Hierarchical LVS Based on Hierarchy Rebuilding

Wonjong Kim and Hyunchul Shin

Dept. of Electronics Eng.

Ilanyang University.
Ansan, Kyungki 425-791, S. Korea (R.O.K)
Tel: +82-345-400-5176
IFax: +82-345-406-9184

e-mail : wikim@logos.hanyang.ac kr

shin@heaven.hanyang.ac.kr

Abstract -~ A ncw hicrarchical layout vs. schematic
(LVS) vcrification system has been developed for

layout verification. It comparcs a hicrarchical
schematic netlist and a flattened layout netlist. The
schematic hicrarchy is restructured for consistent
hicrarchical matching and then the samce hicrarchy is
built from the layout nctlist. For cfficiency, simple
gates arc found by using a fast rule—based pattern
matching algorithm. Each subcircuit is found from
the layout by using a modificd SubGemini algorithm
in bottom—up fashion. Expcrimental results show
that our hicrarchical nctlist comparison tcchniquc is

cffective and cfficient in CIPU time and in memory

usage.
1. INTRODUCTION
Recently, most designs are specified at the
behavioral level. They are transformed to the

register transfer level (RTL), to the gate level, and
then finally to the The

transformation and/or

layout  description.

procedure is  automatic
interactive. The final design should be completely
validated before manufacturing.

One major task of chip-level verification is

consistency proof between the original schematic

netlist and the one extracted from the layout. This
verification problem can be modeled as a graph
isomorphism  problem. Ilowever, no efficient
(polynomial time) algorithm has been found so far.
Therefore, the isomomhism test can be executed by
number of comparison

using an  exponential

operations, but this is not acceptable for circuits

with thousands or more number of elements. Ilence
the main goal of any heuristic algorithm has been
(the
operations) of the

to reduce the complexity number  of

comparison verification. A
common method to achieve this objective 1is to
partition the nodes of the two graphs into several
groups with the same features. If the number of
is small (possibly only

nodes in these partitions

one), the number of comparison operations

decreases drastically and isomorphism can be tested
in acceptable computing time for a large number of

1
nodes.

1.1. Previous methods

In simulation-based methodsm, only exhaustive

simulation can guarantee the functional
isomorphism between the two circuits. This s
prohibitively  costly in  most cases and the

simulation result differences can not easily locate
the erroneous part of the network.

Many methods reported so far are based on the
4

refinement algorithmm' , in which the set of all
nets and all components is partitioned into classes
with

components and the number of adjacent components

homogeneous  properties:  the types of
for nets. The initial partition is successively refined
of the

nets) in

by taking into account the properties

neighbors.  IElements (components or
singleton classes of one circuit should be directly
matchable with elements in the respective classes
of the other circuit.

Most of the previous comparison tools perform



flat-level comparisonsm' L9 This was sufficient in
the past as designs were less complex. These tools
become inefficient and inadequate as the design
size grows beyond a few million devices. I'or most
flat-level approaches, verification time grows as
ON™) where N is the number of devices and m>1.
Memory requirements grow linearly with the size
of the design. The problem with the flat-level
approach is that it takes too long (40-30 hours) to
verify about 3-4 million devices'.

Ilierarchical approaches have also been proposed
for the o

methods

. . . i .
circuit  comparison problem Some

require isomorphic hierarchies for the
schematic and the layout netlists. This is not often
the case, since in most cases the schematic
hierarchy reflects the functional organization of the
circuit, whereas the layout hierarchy is built based
on its geometric structure. Spreitzerm approached
the problem by modifying the hierarchies to make
them isomorphic. Nonetheless the hierarchical
methods cannot be used for all kinds of circuits.
Pelz and Roettcher® proposed a hybrid approach of
matching and refinement

hierarchical  pattern

methods. But the complexity of the hierarchical
pattern matching is in On") in the worst case,
where n is the flat target circuit size (lcomponents|
+ |netsl).

functional

To improve the handling of

isomorphism, Spickelmier et al. proposed the
application of a rule-based expert systemm. Pin
permutations and functional equivalence conditions
handled by the
rule-based system. Ilowever, due to runtime and

this method 1is

of subcircuits can be flexibly

memory requirements, limited to

small-sized circuits.

A. The features of our hierarchical LVS

comparison

In this paper, we propose a new hierarchical

netlist comparison technique for layout verification
based on refining and hierarchy restructuring. The

features of our hierarchical LVS can be

summarized as follows:
« It is a hierarchical comparison technique using a
modified Ilierarchical

refinement  algorithm.

comparison methods are more efficient in CPU

time and requires less memory than flattened
comparison methods.
The hierarchy is restructured for consistent
hierarchical comparisons. When a subcircuit has
inputs merged together at a higher level in the
is difficult to find the subcircuit

from the layout netlist. I'inding subcircuits with

hierarchy, it

power/ground connections, merged inputs, and/or
difficult.

finding subcircuits which consist of

floating (unused) signals are also
Especially,
multiple groups of disconnected devices requires
almost exhaustive search. In these cases, we
restructure the hierarchy by generating new
modified versions of the subcircuits for consistent
hierarchical comparisons.

found hy

rule-based pattern matching

fast
Most
large number of

Simple gates are using  a
algorithm.
integrated circuits contain  a
simple gates, such as inverter, NAND, and NOR
gates. I'inding simple gates using the refinement
algorithm is inefficient because they have only a
small number of transistors. Therefore, we find
those gates by using a fast rule-based pattern
matching algorithm.

The restructured hierarchy is rebuilt from the
layout netlist by using a modified refinement
algorithm.

Commutable terminals are considered during

comparisons.

2. TTIERARCHICAL LVS COMPARISON

In this section, we describe the overall algorithm
of our hierarchical LVS comparison method. Two
netlists are used for the comparison: a hierarchical
schematic design and a
The
LVS

netlist from the original
flattened netlist extracted from the layout.

overall algorithm of our hierarchical
comparison 1s shown in Algorithm 1.
The

comparison

LVS
is based on the refinement

main part of our Thierarchical

system
algorithm. We find subcircuits from the layout
netlist in bottom-up order. To find images of one
layout netlist,

subcircuit from the we use a



Algorithm 1. Ilierarchical LVS comparison

Read netlists;
Restructure the hierarchy;
Merge series tr's for both netlists;
I'ind simple gates in both netlists;
for (each subcircuit s from leaves
to the root of the hierarchical netlist) {
I'ind candidates for s from the layout netlist
and its corresponding key node from s;
if (#candidates !'= #used)
Expand s; /= flatten it =/
else {
for (each candidate ¢ for s) {
Verify image of s starting from ¢ and key;
if (Verification is successful)
Replace matched part by s;

else {
Expand s /% flatten it =/
break;

}

}
}
}
modified version of SubGemini algorithmm. The

algorithm 1s quite effective, but it assumes that the
external terminals of a subcircuit are not connected
together at a higher level in the hierarchy.
Ilowever, real designs of integrated circuits have
Therefore,
then

new

subcircuits  with merged inputs.
this

restructure  the

many

we find type of subcircuits, and

hierarchy by generating
modified versions of the subcircuits, so that later
hierarchical comparison becomes straight—forward.
The hierarchy restructuring is described in detail in
Section 3.

Now we describe major parts of Algorithm 1 in

detail.
A. Merging of series transistors

Integrated circuits usually contain a great

their

gate signals are commutable in many cases. To

number of series transistors. I‘urthermore,

match the commutable signals and to reduce the
of the

desirable to merge a set of series transistors into a

complexity isomorphism checking, it 1is

new multi—gate device. Series transistors can be

found by examining nets. A net connecting only

two source/drain  terminals of the same-type
transistors (or series transistors) conforms a new
multi-gate device. Ilowever, when the common net
1s also connected to another external terminal in a
larger circuit, the transistors attached should not be
The merged

merged into a multi-gate device.

series transistors are used later to find simple

gates.
B. Finding simple gates

Most integrated circuits contain a large number
of simple gates, such as inverter, NAND and NOR
gates. Since the simple gates are composed of only
a small number of transistors, finding all of them
by using the refinement algorithm 1is inefficient.
We have developed a fast rule-based

We this

Therefore,

pattern matching  algorithm. apply
algorithm for both netlists.

Inverters have two transistors of different types
with a common drain signal and a common gate
signal. The other drain of the p-transistor is
connected to Vdd and that of the n-transistor is
connected to Gnd. Note that the drain and the
source of a transistor are interchangeable.

Series transistors can conform NAND or NOR
gates. When one of series transistors is a p-type
transistor with one of its draing connected to Vdd,
we search for n-—transistors with the common drain
signal and their gates are connected to the gates of
If all

are found, we replace the

the series transistors. the gate-matched

n—transistors series
p-transistors and all the gate-matched n—transistors
by a NOR gate.

n-type, with one of its drains connected to Gnd,

When series transistors are of

we search for a NAND gate, in a similar way.
This rule-based pattern matching is very fast
and is not affected by merged inputs, power inputs,

or floating inputs.
C. Ilierarchical subcircuit matching

The LVS

comparison consists of a recursive loop for finding

main part of our Thierarchical
subcircuits from the layout netlist. Subcircuits are
processed in bottom-up order because a subcircuit

can only be matched after all its child subcircuits



are matched. All the subcircuits in the hierarchical
netlist are ordered by a breadth first search (BLI'S)
algorithm. When there are several subcircuits in a
hierarchy level, we process the most frequently
used subcircuit first, so that the size of the layout
netlist can be reduced as soon as possible. This
procedure rebuilds the hierarchy from the layout
netlist to match the given restructured schematic
hierarchy.

Ilierarchical netlist comparison is effective when
a subcircuit is used many times. To capitalize this
fact, we may optionally expand/flatten subcircuits
which are used less than a certain number of
times. The threshold value for subcircuit expansion
can be given by the user. When the value 1s set to
1, the algorithm attempts to find all the subcircuits
hierarchically.

We have used a modified SubGemini'” algorithm
for finding each subcircuit. It consists of two
phases. In phase I, SubGemini identifies all possible
matchable locations of the subcircuit in the layout
It does this by

algorithm to both netlists. This procedure

netlist. applying a partitioning
chooses
a key node, K, in the subcircuit and identifies all
possible nodes in the layout netlist which might
match the key node. This set of nodes is called the
candidate vector, CV. Phase I acts as a filter to
reduce the number of instances that need to be
checked. In phase II, SubGemini

there 1is

verifies whether

an actual subcircuit at each location
indicated by the candidate vector. It examines each
node ¢ in the candidate vector and attempts to find
a mapping between nodes in the subcircuit graph
in the such that K

matches ¢. This is done by initially postulating a

and nodes layout graph,
match between K and ¢, labeling the two nodes
with a unique label. Starting from these nodes, the
both the

netlist and the subcircuit netlist such that labels of

algorithm  simultaneously labels layout
nodes match if and only if there 1s a valid mapping
between the two graphs. If this procedure finds
exactly matching labels in the layout netlist for all
the nodes in the subcircuit, then a subcircuit has
is a

been found. Otherwise, the candidate node

false candidate.

llowever, when the number of candidates (nc)
for a subcircuit is different from that of subcircuits
used (nu) in the schematic netlist after Phase I,
some candidates may cause illegal matching. To
prevent this problem, we check nc and nu. If they
are different, we expand/flatten the subcircuit to
if a candidate

the next higher level. Therefore,

matching fails, we expand the subcircuit in the

netlist and also expand previously
of the in the

With this expansion, we can verify the

schematic

matched parts subcircuit layout
netlist.

circuit hierarchically without losing consistency.

(b) The subcircuit
in the layout

(a) One subcircuit
in the schematic
I'ig. 1. Subcircuits which may cause a false matching

which

The
subcircuit CA shown in IMig. 1(a) can be matched
to the dotted block CA in [Fig. 1(b) which includes
parts of subcircuits CB and CC. if 11
belongs to a subcircuit CB and NRZ belongs to
another subcircuit CC, then CA in Lig. 1(b) must
not be matched to CA in Iig.
match is not consistent. 11 and NR2 can produce

Iig. 1 shows an  example 1in

straight-forward matching 1is not possible.

Ilowever,

1(a). Because the

an illegal candidate for the subcircuit CA. In this
case nc 1s larger than au, which indicates an illegal
matching. Therefore, we expand the subcircuit CA
in the schematic netlist, if nc=+nu.

Resolving this problem by exhaustively checking
all the combinations of possible matchings is
we solve this problem by
and by
matching at the next hierarchical level.

impractical. Therefore,

flattening the  subcircuit performing

3. IIERARCHY RESTRUCTURING

During  preprocessing, we  restructure  the
hierarchy of the schematic netlist for consistent
hierarchical matching. Subcircuits with  power/

ground inputs, merged inputs, or floating signals



can not be found directly by using the SubGemini
algorithm. When a subcircuit consists of more than
one connected group of devices, the refinement
algorithm cannot be directly applied. Therefore, we
generate modified versions of those subcircuits by
so that

straight-forward hierarchical matching can be used

exploiting external connections of them

later.
A. Subcircuits with special inputs

Subcircuits with special inputs can be found by
exploiting external signals of each subcircuit in the
netlist. Some of these signals may
their child

external signals are processed in top—down order.

hierarchical

propagate to subcircuits. Therefore,

i | 5 *+ .
+  (— 2
i |
A
| LT ‘ 0 wif q
il |
Lol oA suibi e i numed CHTTELYS thyine usage

kikl

2] & meshls:d wensem

I'ig. 2 An example of generating modified subcircuit

Iig. 2 shows an example of a subcircuit with
2(a)
subcircuit OPTION. I'ig. 2(b) is an example usage

special inputs. I'g. shows the original
of the subcircuit in higher level subcircuit. Signals
Ol and O2 are merged and the merged signal is
floating. Signals O3, O4 and O6 are merged and
are connected to other devices. O5 is floating and
O7 1s connected to Vdd. Now the subcircuit will

look like Iig. 2(c) in the layout netlist. If we do

not know that the

transistors connected to O5 cannot be merged in

signal 05 1is floating, two

the subcircuit because it is an external signal.
in the

connected to OS5 can be merged because it has only

Ilowever, layout netlist, two transistors
two transistors, e, 05 is never used outside of
the subcircuit. We identify this case by exploiting
the external connections in the hierarchical netlist
and then generate a modified version of OPTION
as in I'ig. 2(c) in the restructured schematic netlist.
Then the circuit in Ilig. 2(¢c) can be matched with
the layout netlist extracted as shown in IMig. 2(b).
IFloating signals of a subcircuit are propagated
to child

connected to only one device in the subcircuit then

subcircuits. When a floating signal is
it 1s propagated again as floating. llowever, if a

floating signal is connected to more than one
device, it 1s not floating any more. IFor example, if
I'l and I'2 are floating signals of the subcircuit 'C’
in Ilg. 3, then I'l is propagated to the subcircuit
AT as while I2 1s

subcircuits A and B as normal external signals.

floating, propagated to

I'ig. 3. Propagation of floating signals

B. Subcircuits With Multiple Groups

When a
disconnected groups of devices, it cannot be found
by the Phase II of the SubGemini algorithm. We
this

subcircuits and it is expanded to the higher level.

subcircuit  consists  of  multiple

split subcircuit  into  several  connected

The higher level subcircuit also can consists of
multiple disconnected groups. Therefore, we process

each subcircuit in bottom-up order.

4, EXPERIMENTAL RESULTS

We implemented our hierarchical LVS (1ILVS)

comparison algorithm on a Sun Ultra SPARC



workstation by using the C programming language.
We have tested our IILVS

and

system on several

industrial  circuits our own designs. Ior

example, we verified circuits, such as a MCU with

27091 transistors and a RAM with 666,366
transistors, in 10 seconds and 292 seconds,
respectively.  Table 1 shows the experimental
results of our hierarchical LVS and those of

another well known algorithm, Geminill (version
2.7, 1993). Geminill, the CPU

flattening and comparison are shown. Currently, the

IFor times  for
threshold value (explained in Section 2.3) of our
1ILVS system is 64 by default, 1.e, a subcircuit is
hierarchically processed if it 1s used more than 64
times. The LVS
Dracula ™' (Rev. 4.3) took 395 second to verify ex?,
while our IILVS took 27 second on a SPARC 20

workstation.

well-known commercial tool,

This shows a significant speed up.
Dracula was run by a layout expert in an industry.
The Dracula run time includes only LVS execution
time excluding database compilation and circuit
extraction times. This shows that the proposed

method is very effective and efficient.

5. CONCLUSIONS

We

comparison

have developed a hierarchical LV$S
which rebuild  the

hierarchy from the layout netlist by hierarchically

technique can

applying the refinement algorithm. I‘or efficient

hierarchical comparison, the given hierarchy is

restructured when needed. Simple gates are found

by using a fast rule-based pattern matching
algorithm. Experimental results show that our
hierarchical LVS approach is effective, especially

when the circuit 1s large and hierarchically
structured.
NACKNOWLEDGEMENTS
This work has been supported in part by

Synopsys, Inc.

REFERENCES

[11 E. Barke, comparison algorithm for layout

. CAD, vol.

"A network
CAD-3, pp. 135-141, 1984.
[2] B. T. Preas, B. W.

circuits analysis based on mask information,” in Proc. 13th

Lindsay, and C. W. Gwyn, "Automatic
Design Automation Conf., pp. 309-317, 1976.
[3] M. S. Abadir and J.

verification algorithm (ILAVA),” in Proc. European Design

I'erguson, "An improved layout
Automation Conf., pp. 391-395, 1990.
[4] C.

tool,” in Proc. Int. Conf. on CAD, pp. 322-325, 1988.

Ibeling, "Geminill: A second generation layout validation

[5] M. Spreitzer, "Comparing structurally different views of a
vlsi design,” in Proc. 27th Design Automation Conf., pp.
200-206, 1990.

[6] G. Pelz and U. Roettcher, "Pattern matching and refinement
vol. 13, no. 2, pp. 264-276, 1994.

[71 P. Batra and D. Cooke, "llcompare: A hierarchical netlist
comparison program,” in Proc. 29th Design Automation
Conf., pp. 299-304, 1992.

81 k. L
verification using a rule-based approach,” in Proc. Int. Conf.
on CAD, pp. 190-192, 1985.

[91 M. Ohlrich, C.

"SubGemini: Identifying subcircuits using

Spickelmier and A. R. Newton, "Connectivity

Iibeling, 5. Ginting, and L. Sather,
a fast subgraph
isomorphism algorithm,” in Proc. 30th Design Automation
Conf., pp. 31-37, 1993.

[10] Dracula standalone verification reference manual, Dec. 1994

Table 1. Experimental results

o ‘ Geminill Our IHILVS
circuit #r's
CPU [sec] Memory [MB]| CPU [sec] |Memory [MB]

exl 5,628 3 (<1+3) 2.6 1 2.3

ex? 27,091 7 (3+4) 12 10 15

ex3 82,194 50 (12+38) 38 31 29

exd 666,366 | 1,084 (508+576) 306 292 226
total 781,279 1,144 358.6 334 272.3




	CD-ROM Home Page
	ASP-DAC98
	Front Matter
	Table of Contents
	Session Index
	Author Index


