
On the CSC property of Signal Transition Graph Speci�cations for

Asynchronous Circuit Design

Mohit Sahni Takashi Nanya

Computer Science Department Research Center for Advanced Science

Tokyo Institute of Technology and Technology, University of Tokyo

e-mail: msahni@cs.titech.ac.jp e-mail: nanya@hal.rcast.u-tokyo.ac.jp

Abstract{ This paper proposes a new approach for

asynchronous logic synthesis from Signal Transition

Graph (STG) speci�cations. The Complete State

Coding (CSC) property of STGs is a necessary con-

dition to get a circuit implementation from an STG.

We present a novel method to check the CSC property

of STGs. We also discuss some heuristics which auto-

matically modify the STG so that the CSC property is

satis�ed. Our approach gives the designer some free-

dom to specify in what way a given STG is modi�ed.

Experimental results on a large set of benchmarks

indicate a clear improvement over previous methods

both in terms of time taken and in the reduction of

the two level area literals.

I. Introduction

Recent progress in device technology is disclosing a fun-

damental restriction in synchronous system design. A

natural solution to this problem is the introduction of

asynchronous or event-driven computing[8]. Without a

global clock, asynchronous circuit design can potentially

solve many problems such as clock skew and power dis-

sipation which are encountered by synchronous circuits.

Speed-independent circuits are a class of asynchronous

circuits that operate correctly in the presence of un-

bounded gate delays and zero wire delays. Signal Transi-

tion Graphs (STGs) are a subclass of interpreted Petri

nets originally presented in [1] for the speci�cation of

speed-independent control circuits.

Synthesis of asynchronous circuits automatically from

an STG speci�cation has become an active research

area[1, 10, 12]. This essentially consists of two steps: 1)

Checking if a given STG satis�es conditions necessary for

it to be implementable and 2) Logic Synthesis. The Com-

plete State Coding (CSC)[5] properties, which guarantees

that all the states in the speci�cation are distinguishable,

is one of the necessary conditions for an STG to be im-

plementable.

There have been e�orts to check the CSC property on a

given STG and if the CSC property is violated, the STG

is transformed to satisfy the CSC property. Initially the

emphasis was on automatic repairing of STGs which did

not satisfy CSC. Repairing was done either by introduc-

ing signals or adding more constraints in the form of arcs.

A common characteristic of many of these schemes is that

the State Graph (SG) derived from the STG is used as the

main data structure. Algorithms in [4, 2, 13], all use the

SG as an intermediate data structure. Since the size of

an SG can be exponential on the number of signals in the

circuit, all these methods show an exponential worst-case

time complexity. Other methods use STG as the main

data structure however, methods in [5, 9] can only han-

dle STGs without choice operation (marked graphs). In

[11], the method checks for Unique State Coding (USC)

property which is a su�cient condition for the CSC prop-

erty, so this method may modify an STG speci�cation

even when not required. In [7] an e�cient algorithm for

checking the CSC property was proposed however their

method relies on only inserting new signals to modify the

STG. None of the previous methods allows the designer

to specify how an STG should be modi�ed.

In this paper we propose a new algorithm which detects

CSC violations. The algorithm works in the STG domain

and can handle free choice nets. A net with a CSC vi-

olation is automatically modi�ed. The modi�cations are

made in the form of adding arcs and (or) inserting new sig-

nals, depending on the designer's priorities. Unlike previ-

ous methods our method gives the designer some freedom

in the modi�cation process. Experimental results show

an improvement over the previous methods, in terms of

computation speed and area of resulting circuits.

The paper is organized in the following way. Section

II discusses some basic concepts of STGs. In section III

we de�ne our problem and Section IV discusses about

our CSC veri�cation algorithm, and the heuristics used to

repair STGs with CSC violations. Experimental results

and conclusions are given in sections V and VI.

II. Preliminaries

A Petri net(PN) is a four-tuple � =< P; T; F;M0 >

where P , T and F form a directed bipartite graph. P

represents a �nite set of places and can specify choice or

conict. T represents a �nite set of transitions. F gives

the ow relation, F � (P � T) [(T � P). A marking M

of a net is an assignment of non-negative integers called

tokens to each place p 2 P . M0 de�nes the initial marking

of the system.

A Petri net1 is a very powerful way of describing the

behaviour of concurrent systems[6]. When there exists a

directed edge from transition t to a place p, t is called the

fanin transition of p, and p is called the fanout transition

of t. A marked graph (MG) is a net where every place

has exactly one fanin and one fanout transition. A state

machine (SM) is a net where every transition has exactly

one fanin and one fanout place. A free-choice (FC) net

is a Petri net where every place p 2 P with more than

one fanout transition is the unique fanin place for all its

fanout transitions. An FC net can be broken down into

its MG components and SG components [1].

An STG is an interpreted net where each transition is

interpreted as a physical transition of some signal. Signals

can be of input or non-input (output and internal) signals.

Input transitions come from the environment and in gen-

eral it is assumed that the environment cannot be changed

by the circuit. Transitions of signals are described by

s� f+;�g. s+ represents a rising transition of a signal s

i.e the value of signal s is changing 0! 1. s� represents

a falling transition of signal s. s� denotes some transition

of signal s (either s+ or s�), and s� denotes the com-

plementary transition of s�. The State Graph (SG) is a

�nite automaton obtained by \executing" the STG. An

STG is executed by examining all the possible markings

reachable fromM0. Each node in an SG can be assigned a

binary code as proposed in [1]. The binary code is simply

the set of values that all the signals have in that particular

state.

A. Properties of STGs

There are some important properties such as correct-

ness and complete state coding which appear as syntac-

tic conditions on the STG. Other properties of STGs are

given in detail in [1].

De�nition 1 [1] A simple path in an STG is a se-

quence of transitions and places � = t1 : : : titj : : : tn s.t

ti 6= tj, for any i 6= j. A simple cycle in an STG is a

sequence of transitions and places � = t1 : : : titj : : : t1 s.t

ti 6= tj , for any i 6= j.

De�nition 2 A sequence SQ of transitions of an STG

is said to be feasible,if there exists a path in the cor-

responding SG which exactly contains the transitions in

SQ.

De�nition 3 [3] An STG/FC is correct i� it satis�es

the following four conditions:

1. In each feasible sequence of signal transitions, up and

down transitions of the same signal alternate.

1The terms net and Petri net are used interchangeably

2. From any state, in any feasible sequence of signal

transitions, the �rst change of certain signal is of the

same sign (also called \initial stability").

3. No place in any reachable marking has more than one

token.

4. Any free-choice place precedes only transitions of dif-

ferent input signals.

De�nition 4 An STG is said to satisfy the Complete

State Coding (CSC) property if,

� every state on its corresponding SG has a di�erent

binary code, OR

� when the same binary code is assigned for two di�er-

ent states S1 and S2, the enabled transitions for all

the non-input signals are the same in both states S1
and S2.

For a given net �, the temporal Relation is a symmetric

binary relation applied to two items n1; n2 2 T [P . Let

n1; n2 2 T [P of a live FC net.

� n1 and n2 are ordered, fn1; n2g2li, i� there is a sim-

ple cycle in � to which both n1 and n2 belong.

� n1 and n2 are concurrent, fn1; n2g2co, i� fn1; n2g62li

and there exists an MG component of � to which

both n1 and n2 belong.

� otherwise, n1 and n2 are in conict, fn1; n2g2cf,

De�nition 5 When a transition o� immediately follows

after another transition t� and fo�; t�g 2 co, transition

o� is said to be non-persistent. An STG with a non-

persistent transition does not satisfy Chu's persistency

constraint[1].

Correctness2 and the CSC property are the necessary

and su�cient conditions for the existence of implemen-

tation of circuits from the given STG. Correctness is re-

quired for preventing deadlock and the CSC property ba-

sically means that the behaviour of the physical circuit is

the same in two states which have the same binary rep-

resentation. The USC condition[9, 11] is only a easily

veri�able su�cient condition for CSC. Chu's persistency

is neither a necessary nor a su�cient condition for gener-

ating circuits from an STG[7].

III. Problem Definition

The property of correctness on an STG is not very dif-

�cult to check[3]. The CSC property is often violated in

many STG speci�cations and is the most stringent re-

quirement on STGs. High speed and e�cient algorithms

2The condition of liveness, found in most STG literature is a
slightly stronger condition than correctness

are desired for checking and solving the CSC property.

Algorithms should avoid using the SG as an intermedi-

ate data structure due to the high cost factor in terms

of time complexity. It is also desirable that the modi-

�cations made on the STG are in compliance with the

requirements of the designer. Adding arcs to the STG

may slow down the speed of the resulting circuit so arcs

should be added only if they do not slow down the circuit

beyond the designer's speci�ed limit.

IV. Methodology

Starting from a given STG, state codes with dont-cares

are assigned to each place in the corresponding Petri net.

In any reachable marking of the net, the set of state codes

corresponding to the places in which a token is present,

gives complete information about the state of the system.

Thus, a CSC conict in the SG will correspond to two

di�erent markings of the net where the state codes have

the same value. The proposed algorithm �nds out pairs

of markings which cause a CSC conict. Then, we use

two heuristic approaches to solve the CSC conict. The

�rst heuristic adds arcs in the STG to remove some CSC

conict causing states. The second heuristic adds new

signals to make the STG CSC conict free.

A. The CSC Property: Veri�cation

Fig. 1(a) shows an STG which has a CSC conict. The

conict occurs because there exists a complementary path

fa+; a�g in the STG. A complementary path in an MG

component is a feasible sequence SQ of transitions of the

STG, such that SQ 6= T and there are an equal number of

rising and falling transitions for each signal. In an MG, for

every CSC violation there exist two complementary paths

P1 and P2 such that P1 � MG, P2 � MG, P1 \ P2 = ;

and MG = P1 [P2.

001

100 010

110

011

010

000

c-

b-

c+

a-

a+

b+a+

b+

(b)

c-

a+ b+

a-c+

b- p2

p3

p1

p4

p5

p7

X00

1X0

0X0

010

011
p6

X10

(a)

001

Fig. 1. CSC Violation (a) STG with State Codes (b) State Graph

De�nition 6 A CSC conict is said to be a unique

CSC conict if, of the two complementary paths cor-

responding to the CSC conict, at least one cannot be

broken down into smaller complementary paths.

A.1. Assigning State Codes

For assigning the state codes we use the method de-

scribed in [12]. We use a relation called the Interleaved

relation.

De�nition 7 Let a*/i and a*/j be two di�erent transi-

tions of the same signal a. A place p is said to be Inter-

leaved with transitions a*/i and a*/j if there exist simple

paths �1 and �2 such that

� a*/i �1p�2a*/j forms a simple path,

� �1 and �2 don't contain any transition of signal a,

and

� there is no transition of signal a which is concurrent

to any transition t 2 �1 [�2 [fpg.

For example in Fig. 1 it can be seen that place p1 is

interleaved between a� and a+. Similarly place p5 is

interleaved between b+ and b�.

Every place p in a given petri net � can be assigned

a code Cp. The code has a literal corresponding to each

signal in �. Let Ca
p denote the literal corresponding to

signal a. Then,

Ca
p =

8>><
>>:

1 if p is interleaved with (a+/*,a-/*)

0 if p is interleaved with (a-/*,a+/*)

X if p is concurrent with some transition of a

- otherwise

The sum of two literals l1 and l2 is de�ned as l1 if

l1 = l2 or l2 = X, l2 if l1 = X else sum of l1 and l2 is

unde�ned. The sum of two states codes Cp1 and Cp2 of

places p1 and p2 of the Petri net is de�ned as the sum

of each of its corresponding literals. If the sum of any of

their corresponding literals is unde�ned, the sum of Cp1

and Cp2 is unde�ned.

Theorem 1 If p1; p2 2 P and fp1; p2g 2 co and � is a

correct FC net, sum(Cp1; Cp2) is always de�ned.

Proof: Follows from de�nition of correctness in [3].

From Theorem 1 it follows that the sum (or code) of a

(all the places in) a marking is always de�ned for a correct

STG. In Fig. 1, the code of marking fp1; p4g is the sum

of the places having tokens in the marking. Taking the

sum of state codes for places p1 and p4, we get state

0X0 +X10 = 010.

De�nition 8 A marking is said to be partial if it does

not completely specify the state of the system otherwise it

is complete.

It is su�cient to check the STG/FC net for unique CSC

conicts. If the unique CSC conicts are removed the

STG/FC net can satisfy the CSC property. For each

unique CSC conict we can �nd two (partial or com-

plete) markings M1 and M2 which have exactly the same

code. For Fig. 1, M1 = fp1; p4g and M2 = fp5g and

Code(M1) = Code(M2) = 010. However, if M1 and M2

are partial markings with same codes and if all the places

which are concurrent with all the places in M1 are the

same as all the places concurrent with all the places in

M2, a CSC conict occurs. All it means is that a certain

set of places can be added to both M1 and M2 to com-

plete their markings but the actual CSC conict is caused

by the transitions �red betweenM1 andM2 which form a

complementary set. Fig. 2 shows a part of an STG. Places

p4; p5; p6 and p7 all are concurrent with places p1; p2 and

p3. fp1g speci�cs a partial marking which has same code

as partial marking fp3g and this is su�cient to detect the

CSC conict caused by the transitions fa+; a�g. We call

the pair of markings p1; p2 and p3, as minimal as it is

enough to specify the CSC violation.

a-

a+ b+ c+

p1

p2

p3

p4

p5 p7

p6

Fig. 2. Part of an STG used to show su�ciency of Partial Marking

Lemma 1 Let M1 = fp11 ; p12 ; : : : ; p1ng and M2 =

fp21 ; p22 ; : : : ; p2mg be two minimal (partial or complete)

markings which cause a unique CSC conict. Let G =

(V;E) be a graph such that V = M1 [M2 and vi 2 V

^vj 2 V ^fvi; vjg 2 li, fvi; vjg 2 E . Graph G is con-

nected.

Proof: The above lemma is proved by contradiction. Let

us assume that the graph is not connected and let G1 be

a subgraph. If G1 has only one node n then, n is not

connected with any other node and n is concurrent to

all nodes in V�fng. This means that n is a redundant

node which appears in both the given markings and the

markings M1 and M2 are not minimal, which is a con-

tradiction. Next if G1 has more than one nodes then, G1

contains nodes both from M1 and M2 (as nodes only in

M1 or M2 cannot be connected). Let N1(N2) represent

the nodes from M1(M2) which are in G1. All nodes in G1

will be concurrent to all nodes in V�N1[N2. This means

that all the transitions betweenN1 andN2 (orN2 andN1)

should be concurrent to all nodes in V �N1[N2. SinceM1

and M2 cause a CSC conict and two transitions of the

same signal cannot be concurrent to each other, N1 and

N2 also cause a complementary path, which means that

the CSC conict speci�ed by M1 and M2 is not unique.

Hence a contradiction. 2

Figure 3 shows the connected graph component got

from the conicting markings fp1; p4g and fp5g got from

the STG in Fig.1a.

p1 p4

p5

0X0 X10

010

Fig. 3. The connected graph component G for the STG in Fig.1a

A.2. The Algorithm

Lemma 1 is the basis for our algorithm. So the prob-

lem of detecting CSC conicts reduces to �nding such a

connected graph which speci�es the conict causing mark-

ings. For a unique CSC conict, each pair of nodes that

is connected in the graph have matching codes. We say

that the codes of two places are said to match if each

literal in the two codes matches. A dont-care X matches

0,1 or X. Two codes are said to be equal if each literal

in a code is the same as the corresponding literal in the

other code. So after forming a set of all the pair of places

with matching codes (which can be done in O(N2) time,

N being the number of transitions in the given net), we

use a simple Expand algorithm to �nd the CSC conict.

Our Expand3 algorithm starts with a matching pair and

keeps on adding matching pairs recursively until all the

possible markings which can cause a possible CSC con-

ict are formed. For each pair of matching nodes our

algorithm takes O(N) time. So for all the pairs the time

taken is O(N2). So our algorithm detects a CSC violation

in O(N2) time.

The CSC Algorithm has two parts based on the follow-

ing. Let S1 and S2 be two di�erent states in a SG. Let

T1 be the set of transitions which lead to state S1 and T2
be the corresponding set for s2. The following two cases

may arise. Either,

1. all transitions in T1 are in conict with all transitions

in T2, or

2. otherwise.

The �rst case means that the two states can only be

reached by conicting transitions; i.e. they can never be

reached by one MG component we call these as the Con-

icting States. The second case means that both states

s1 and s2 can be reached by one MG component. We call

such states as the Non-conicting States. The �rst part of

3We donot claim that our Expand algorithm is the most e�cient
way to �nd the connected graph (Lemma 1), but it is fast and
simple.

the algorithm deals with checking CSC on non-conicting

states and the second part covers the conicting states.

For conicting states the graph G (Lemma 1) which causes

a CSC violation is connected but an edge occurs between

two nodes only if they are in conict.

Algorithm:

For non-conicting state codes

begin
1 Make a match set M = [< p1; p2 >: fp1; p2g 2 li ^

p1 matches p2]

2 While M 6= � do

2.1 Take one element < p1; p2 > out of M , set P1 =

fp1g and P2 = fp2g

2.2 Expand(P1; P2) recursively. For < pi; pj >2 M

^pi 2 P1(P2) ^ 8pk 2 P2(P1), fpj; pkg 2 co,

then < pi; pj > can be used to expand P1 or

P2. Expand recursively adds elements to P1 or

P2 until none of them could be expanded any

furthur.

2.3 If codes represented by P1 and P2 are not equal,

goto Step 2.

2.4 If codes represented by P1 and P2 are equal and

have don't cares then

2.4.1 Let E1(E2) denote the set of places which

are concurrent to each place in P1(P2)

2.4.2 If E1 6= E2 then goto Step 2.

2.5 If the non-input signals enabled by set P1 are

the same as enabled by set P2 then goto Step 2.

2.6 Report: CSC not satis�ed by sets P1 and P2,

goto Step 2.
end

For conicting state codes

begin

1 Make a match set M = [< p1; p2 >: fp1; p2g 2 cf ^

p1 matches p2].

2 same as Step 2 above.

end.

B. The CSC Property: Repairing

In this section we will discuss two heuristics which at-

tempt to solve a CSC violation in an STG/FC net.

B.1. Heuristic 1

Fig. 4 shows a part of an STG. t1 and t2 are concurrent

in the original STG but if a constraint t1 ! t2 is added,

the circuit speed might get slower. Some of the transi-

tions which follow t2 and are concurrent to t1 will also

have to wait for t1 to �re. t3 represents such a transition

which is the farthest (i.e t3 does not lead to any transi-

tion which is both concurrent to t1 and dependent on t2).

t is the closest transition which is ordered with both t1

t

t1 t2

t3

d1
d2

d3

r

Fig. 4. Cost of adding t1 ! t2 = d1 + d3 + 2� d2

and t2 (t can be found by simple back tracking from t1
and t2). d1; d2 and d3 represent the distances (number of

transitions) in the respective paths.

Now lets take the worst case that can occur to degrade

the circuit performance. After the �ring of t if all the

transitions between t and t2 have �red and none of the

transitions between t and t1 have �red. This delays the

�ring of the furthest transition t3. It would have been

possible that without the arc t1 ! t2, transition t3 would

have �red before the �ring of t1. So now the extra delay

that occurs is equivalent to �ring of d1 + d3 + 2 tran-

sitions (the factor 2 is to incorporate the transitions t1
and t2). However this estimate is too pessimistic. In a

real circuit if d2 has a high value, it is less probable that

such a case occurs (assuming that none of these include

time consuming operations). A better esimate would be

that since transitions between t and t1 occur concurrently

with transitions between t and t2, d2 transitions should

be subracted from d1 transitions. This gives the cost as

a function Cost(t1 ! t2) = d1 + d3 + 2 � d2. The Cost

function simply estimates the number of transitions that

a particluar transition can be delayed due to the adding

of arc t1 ! t2.

To compare two di�erent costs we assume that the more

the number of transitions in a path the more the worst-

case delay4. The Cost function is used to choose between

di�erent candidates and it is also used for interacting with

the designer. The designer can specify the acceptable loss

of concurrency and then no arc will be added if the cost

is more than what is speci�ed by the designer. The user

may also set the acceptable loss of concurrency to 0 or 1

if required.

Many of the CSC conicts can be solved by just adding

one arc. The arc can be added as shown in Fig. 5. The

4The delay of a transition highly depends on the number of fanins
and fanouts. So, in a true situation the worst-case delay of one
transtion may be more than the sum of the worst-case delay of two
transitions.

p1 p2 p3

p4 p5

RR’

t

t
-

r

t’

Fig. 5. Adding one arc to solve a CSC violation

two marking fp1; p2; p3g and fp4; p5g have the same state

code and cause a CSC violation. If two places which be-

long to one of the two markings (fp1; p2; p3g or fp4; p5g)

become ordered after adding some arc, that marking is

never possible again. Consider Fig. 5, if an arc is added

from transition t to transition t0, the two places p2 and

p3 which were concurrent earlier become ordered. So the

marking fp1; p2; p3g can never occur again and this solves

the CSC conict.

But adding arcs may increase the circuit size or make

logic synthesis di�cult. In [10], it was shown that in the

synthesis of circuits from STGs which donot satisfy Chu's

persistency constraint require an OR-gate in their syn-

thesis. Though the circuits are speed-independent, they

are more prone to hazards when realized actually where

wire do have some delays. Thus we try that we donot

introduce Chu's non-persistency while adding arcs.

So for adding an arc from transition t to t0 which are

concurrent transitions the following constraints must be

satis�ed.

1. t and t0 should belong to separate complementary re-

gions, say R and R0

2. t0 shouldn't be a transition of an input signal.

3. After putting the arc there should be an order t !

t0 ! �t. This guarantees that there is least overhead

in terms of circuit size and also Chu's persistency is

not violated.

4. t! t0 should make two places of a CSC conict caus-

ing marking to be in order (putting the arc should

atleast solve one CSC conict)

5. Cost(t ! t0) should be less that overhead allowed by

designer.

6. Putting this arc should not put time consuming con-

current operations in order.

Arcs are added iteratively using a greedy approach.

Adding arcs for conicting states is also done in a simliar

ro+

ri- ai+

ro-

ai-__

__ri+

ro+

ri- ai+

ro-

ai-__

__ri+

(a) (b)

Fig. 6. (a) An STG from the SIS benchmarks (b) CSC violation
removed

manner. As an example consider the STG in Fig. 6(a).

The CSC violation occurs there is a complementery path

fai�; ai+g. If the violation is to be solved by insering sig-

nals, no signal can be inserted in this complementary path

as it has only input transitions. Signals can be inserted

to make the non-input signals enabled in the conicting

state to be the same but this may require many new sig-

nals. However, the same problem can also be solved by

inserting arcs. Fig. 6(b) shows the solution by adding

these arcs. The cost of adding these arcs is also minimal.

B.2. Heuristic 2

Heuristic 1 given in the presvious section is very strict

and in most cases it is not able to remove all CSC con-

icts. In such a case we remove CSC conicts by insert-

ing signals. The adding of signals is done in the following

manner.

1. For each conict �nd the complementary paths from

the pair of markings given by our Algorithm. Also

make a kist of all the possible places where a signal

can be inserted.

2. Then we choose two points which are ordered and

which solve a maximum number of CSC conicts and

these add transitions s+ and s� at these points (s is

a new signal)

3. Step 2 is repeated till all the conicts are removed.

V. Experimental Results

Table V shows the results of the proposed algorithm.

The algorithm was implemented in the C language and

the program was run on a Sun Sparc Workstation. We

tested our method on a large number of benchmarks

and we compared our results with those of SIS[4] and

Petrify[2]. Our algorithm outperforms both SIS and Pet-

rify both in terms of time taken and in reducing the two

level area literals. For heurestic 1 we did not use any

limit on permissible reduction in concurrency. Just for

comparison, Petrify took over 80 sec to solve the CSC

for benchmark mr1 while, our method takes less than a

second.

TABLE I

Experiment Results

STG Name Speci�cations SIS Petrify Our Method

initial �nal �nal �nal

sig. trans. states sig lit sig lit sig lit time (s)

par 4 10 28 628 Error 14 41 14 41 0.64

mr0 11 22 302 13 86 14 53 14 42 0.94

mr1 9 18 190 11 53 12 43 11 36 0.57

mmu0 8 16 174 Error 11 46 9 23 0.46

mmu1 8 16 82 10 37 10 32 8 21 0.57

sbuf-ram-write 10 20 58 12 35 12 24 11 34 1.11

vbe4a 6 12 58 8 41 8 24 9 29 0.25

nak-pa 9 18 56 10 41 10 21 10 19 0.51

ram-read-sbuf 10 20 36 11 23 11 20 10 21 0.59

sbuf-send-pkt2 6 23 21 7 14 7 18 7 15 0.55

duplicator 4 12 20 5 24 6 22 5 12 0.26

sbuf-read-ctl 6 12 14 7 15 7 15 7 16 0.22

seq8 18 36 36 Error 24 49 22 45 2.54

seq mix 8 20 20 10 34 11 23 10 24 0.53

spec seq4 10 20 20 12 37 13 23 12 23 0.50

atod 6 12 20 7 19 7 19 7 12 0.23

alloc-outbound 7 20 17 9 23 9 18 9 16 0.47

TOTAL 482 491 429 10.94

VI. Conclusions and Future Work

E�cient methods for the synthesis of asynchronous

logic from STG/FC net speci�cations are presented. Our

algorithm checks for the CSC property on FC nets and

is e�cient on computing time. Unlike most of the previ-

ous methods, we work directly on the STG and obviate

the need for an SG representation. We have shown that

how the pair of markings which lead to a CSC violation

form a connected graph and our method basically works

on �nding such a connected graph.

FC nets which violate the CSC property are repaired

using two heuristic techniques. The �rst technnique adds

arcs to serialize some concurrent operations. Arcs are

added only if they also reduce the circuit size while not

reducing the speed of the resulting circuit considerably.

We have tried to associate a cost factor which gives an

idea of how much concurrency is lost if an arc is added.

Previous methods have never allowed the designer to have

any say in the modi�cation process. The second heuristic

simply adds new signals to remove the CSC violations.

Compared to previous methods our approach leads to a

clear improvement in terms of both compution speed and

circuit areas.

Future work includes algorithm improvement and bet-

ter repairing techniques. Compution speed can be im-

proved furthur by using a better algorithm (rather than

our Expand) for �nding the graph which causes the CSC

conict. Better and more realisitic ways of measuring the

cost of adding an arc in the STG are also required. As

far as we know till now there hasn't been much work on

analyzing the cost in terms of loss of concurrency.

References

[1] Tam-Anh Chu. Synthesis of Self-timed VLSI Circuits from

Graph-theoretic Speci�cation. PhD thesis, MIT, June 1987.

[2] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev. Methodolgy and Tools for State Encoding in
Asynchronous Circuits. In Proc. of 33rd DAC, pages 63{66,
1996.

[3] A. Kondratyev and A. Taublin. On Veri�cation of the Speed-
Independent Circuits by STG unfoldings. Technical Report
94-2-001, The University of Aizu, 1994.

[4] L. Lavagno, C.W. Moon, R.K. Brayton, and A. Sangiovanni-
Vincentelli. Solving the State Assignmnent Problem for Signal

Transition Graphs. In Proc. of 29th DAC, 1992.

[5] K.J. Lin and C.S. Lin. Automatic Synthesis of Asynchronous
Circuits. In Proc. of 28th DAC, pages 296{301, 1991.

[6] T. Murata. Petri Nets: Properties, Analysis and Applications.

Proceedings of the IEEE, 77(4):541{580, April 1989.

[7] R. Nagalla and G. Hellestrand. Signal Transition Graph Con-
straints for the Synthesis of Hazard-free Asynchronous Circuits

with Unbounded-Gate Delays. In Formal Methods in System

Design, 5, pages 245{273, 1994.

[8] T. Nanya. Challenges to dependable Asynchronous Processor

Design. In Int'l Symp. on Logic Synthesis and Microprocessor

Architecture, pages 132{139, July 1992.

[9] F. Cathoor P. Vanbekbergen, G. Goosens and H. J. De Man.
Optimized Sythesis of Asynchronous Control Circuits from

Graph-Theoritic Speci�cations. IEEE Transactions on CAD,
11(11), November 1992.

[10] S. Park and T. Nanya. Synthesis of Asynchronous Circuits
from Signal Transition Graph Speci�cations. IEICE Trans.

Information Systems, E80-DI(3):351{361, March 1997.

[11] E. Pastor and J. Cortadella. An E�cient Unique State Coding

Algorithm for Signal Transition Graphs. In Proc. of ICCD,
pages 174{177, 1993.

[12] E. Pastor, J. Cortadella, A. Kondratyev, and O. Roig. Struc-

tural Methods for the Synthesis of Speed-Independent Circuits.
In Proc. of European Design and Test Conference, pages 340{
347, 1996.

[13] P. Vanbekbergen, B. Lin, G. Goosens, and H. J. De Man. A
Generalized State Assignment Theory for Transformation of
Signal Transition Graphs. In Proc. of ICCAD, pages 184{187,

1992.

	CD-ROM Home Page
	ASP-DAC98
	Front Matter
	Table of Contents
	Session Index
	Author Index

