thread (task)
and (2) the size of memory of SW processor.

Figure 3 shows the change of speedup of optimistic
distributed timed cosimulation as the size of SW pro-
cessor memory and the state size of the HW thread
increases. We assume that the size of memory used
in each SW thread increases at the same rate of the
increase of SW processor memory.

In Figure 3, simple state saving means state sav-
ing which makes a copy of the whole memory of SW
processor or the state of the HW thread at each check-
point. As the size of memory increases, speedup drops
rapidly in the simple state saving. In the thread-
based state saving for SW threads, speedup decreases
much slower than the simple state saving. For the HW
thread, speedup keeps almost constant even in the case
of large memory. Since our example is not a big one,
the speedup is relatively low. We think that we can
obtain sufficient speedup in bigger systems, especially,
in which computation load is large.

6 Conclusion
In this paper, we present thread-based optimistic

distributed timed cosimulation methods to reduce
the overhead of optimistic simulation. Our prelim-
inary implementation gives drastic speedup by per-
forming distributed cosimulation on two workstations.
Thread-based state saving methods enable distributed

[

cosimulation to keep speedup even in the case that
large memory is used in the target processors.

In addition to applying optimistic distributed timed
cosimulation to larger systems, our future work is
to develop efficient synchronization protocols in hy-
brid distributed cosimulation environments where syn-
chronous simulators and optimistic simulators co-
exist.

References
[1] S. Yoo and K. Choi, "Synchronization Overhead Reduction

in Timed Cosimulation", Proc. IEEE International High
Level Design Validation and Test Workshop, pp. 157-164,
Nov. 1997.

[2] K. Hines, "Pia: A Framework For Embedded System Co-
simulation with Dynamic Communication Support", Tech-
nial Report, University of Washington, Oct. 1996.

[3] C. J. DeVane, "Efficient Circuit Partitioing to Extend Cy-
cle Simulation Beyond Synchronous Circuits", FroG. Int.
Con/. on Computer Aided Design, pp. 154-161, Nov. 1997.

[4] W. Sung and S. Ha, "Optimized Timed Hardware Soft-
ware Cosimulation without Roll-back", to appear in FroG.
Design Automation and Test in Europe, Feb. 1998.

[5] H. Rajaei, R. Ayani, and L. Thorelli, "The Local Time
Warp Approach To Parallel Simulation", FroG. 7th Work-
shop on Parallel and Distributed Simulation, pp. 119-126,
1993.

[6] D. E. Thomas and S. L. Coumeri, "A Simulation Environ-
ment for Hardware-Software Codesign", FroG. Int. Con-
ference on Computer Design, pp. 58-63, Oct. 1995.

[7] A. Ghosh, M. Bershteyn, R. easley, C. Chien, A. Jain,
M. Lipsie, D. Tarrodaychik, and O. Yamamoto, "A
Hardware-Software Co-simulator for Embedded System

Design and Debugging", Proc. Asia South Pacific Design
Automation Conference, 1995.

[8] K. Hines and G. Borriello, "Selective Focus as a Means of
Improving Geographically Distributed Embedded System
Co-simulation", Proc. Eighth IEEE International Work-
shop on Rapid System Prototyping, pp. 58-62, June 1997.

[9] C. A. Valderrama, P. Lemarrec, and A. A. Jerraya, "VCI:
A VHDL-C Interface Generation Tool for Cosimulation",
FroG. IEEE International High Level Design Validation
and Test Workshop, pp. 142-148, Nov. 1997.

[10] V. J. Mooney and G. De Micheli, "Real Time Analysis
and Priority Scheduler Generation for Hardware-Software
Systems with a Synthesized Run-Time System", FroG. Int.
Conf. on Computer Aided Design, pp. 605-612, Nov. 1997.

[11] D. R. Jefferson, "Virtual Time", ACM Tans. on Program-
ming Languages and System, vol. 7, no. 3, pp. 404-425,
1985.

[12] N. Kim, M. Ryu, S. Hong, M. Saksena, C. Choi, and
H. Shin, "Visual assessment of a real-time system design:
a case study on a CNC controller", FroG. IEEE Real-Time
Systems Symposium, pp. 300-310, Dec. 1996.

75

no. total no. positive no. anti- no. GVT

messages messages messages messages
53,507 4,425 180 49,875

	Main Page
	CODES98
	Front Matter
	Table of Contents
	Author Index

