
I
I

(

Combining Multiple Models of Computation for
Scheduling and Allocation

D. Ziegenbein,R. Ernst, K. Richter*
TV Braunschweig

Abstract

Many applications include a variety off unctions from differ-
ent domains. Therefore, they are best modeled with a combi-
nation of different modeling languages. For a sound design
process and improved design space utilization, these different
input models should be mapped to a common representation.
In this paper, we present a common internal representation
that integrates the aspects of several models of computation
and is targeted to scheduling and allocation. The represen-
tation is explained using an example combining a classical
process model as used in real-time operating systems (RTDS)
with the synchronous dataflow model (SDF).

1 Introduction

There are numerous system specification and modeling lan-
guages with fundamental differences in their underlying mod-
els of computation, such as event driven computation or data
flow. Many complex designs use more than one modeling lan-
guage to describe system functions of different characteris-
tics. Since these functions are rarely completely independent,
system simulation, verification and implementation must re-
gard the combination of such different models of computa-
tion.

In this work, we present an internal representation which
shall enable scheduling and allocation (or hardware/software
partitioning, resp.') of systems described with more than one
model of computation. Fig. I shows the intended application
of this representation. The different system parts may be
modeled and optimized independently. Input level optimiza-
tion uses domain specific techniques, such as e. g. transfor-
mations used in digital signal processing [6]. Then, the infor-
mation useful for scheduling and allocation shall be extracted
from the models and mapped to the common internal repre-
sentation. After scheduling and allocation, the results shall be
annotated back to the input level to suppon interactive design
optimization. Fig. I shows that verification and simulation
are treated as independent tasks with their own representation
which takes some burden from the internal representation for
scheduling and allocation.

This sketchy overview helps to derive the requirements
for this internal representation. For illustration, we will
use two examples of input languages. The first example is
the process model underlying rate monotonic and deadline

.This part of the work was supported by the German DFG.

IDepending on the design context. hardware/software partitioning and
allocation are related tasks which will not further be distinguished

1092-6100/98 $10.00 @ 1998 IEEE

J. Teich, L. Thiele
. ETH Zurich

Figure 1: Intended Application

monotonic analysis and scheduling [4] (RMS/DMS) which
is widely used in real-time system design. Processes are ex-
ecuted periodically with fixed rate constraints, with identi-
cal deadlines in each period. Latency times are limited by
the process periods chosen by the designer. While the orig-
inal model regards independent processes and single proces-
sors only, generalized RMS (GRMS) considers synchroniza-
tion aspects which includes access to shared variables and
multiprocessors (an overview of the numerous approaches is
given in [5]). More recent work adds explicit communication
between processes [9] to include communication scheduling
and reduce performance requirements, or derives rate con-
straints automatically [1]. We want to include the original
model, the model with communication and, finally a model
with upper and lower bounds on communication latencies to
account for conditional communication (communication de-
pending on the result of evaluating an if-then-else construct)
which is necessary to react to sporadic events and to imple-
ment data dependent behavior (examples: packet transfer de-
pending on packet header, error message if broken sensor
etc.). Alluding to its application to real-time operating sys-
tems we will call it the RTOS model.

The second example considers synchronous data flow
graphs (SDF) which are used in digital signal processing [3].
In SDF, the number of data tokens produced and consumed
per execution of a process is constant and fixed at compile-
time (unconditional communication). The SDF design repre-
sentation efficiently suppons pipelining, retiming and buffer
optimization but is restricted to model only static data flow.

9

It should be noted that SDF in its original form was a
model of computation to represent concurrency and was later
extended to support scheduling. The RTOS model, on the
other hand, has originally only been defined as a basis for
scheduling of independent tasks and was extended to sup-
port modeling of communicating processes. The two models
can be used to illustrate the design information required for
scheduling and allocation:.Execution time or I/O timing of processes: This infor-

mation is target architecture dependent and is typically
obtained by system analysis and estimation. In general,
execution times are given as time intervals due to data
dependent process execution times. In both examples,
I/O timing has clear semantics with all input data read at
the beginning of a process execution and all output data
written in the end.

Infonnation on ready times and deadlines: This infor-
mation allows to determine the cost of resource sharing
and the computing requirements. Here, we see major
differences between both models. In SDF, a process is
ready (can be executed) when all input buffers contain
a sufficient number of data tokens. There is no explicit
deadline, but deadlines can be derived from throughput
and memory requirements using mobility or "urgency"
[2] criteria which both depend on the target architec-
ture rather than on the input description. In the RTOS
model, a process is ready at the beginning of a period,
and the deadline is explicitly defined. The two examples
demonstrate that the input models provide the required
information in different ways which must be unified in a
common internal representation..lnfonnation on the amount of communicated data:
There are again major differences. In SDF, communi-
cation is determinate and data independent. Buffering of
communicated data is permitted to increase throughput
while in the RTOS model, communication can be con-
ditional and data buffering is typically not considered or
even not permitted to control latency times.

The approach to a common internal representation is
based on simple basic constructs which are enhanced by an-
notations which capture the details of the input model of com-
putation. Each input language and its underlying model is
mapped to a specific set of annotations. The main issue is the
consistency of these annotations in order to allow scheduling
and allocation across input language semantics. This paper
will focus on the basic constructs and annotations for sys-
tems with a static set of processes, i. e. a set of processes
that does not change at run time. Both example languages
are of this kind. Systems with a dynamically changing set
of processes require the concept of system states and system
state transitions and will be the focus of a later paper as well
as additional annotations for increasing scheduling efficency
and capturing incomplete specifications using nondetermin-
ism [7].

There are many scheduling techniques, i. e. preemptive
or non preemptive scheduling, scheduling with dynamic or
static priorities, event driven or periodic process execution.
The scheduling technique is part of the design space. Rather
than covering all these techniques, we have selected one to
demonstrate the completeness of the internal representation
with respect to the two input models.

.

- - .1-

2 The Internal Representation

This section describes the concepts of our common internal
design representation. To demonstrate some concepts of the
representation we use an example of a remote motor con-
troller. The system collects message parts from a bus and
tests them for an error (Pd, decodes the collected message
(P2) and sends.a control word to the motor control loop (P3).
A description of the system, in which processes PI and P2
are specified as periodic communicating processes (RTOS
model) and process P3 as an SDF process, is depicted in
Fig. 2. Note that there is a maximum latency constraint t tat,1
that constrains the time between the reception of a message
part and the production of an error signal, i. e. the completion'
')f process Pl.

,' ". < t

~"'i-"'"

tlc..~rl: bus interface control 01: error
signaltry_receive (message) from PI;

if adress(message) =MyAdress then
value =decode(message);
send (value) to P3;

end if;

16. t\,',)P2: bus message processing

t~..., 13:sensor
signal

!1.
P3: motorcol)trolloop

03: motor I
control
signal

Figure 2: Remote Motor Controller (RTOS, SDp)

2.1 Basic Model

The basic model consists of processes that may have local
data enabling them to have internal states. A side effect of
allowing local data is that shared static data objects can be
modeled by processes as well. The processes communicate
with each other through unidirectional buffered channels that
show a FIFO-like behavior. The basic model can be repre-
sented by a model graph.

Definition 1 (Model Graph)
The model graph'is a directed bipartite graph G = (P, C, E)
where

. P denotes the set of process nodes,

. C denotes the set of channel nodes, and.E ~ (P x C) U (C x P) denotes the set of edges.

Processes as well as channels are represented by nodes to
enable refinement through hierarchical extension.

2.2 Execution Model

After defining the structure of the internal representation, we
now introduce the underlying process execution model that

10

-l

is based on activation by data availability, i. e. a process is
activated if its required input data is present. The event-driven
computation as well as the data flow model of computation
are both based on activation by data availability since events
can be considered as a special kind of data. But as we will
show in section 2.4 other activation principles e. g. activation
by periodicity constraints can be transformed into activation
by data availability, too.

There are three points of time during the execution of one
process instance that need to be distinguished:

. activation time tact

required input data is present; process gets activated

. starting time tstart
resource is taken; input data is read; process starts exe-
cution

. completion time teomp
input data is consumed (i. e. destructed); output data is
written; resource is released; process execution is com-
pleted

Note that the process execution's effect becomes visible on
the channels as one atomic action at the end of execution.

Since communication may also consume time, the time a
token is put on a channel (teomp of writing process) need not
equal the time this token is available for being read and, thus,
for activating the succeeding process. Therefore, this time is
defined as the output availability time t av.

2.3 Annotations

The information required for scheduling and allocation is an-
notated to the corresponding graph elements. In our model,
this information may be uncertain due to the following rea-
sons;

. Data dependent junctionality: A process may perform
a different function and, thus, communicate a different
amount of data (conditional communication) at each in-
vocation depending on how it was activated, e. g. com-
puting mode, error handling, etc.. Incomplete specification: Apart from uncertainties
caused by the environment, it may be desirable to spec-
ify non-determinism in certain cases on purpose.

Due to these facts, the annotated information need not to
be constant but can be constrained by an upper and lower
bound. Therefore, the annotations are modeled by (uncer-
tainty) intervals. Stochastic processes x (k) are introduced to
capture the uncertain behavior. These stochastic processes are
discrete regarding the execution index k and its domains are
the (uncertainty) intervals of its information X. This index-
ing helps defining activation rules and allows easy transition
to (partially) deterministic behavior in later design steps.

2.3.1 Communication

For communication scheduling and for the derivation of acti-
vation rules of processes (e. g. synchronous data flow [3]), the
amount of data to be communicated between two processes
has to be known. Therefore, a data rate denoting the num-
ber of data tokens communicated at a process execution is

I
---.

specified. Together with the data size of a token, the absolute
communicated amount of data can be easily calculated.

Definition 2 (Data Rates)
Let Inputs(p) = {c E C I e = (c,p) E E} denote the set of
input channels of process pEP and Outputs (p) = {c E C I
e = (p, c) E E} denote the set of output channels ofp.

Associateo with eachprocess node pEP and eachinput
channelc E lnputs(p), there is an input data rate re(k) that
denotes the number of data tokens the process p consumes
from the channelc at its kth execution. This rate re(k) is
constrainedby an interval Re = [re,min,re,max],such that
Vk : re(k) ERe. Analogously for each output channel
c E Outputs(p), there is an output data rate Se(k) and a
constrainingintervalSe = [Se,min,se,max].

Furthermore, we need to define some constructs to keep
track of the tokens and to model the availability of data.

Definition 3 (Data on Channels)
Associated with each channel c E C, there are the numbers

dc, dc, and de,av where

. de denotes the initial number of data tokens,

. de denotes the total number of data tokens at a given
point of time,

. de,av denotes the number of data tokens available for
activation of the succeeding process at a given point of
time

on channel c. Note that all three numbers may be uncertain.

2.3.2 Timing

Scheduling and allocation require the modeling of latency
times of processes and communication channels. Usually,
they are gathered by a timing analysis tool (e. g. [8]) or es-
timated.

Definition 4 (Latency Times)
Associated with each process pEP, there is a latency
time latp(k) E Latp = [latp,min,latp,max]where latp,min
[latp,max] denotes the lower [upper] bound on the execution
time (tcomp,p(k) - tstart,p(k)) of instance k of process p.

Analogously, associated with each channel c E C, there
is a latency time late(k) ELate = [latc,min, late,max] that
limits the communication time (tav,p(k) - teomp,p(k) where
p writes on channel c) for a token on channel c.

Note that latency times are resource dependent. There-
fore, uncertain latencies denote upper and lower timing
bounds for any (remaining) feasible mapping of processes
and channels to possible reso,urces. During scheduling and al-
location, these uncertainties are (gradually) reduced by map-
ping decisions.

Since we do not restrict the communication to a single
behavior, the latency time for channels depends also on the
chosen method of communication (e. g. burst or packet trans-
mission) and on the amount of data to be communicated. A
detailed communication modeling is supported by enabling a
hierarchical refinement of a channel.

11

-;;"I

I

2.3.3 Virtual Components

For modeling purposes, we introduce the concept of virtual-
ity for processes and channels. These do not have to be im-
plemented. Their importance will be understood from later
examples.

Definition 5 (Virtuality)
Associated with each process pEP and each channel e E
C, there is a virtuality flag v E {true ,false} which denotes
the fact whether the process or channel is part of the system
to be implemented (v := false) or has been introduced for
modeling purposes only (v := true).

As can be seen in Fig. 3, virtual graph elements are visu-
alized by dotted lines. Note that virtual processes and chan-
nels are mapped to dummy resources.

2.4 Activation

An activation rule determines when each process is ready for
execution and can be scheduled. As mentioned earlier, our
model is based on activation by data availability.

Definition 6 (Activation Rule)
Associated with each process pEP and each activation k,
there is an activation rule

Ap(k) = v aj(p, k)
j=1...jm..(P)

that enables the kth activation ofF if and only if one or more
of j max (p) activationpatterns

aj(p, k) = /\ (de,av 2: vj(e, k))
eElnputs(p)

is true. Each activation pattern secures that there are enough
available data tokens' de,av on each input channel e E
Inputs(p) for a set of possible combinations of data con-
sumptionsre(k) E [re,min, vj(e, k)] with vj(e, k) ERe.

Evidently, the chosen activation' rule is valid for data or
event driven models of computation. In the following, we wiIl
show how other activation principles like pedodic activation
can be mapped onto the chosen activation rule using virtual
processes and channels.

Periodic activation can be modeled by a virtual channel
ev starting and ending at the process to be activated. The pro-
cess has a static consumption and production rate of one data
token per execution for channel ev. With one initial data to-
ken on the channel (de" := 1) supporting the first activation,
each execution now enables its following activation. The time
between two consecutive executions can be constrained by la-
tency constraints (to be introduced in section 2.7).

Another possible activation principle is the activation by
relative execution rates (e. g. RTOS semantics: no exact pe-
riodicity but constrained mobility intervals [4]). An example
for this is process P2 in Fig. 3 which has to be executed once
during every period 16 . t1 and, thus, once during 16 execu-
tions of Ptime. This is modeled by two virtual channels (Cg
and ClO) with preassigned tokens between both processes.
Thus, with its first execution Ptime enables one activation of
Pz whose execution enables another 16 activations of Ptime
that lead to another activation of Pz etc.

-i-

2.5 Update Rules
Based on the chosen activation rule, update rules can be spec-
ified to formally define the semantics of our representation.

Definition 7 (Update Rules)
Initially, de := deve E C and Np := OVpE P holds. The
valueof Np at a.certaintime denotes thatprocess pEP has
completedalreadyNp activations.

1. A processpEP becomes activated(for the (Np + l)st
time) at a certaintime, if Ap(Np + 1) becomes trueat
that time.

2. A process pEP may start execution, if it is activated.

3. Ifprocess pEP starts execution at time T, then p com-
pletes at T+latp(Np + 1) and the following update rules
are executed:

. Np := Np + 1;

. teomp,p(Np) := T + latp(Np) where teomp,p(Np)
is the completion time of the Npth activation ofF..One of the activation patterns with aj(p, Np) =
true is selected. If there are several true activa-
tion patterns and thus several possible data con-
sumptions, one is chosen randomly. Let the cor-
responding index be denoted]. Then we have
re(Np) E h,mm, vJ(e, k)]..Ve E Inputs(p) : de := de - re(Np)

. VeE Outputs(p) : de := de + se(Np)

These rules are executed sequentially, but the whole up-
date rule is considered as an atomic action.

4. At time teomp,p(Np) + late(Np) the communication of
the written data on channel c E Outputs (p) completes
and de,av := de,av + se(Np).

2.6 Environmental Modeling

The modeling of embedded systems always has to include
modeling of the environment and its data sources and sinks in
particular. The sources as well as the sinks can be modeled
by virtual processes. The communication between those en-
vironmental processes and system processes has to be imple-
mented. Therefore, the channels representing this communi-
cation are not virtual. Examples for environmental processes
are the source Psensor or the sink Pmotor in Fig. 3.

2.7 Constraints

So far, the notation and the semantics of the internal repre-
sentation have been introduced. It remains to explain how to
model constraints that have ~obe fulfilled by all legal sched-
ules. In this paper, we focus on timing constraints as the most
important type of constraints for scheduling. The extension
of our model to feature other constraints is simple but may
require the addition of corresponding information to all pro-
cesses (e. g. power consumption).

Conditional communication and activation based on com-
municated data leads to conditional time constraints if con-
straining the time difference between two process executions.

12

-l

Therefore, we associate timing constraints with production
and consumption times of data tokens. Since due to the
atomic process execution the time of consumption equals the
time of process completion, this association is valid.

Since our representation features hierarchy, we need tim-
ing constraints over process chains, but for the sake of sim-
plicity in this paper, we restrict ourselves to timing constraints
for tokens that are produced and consumed by adjacent pro-
cess nodes.

Definition 8 (Latency Constraint)
Associated with eachchannel c E C, there may be an interval
LC = [tlat,mln,tlat.max] that denotes a latency constraint
that limits the difference between the production time tprod
and the consumption time icons for all tokens on channel c:

VbE {data tokens on channel c} :

tlat,min ~ (teons,b - tprod,b) ::; tlat,max.

An example how a latency constraint limits the life-
time of tokens on a channel can be seen at channel Cll in
Fig. 3). Other timing constraints like correlation and rate
constraints or even more complicated timing behavior like
sporadic bursts of external events can be modeled using la-
tency constraints and virtual channels and processes. For ex-
ample, rate constraints can be modeled by a virtual channel
from the process to be constrained to itself with de = 1, data
consumption and production rates of 1 and a latency con-
straint [frate,trate](e. g. Psensor in Fig. 3).

""""'--"'--"

.""", ['3' '3]

(i~='i)~';)J.(.~;/
Figure 3: Remote Motor Controller (our representation)

3 Example
One of several possible mappings of the remote motor con-
troller to our internal representation is depicted in Fig. 3.
Note that the SDF in process P3 is mapped to three processes
(P3.1, P32 and P33) while the state machine in PI is mapped
to a single process (designer's decision).

A Gantt diagram for a static schedule and t3 = 8 . t1 is
shown in Fig. 4. Only the resources for processes are shown
while channel and dummy resources are omitted.

4 Conclusion

We presented a common internal design representation that
integrates different models of computation regarding schedul-
ing and allocation. The example shows the capabilities of our
approach.

Only the basic concepts of our model have been intro-
duced. Other constructs to deal with system states, incom-
plete specification and memory allocation will be presented
later or can be previewed in [7].

asie

;-.P,

ff ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~~~I P, I~~~spare

lit,
to 15 16

Figure 4: Gantt Diagram of Remote Motor Controller

References

[1] A. Dasdan, A. Mathur, and R. K. Gupta. RATAN: A
tool for rate analysis and rate constraint debugging for
embedded systems. In Proceedings ED&TC '97, pages
2-6, February 1997.

[2] A. Kalavade and E. A. Lee. A global critical-
ity/local phase driven algorithm for the constrained hard-
ware/software partitioning problem. In Proceedings
Codes/CASHE'94,pages42-49,1994.

[3] E. A. Lee and D.G. Messerschmitt. Static scheduling of
synchronous data flow programs for digital signal pro-
cessing. IEEE Transactions on Computers, 36(1), Jan-
uary 1987.

[4] C. Liu and J. Layland. Scheduling algorithm for multi-
programming in a hard-real-time environment. Journal
of the ACM, pages 46-61,1973.

[5] L. Sha, R. Rajkumar, and S. S. Sathaye. Generalized
rate monotonic scheduling theory: A framework for de-
veloping real-time systems. Proceedings of the IEEE,
82(1 ):68-82, January 1994.

[6] S. D. Stearns. Digital Signal Analysis. Hayden Book
Company, New Jersey, 1975.

[7] L. Thiele, J. Teich, and D. Ziegenbein. Funstate - func-
tions driven by state machines. Technical Report 33,
Computer Engineering and Communication Networks
Lab (TIK), Swiss Federal Institute of Technology (ETH)
ZUrich, January 1998.

[8] W. Ye and R. Ernst. Embedded program timing analysis
based on path clustering and architecture classification.
In Proceedings ICCAD '97, San Jose, USA, 1997.

[9] T. Yen and W. Wolf. Performance estimation for real-
time distributed embedded systems. In Proceedings
ICCD '95, pages 64-69, October 1995.

13


	Main Page
	CODES98
	Front Matter
	Table of Contents
	Author Index




