
Optimization of the Background Memory Utilization by Partitioning

Uwe Eckhardt Renate Merker

IEE, TU Dresden IEE, TU Dresden

eckhardt@iee.et.tu-dresden.de merker@iee1.et.tu-dresden.de

Abstract

The skilful utilization of the memory structure of a
processor and of its background memory may crucially
a�ect the system performance. We propose a restruc-
turing of for-loop programs by hierarchical partitioning
which improves the properties of the algorithm with re-
spect to the memory utilization. We consider the prob-
lem for regularly connected processor arrays (where
single processors are a special case) and for a mem-
ory structure which is subdivided into local foreground
memory (register) and background memory with up to
three levels (cache, RAM, mass storage). The exten-
sion of the lifetime of a variable on an inner memory
level, i.e. the decrease of the number of read accesses
to more outer memory levels is the object of the pro-
posed method.

1 Introduction

The e�cient processing of for-loop programs on sin-
gle processors and processor arrays is a well studied
problem, which incorporates program restructuring
techniques and high level synthesis methods. There
exist compiler systems for the mapping of for-loop
programs, where indexing functions of the variables
are a�ne functions of the loop indices, onto (piece-
wise) regularly connected processor arrays. An essen-
tial step in these compilers is the transformation of
global data dependencies into local data dependencies
by localization procedures [16]. The resulting algo-
rithms, the so-called (conditional) uniform recurrence
equations (URE`s) [8], are considered in this paper.
The loop-transformations splitting and interchange
have been discussed in [18, 17] for the memory syn-
thesis for these algorithms. We apply these ideas in
a systematic partitioning framework. We extend the
improvement of the foreground memory utilization by
an improvement of the utilization of di�erent levels
of the background memory. The background memory
is supposed to be structured in a cache level, a RAM
level and a mass storage level (see Fig.(1)). The exten-
sion of the lifetime of a variable on an inner memory

level , i.e. the decrease of the number of read accesses
to more outer memory levels is the object of the pro-
posed method. The foreground memory is supposed
to be local memory (register) associated to each pro-
cessor and the background memory belongs to the pe-
ripheral system.
We propose a hierarchical application of the well
studied locally parallel, globally sequential (LPGS)-
and locally sequential, globally parallel (LSGP)-
partitioning schemes [7, 9, 11, 10, 12, 6, 1, 14, 15]
for the systematic solution of the memory utilization
problem.
The remainder of the paper is organized as follows:
Section 2 presents the key-concept of the optimization
of the background memory utilization by hierarchical
partitioning for the example of the matrix multiplica-
tion. Section 3 is devoted to the mathematical model
of the proposed method. Finally, a conclusion is given.

PE

foreground
memory

foreground
memory

foreground
memory

PE PE

Cache

RAM

mass storage

Figure 1: Memory structure

2 The key-concept of hierachical par-

titioning

In this section we illustrate the key-concept of the
hierarchical partitioning for the example of the matrix
multiplication C = QW of two square matrices of

order N .

n2

n1 N

Q

W

N

Figure 2: Example: matrix muliplication array

2.1 Foreground memory utilization and
I/O access behaviour to the back-
ground memory

The �rst step of the mapping of the matrix multi-
plication onto the processor array results in a so-called
full size array (see section 3.1). Here, the extend (i.e.
the number of processing elements) of the array de-
pends on the order of the matrices. The full size array
for the considered matrix multiplication is shown in
Fig.(2). The variables w and q are propagated along
the directions n1 and n2 respectively. The variables c
are �xed on the processing elements.
The goal is the processing of the algorithm on a struc-
ture with a de�ned number of processing elements and
a de�ned I/O-behaviour between the processing ele-
ments and between the whole array and the periph-
eral system. Hence, partitioning techniques have to be
applied. Suppose as target architecture a processor ar-
ray with two times two processing elements and with
given I/O-capacities of the interconnections between
the processing elements of the array and between the
array and the peripheral system, which contains the
background memory. The co-partitioning method [4]
which represents a simultaneous LPGS- and LSGP-
partitioning (see section 3.2) has to be applied to
adjust the full size array Fig.(2) to the given con-
straints. Fig.(3) depicts the co-partitioning of the full
size array. The small rectangles symbolize the LSGP-
partitions. All tasks belonging to an LSGP-partition
are performed sequentially on one processing element
of the partition. Thus, there remains only one process-
ing element for each LSGP-partition. The remaining
processing elements are drawn black. The doted lines
within the LSGP-partitions in Fig.(3) represent the in-
troduced sequential scheduling. All LSGP-partitions
are active in parallel. Hence, the N �N full size array

n2

n1 N

N

Figure 3: Foreground memory allocation by two-fold
partitioning

has been transformed into an LSGP-partitioned array
of N

2
� N

2
processing elements. The large rectangles in

Fig.(3) symbolize the LPGS-partitions. The proces-
sors of an LPGS-partition are active in parallel and
the partitions are scheduled sequentially. Each parti-
tion consists of two times two processing elements.
The LSGP-part of the co-partitioning de�nes the size
of the local foreground memory,which has to be added
to each processing element. The size of this local
memory depends directly on the number of processing
elements, which belong to the LSGP-partition. The
LSGP-partitioning and hence, the addition of fore-
ground memory leads to a decrease of the I/O-demand
between the processing elements of the array and be-
tween the whole array and the peripheral system. A
partition of two times two processing elements has to
receive two variables w and two variables q and has to
put out also two variables w and two variables q for
each processing cycle. Hence, a partition of two times
two processing elements has an I/O-demand with the
peripheral system of eight data items in each process-
ing cycle. Each LPGS-partition in the co-partitioned
array shown in Fig.(3) has an I/O-demand of 16 data
items. However, this I/O-demand is distributed over
the four sequential cycles introduced by the LSGP-
partitioning. Hence, we achieve a mean value of the
I/O-demand of four data items per clock cycle.
Therefore, we can realize a balancing of the size
of the foreground memory and the I/O-access be-
haviour of the array to the background memory by

co-partitioning. The co-partitioning represents a par-
titioning with a hierarchy of two levels (see section
3.2).

2.2 Improvement of the cache utilization

Suppose, that a co-partitioning has been applied
to achieve an array of two times two processors
with an I/O-behaviour which is adjusted to the I/O-
constraints imposed by the peripheral system. The
resulting LPGS-partitions (co-partitions) have to be
scheduled sequentially. The elements symbolized by
the triangles in Fig.(4) represent the LPGS-partitions
(co-partitions) achieved in the previous foreground
memory allocation process. The sequential scheduling
of the LPGS-partitions can be given by two nested
for-loops, where one loop is associated with direction
n1 and the other with n2. The loop nest can be arbi-
trarily selected.
We assume, that we have a cache of 4 � 103 words

N’=N/4
(a)

(b)

N’

103

103

Figure 4: Improved cache level utilization by four-fold
partitioning

and an I/O-demand of 103 words in direction n1 and
n2 (i.e. 103 words have to be transferred to the ar-
ray in each direction n1;2 for the processing of all
tasks which are allocated to an LPGS-partition (co-
partition)). We could store the �rst 3 � 103 words of
variables q and the 103 words of variablew in the cache
in the case of a scheduling of the LPGS-partitions �rst
along direction n1 (inner loop) and then along direc-
tion n2 (outer loop). Hence, all variables w and the
�rst 3 � 103 words of variables q have to be read once
and the remaining (N 0 � 3) � 103 words of variables
q have to be read N 0 times from the RAM or mass
storage level. We obtain for this scheduling a read ac-
cess of (N 02 � 2N 0 + 3) � 103 words to the RAM and
mass storage level. The partitioning and scheduling

like shown in Fig.(4) leads to a decrease of this ac-

cess to (N
02

3
+ N 0) � 103 words. Hence, we obtain for

large N 0 a decrease of factor three. The doted lines in
Fig.(4) represent the sequential scheduling within the
partitions and of the partitions respectively.
Obviously, this partitioning represents also a co-
partitioning, where the LPGS-partitions consist of one
processing element, which is symbolized by the white
star in Fig.(4). Fig.(4b) illustrates the sequential
scheduling of the LPGS-partitions of the second co-
partitioning. Hence, we can apply the same formal
framework like for the foreground memory allocation
for the representation of this partitioning. Therefore,
we have to apply a partitioning with a hierarchy of four
levels for foreground memory allocation and improve-
ment of the cache utilization (see section 3.4). The
access to the RAM and mass storage occurs on the
boundary of the partitions. Hence, the optimization
of the cache utilization is given by the determination
of LSGP-partitions (in the second co-partitioning) of
maximal size, which can realize the internal commu-
nication (data transfers within the partition) via the
cache, i.e. without access to the RAM or mass storage.

read access improved improved
to level cache cache & RAM

RAM &

MS N 02

3
+N 0 N 02

3
+ 2N 0

MS N 02

6
+ 1:5N 0 3N 0

Table 1: Access to RAM and mass storage (MS) level

2.3 Improvement of the RAM utilization

Suppose a RAM of N 0=2�103 words in the memory
structure, which is attached to the array. If we ap-
ply the partitioning as shown in Fig.(4), then we can
store N 0=2�103 words w which have to be transferred
from the left to right side of the array (i.e. along n1)
in the RAM for the reuse in the next partition. The
remaining N 0=2 � 103 words which have to be trans-
ferred along n1 have to be read from the mass storage
each time a new partition is scheduled. Therefore,
the total amount of read accesses to the mass storage
during the processing of the matrix multiplication is

(N
02

6
+1:5N 0) � 103. A decrease of the amount of read

accesses to the mass storage can be achieved as fol-
lows: We modify the extend of the partitions shown in
Fig.(4) in direction n2 from N 0 to one. Thereafter, we
perform a third co-partitioning analogous to the sec-

ond one. Fig.(5a) depicts the second co-partitioning
after the third one has been performed, where the
white stars represent the LPGS-partitions. The ex-
tend of the partitions in direction n2 has been changed
from one to N 0=2. Fig.(5b) illustrates the third co-
partitioning. Thereby, we achieved a decrease of the
amount of read accesses to the mass storage from

(N
02

6
+1:5N 0)�103 to 3N 0 �103. However, the amount

of read access to the RAM and mass storage has been

increased from (N
02

3
+N 0)�103 to (N

02

3
+2N 0)�103 in

comparison with the previous result shown in Fig.(4).
The optimization of the RAM utilization is given by

N’

(a)

(b)

N’

N’/2

Figure 5: Improved RAM level utilization by six-fold
partitioning

the determination of LSGP-partitions (in the third co-
partitioning) of maximal size, which can realize the in-
ternal communication (data transfers within the par-
tition) via the RAM, i.e. without access to the mass
storage. Hence, we obtain a partitioning with a hier-
archy of six levels (see section 3.5).
The achieved results are recapitulated in Tab.(1).

3 Formalized partitioning
3.1 Basic de�nitions

We introduce the de�nitions of the considered sys-
tem of uniform recurrence equations (URE's), of the

mapping onto systolic arrays and of the partitioning.

De�nition 1 (System of URE's) A system of uni-
form recurrence equations (URE's) on a linearly
bounded lattice is a set of equations

yj[i] = F (x1[i� dx;1]; : : : ; xl[i� dx;l];

y1[i� dy;1]; : : : ; ym[i� dy;m]); j = 1; : : : ;m (1)

where the index space I of these equations is a linearly
bounded lattice 1

I = fi j i = Bz + b0; Ai � a0g; (2)

i 2 I are index points and i; z;b0 2 Z
n; a0 2 Q

m;B 2

Zn�n; rankB = n;A 2 Qm�n. The data dependence
vectors d:;: 2 D are constant, where D is the set of all
data dependence vectors in (1).

Example: The multiplication C = QW of two
square matrices of order N is given by:

c[i] = c[i� (0 0 1)t] + q[i� (0 1 0)t] �w[i� (1 0 0)t]

i 2 I = fi = (i j k)t j i = Iz;�
I

�I

�
i � (0 0 0 (1� N) (1�N) (1� N))tg;

where I is the identity matrix of order three. The data
dependence vectors are dc = (0 0 1)t, dq = (0 1 0)t,
and dw = (1 0 0)t. �

The scheduling of the computation tasks i 2 I in an
array is de�ned by scalar product with the scheduling
vector � . The allocation of the computation tasks
i 2 I to processors of the array is de�ned by a linear
projection with a projection vector u.

De�nition 2 (Mapping) The mapping M of the al-
gorithm onto the systolic array is of the following
form:

M : I ! J � T � P; M : D ! C � Tv � V; (3)

where J is the time processor space, T = ftjt = � ig is
the set of time instances at which the iterations i are
processed, and P = fpjp = Sig is the processor space,
where Su = 0;S 2 Zn�1�n; rank S = n� 1. C is the
set of interconnection primitives, where V = fvjv =
Sdg is the set of interconnections which have to be re-
alized in the array, and Tv = ftvjtv = �dg is the set of
time delays associated with the interconnections. The
constraints 8d 2 D : �d > 0 (causality) and �u 6= 0
(conict free) have to be satis�ed. The resulting array
architecture is called full size array.

1
This de�nition represents a special case of the more general

de�nition of linearly bounded lattices in [13] for a full rank

matrix B.

We claim, that j�uj=gcd(�B) = 1 holds, which is
equivalent to the fact that a processing element is ac-
tive in each clock cycle. The processor space is a lin-
early bounded lattice.

Example: We achieve the matrix multiplication ar-
ray shown in Fig.(2), if we apply the scheduling vector
� = (1 1 1)t and a projection vector u = (0 0 1)t. The
processor space P is given by

p 2 P = fp = (i j)t j p = Iz;

�
I

�I

�
p � (0 0 (1�N) (1� N))tg;

where I is the identity matrix of order two. The re-
sulting interconnections in the array are vc = (0 0)t,
vq = (0 1)t, and vw = (1 0)t. �

In general, constraints in the structure of the array
(e.g. number of processing elements) and I/O-demand
cannot be taken into account with this mapping pro-
cedure. Hence, partitioning techniques have to be ap-
plied. In the following we de�ne the subdivision of the
algorithm and the array into congruent partitions.

De�nition 3 (Partitioning) The partitioning of
the index space I of a system of URE's is given by the
partitions I�(i

0) in the index space together with the
set I0� as follows:

I�(i
0) = fiji = i0 +G�

�
�

; i 2 I; 0 � �z < #z;

z = 1; : : : ; n� 1g; (4)

where �z; #z 2 Z;�� 2 Zn;G� = [G;u] = [g1 : : :
gn�1u]. G is an integral basis of the hyperplane � i =
0, and i0 = G�;� 2 Zn�1. The set I0� of (reference)
vectors i0 is given by

I0� = fi0ji0 = izero +G�c; Lc � l; c 2 Zn�1
;

izero = G�; � 2 Zn�1g (5)

with � = diag(#i), and the polyhedron Lc � l is given
by the successive projection of the convex hull of

0
@ AG� AG�

I

�I
0

1
A
0
BBB@

�1
...

�n

c

1
CCCA �

0
@ a0 �Aizero

0

�(#� 1)

1
A
(6)

along the �j-axes, j = 1; : : : ; n, i.e. by Fourier-
Motzkin elimination, where # � 1 = (#1 � 1 : : :
#n�1� 1)t , and I 2 Z(n�1)�(n�1) is the identity ma-
trix.

Hence, the processor space P is subdivided into par-
titions

P�(p
0) = fpjp = p0 +N�; p 2 P; 0 � �z < #z;

z = 1; : : : ; n� 1g (7)

with N = [n1 : : :nn�1]; nj = Sgj, and p
0 2 P0

� ,

P0

� = fp0jp0 = Sizero +N�c; Lc � lg: (8)

Example: Let us consider the partitioning of the
processor space symbolized by the small rectangles
in Fig.(3). The parameters are N = (n1 n2) and
#1 = #2 = 2, � = diag(#i). �

3.2 Foreground memory utilization

A two-fold partitioning, called co-partitioning [4],
is necessary for the scaling of the structure of the ar-
ray and for the balancing of the size of the foreground
memory and of the I/O-access behaviour of the array
to the peripheral system (background memory). The
co-partitioning is a simultaneous LPGS- and LSGP-
partitioning. The LPGS-partitioning leads to an ar-
ray of �xed size, which is independent of the algo-
rithm's size. However, for a �xed number of process-
ing elements exists a minimum for the volume of data
which has to be exchanged in one clock cycle with
the peripheral system. If this minimum exceeds the
I/O-capacity, then wait cycles have to be introduced
in the case of a pure LPGS-partitioning. An LSGP-
partitioning of the LPGS-partitioned array serves in
the co-partitioning for the elimination of this e�ect.
The interesting property of the LSGP-scheme is that
it allows a tuning of the I/O-demand by tuning the
size of the partitions. The co-partitioning is de�ned
as follows:

De�nition 4 (Co-partitioning)

The co-partitioning of the algorithm's index space I
of an system of URE's is given by the following co-
partitions in the index space:

I�(i
0) = fiji = i0 + �nu+G(�LS

�
LP + �

LS);

i 2 I; i0 2 I 0�g; (9)

where �LS = diag(#LSj); 0 � �LSj < #LSj ; 0 � �LPj <

#LPj ; j = 1; : : : ; n� 1, and by the set I0� = fi0g, which
is de�ned according to equations (5) and (6), where
� = �LP�LS .
The co-partitioning of the processor space P is given
by the co-partitions in the processor space as follows:

P�(p
0) = fpjp = p0 +N(�LS

�
LP + �

LS);

p 2 P; p0 2 P0

�g; (10)

and by the set P0

� = fp0g , which is de�ned according
to equation (8), where � = �LP�LS . We apply here
the abbreviations LP instead of LPGS and LS instead
of LSGP .

The structure of the co-partitioned array is given by
the LPGS-parameters. The transformation of the in-
ternal interconnection network of the co-partitioned
array is omitted here for the sake of brevity (see [5]).

Example: Let us consider the partitioning of the pro-
cessor space in Fig.(3). The small rectangles symbol-
ize the LSGP-partitions. The parameters are N =
(n1 n2) and #LS1 = #LS2 = 2, �LS = diag(#LSi). The
large rectangles symbolize the LPGS-partitions. The
parameters are #LP1 = #

LP
2 = 2, �LP = diag(#LPi).

The tasks of the four processing elements of the LSGP-
partitions are scheduled sequentially on the black
drawn processing element. The shaded processing ele-
ments are not implemented. The LPGS-partitions (i.e.
large rectangles) are scheduled sequentially. Hence,
the resulting array consists of two times two process-
ing elements. �

The size Lloc of the local memory (i.e. the number
of registers) of each processing element of the array
imposed by the co-partitioning is directly proportional
to the size of the LSGP-partitions. The size is given
by Lloc = jDj det�LS (if �d=1). The I/O-behaviour
between the array and the peripheral system has been
considered in [4]. The number of variables which have
to be transferred between the array and the back-
ground memory in the time interval required for the
processing of a computation i 2 I is indirectly propor-
titional to the size det�LS of the LSGP-partitions.
Hence, we have to search a trade-o� between the im-
plemented size Lloc of the local foreground memory
and the access behaviour of the array and to the back-
ground memory.

3.3 Nested partitioning

As we have seen in the example given in section 2,
a three-fold co-partitioning is necessary to scale the
utilization of the cache and RAM level. We introduce
a generalized hierarchical partitioning, called nested-
partitioning, to formalize the proposed method. Each
system level j is constructed of two sub-levels accord-
ing to the co-partitioning policy. Hence, a mapping of
an algorithm onto a system with a hierarchy of h levels
requires a partitioning into qmax = 2h sub-levels.

De�nition 5 (Nested-Partitioning Scheme)

The nested-partitioning scheme is de�ned by the par-

titions I
(q)
� at each sublevel and the set I

(qmax+1)
� . A

partition at sublevel q is de�ned by:

I(q)� = fi(q)ji(q) = i(q+1) + �nu+

G

qX
j=1

j�1Y
l=0

�(l)

!
�
(j)
; i(q) 2 Ig; (11)

with 0 � �
(j)
z < #

(j)
z ; z = 1; :::; n�1,�(j) = diag(#

(j)
z),

�(0) = I. The set of (reference) points I
(qmax+1)
� =

fi(qmax+1)g is given according to (5), where # in the
vector on the right hand side in (6) has to be replaced

by #(qmax) =
�Qqmax

l=1 #
(l)
1 : : :

Qqmax
l=0 #

(l)
n�1

�t
.

We de�ne that all LSGP-paramaters in (11) are repre-
sented by the odd indices q and the LPGS-parameters
by the even indices q .

Now, we can turn to the consideration of the cache
and RAM level utilization.

3.4 Cache utilization

As we have seen in the example given in section
2, we have to apply a two-fold co-partitioning, i.e. a
nested-partitioning according to (11) with q = 4, for
an improvement of the cache utilization. The param-
eter set is given by �(1) = �LS ;�(2) = �LP ;�(3) =

diag(#
(3)
i) and �(4) = I. We obtain #

(3)
1 = 3 and

#
(3)
2 = N for the example shown in Fig.(4). Gener-

ally, there exist (n � 1)! feasible loop nests (i.e. in-
terchanges) for the sequential scheduling within the
LSGP-partitions. For the example shown in Fig.(4),
we have the feasible loop nests (1; 2) and (2; 1), where
the left number represents the index of the outer loop.
We chose the loop nest (2; 1), i.e. the loop associated
with n1 is the inner loop and the loop associated with
n2 is the outer loop. With a load L(nj) = 103 for a
step in direction nj; j = 1; 2, we obtain for the loop

nest (2; 1) a load L̂ = L(n1) + L(n2)#
(3)
1 . If this load

has to be exchanged only via a associated cache of the
size Lcache = 4 � 103, then we have to ensure, that

Lcache � L̂. Hence, we achieve the condition #
(3)
1 � 3.

The parameter #
(3)
2 is only bounded by the extend of

the processor space [3]. For the considered example

follows #
(3)
2 = N .

We associate to each direction nj a weighting func-
tion wj , which depends on the selected loop nest and
on the size of the LSGP-partitions of the second co-
partitioning (see Fig.(4)). Hence, we obtain the con-
dition

Lcache �

n�1X
j=1

wjL(nj) (12)

for the selection of the parameters #
(3)
i for a given

cache size Lcache. The term on the right hand side
of (12) represents the maximum number of variables
reused during the processing of a partition in the
second co-partitioning. Condition (12) ensures that
the internal communication (data transfers within the
partition) can be realized via the cache, i.e. without
access to the RAM or mass storage.
The order of the m = n� 1 loops in a loop nest is de-
�ned by the sequence of numbers o(i); i = 1; : : : ;m,
where o(1) represents the outermost loop and o(j)
represents a more outer loop than o(j + 1). Further-
more holds fo(i), i=1,. . . ,mg=f1,.. . ,mg. The weight-
ing functions wj are given by:

wo(i) =

m+1Y
j=i+1

#
(3)

o(j)
; #

(3)

o(m+1)
:= 1 (13)

Example: For a loop order o(1) = 2; o(2) = 1;
o(3) = 3, the weighting functions

wo(1)=2 = #
(3)

o(2)
� #

(3)

o(3)
; wo(2)=1 = #

(3)

o(3)
; wo(3)=3 = 1

result. It follows

L̂ = L(n1)#
(3)
3 + L(n2)#

(3)
1 � #

(3)
3 + L(n3)

for the load. �

The numerical determination of the loads L has been
given in [3]. Obviously, there may exist interconnec-
tions which are a linear combination of the nj. The
derivation of the weighting functions w for such an in-
terconnection has been given in [3].
Furthermore, we have to consider the case, that for all
loads L hold L > Lcache. Then, there exist no solution
of (12) for the case of a partitioning in the processor
space. We can replace the condition (12) by

jLcache �

n�1X
j=1

wjL(nj)j ! min (14)

or we include the additional partitioning of the time
axis, i.e. of the u-axis.
The objective function in the improvement of the
cache utilization is the minimization of the access
to the RAM and mass storage. Hence, we have to
claim that the size of the LSGP-partitions in the sec-
ond co-partitioning (Fig.(4)) becomes maximum, i.e.Qn�1

i=1 #
(3)
i ! max. That means, that we are looking

for the largest for-loop programs, which satisfy condi-
tion (12) or (14). If we include the foreground mem-
ory in the consideration, then we obtain the objective

function
Q3

j=1

Qn�1

i=1 #
(j)
i ! max.

3.5 RAM utilization

We have to apply a three-fold co-partitioning, i.e.
a nested-partitioning according to (11) with q = 6,
for an improvement of the RAM utilization. The ad-

ditional parameter set is given by �(5) = diag(#
(5)
i)

and �(6) = I. The parameter #
(3)
2 , which was only

bounded by the extend of the algorithm's index space
in the above discussed improvement of the cache uti-
lization becomes now a variable. This variable reects
the increase of the data tra�c between the cache and
the RAM level, which occurs with the improvement

of the RAM utilization. We obtain #
(3)
2 = N 0=2,

#
(5)
1 = N 0 and #

(5)
2 = 1 for the example shown in

Fig.(5). The determination of the parameters occurs
analogous to the cache level. We obtain the conditions

LRAM �

n�1X
j=1

w
(R)

j L
(R)(nj); (15)

jLRAM �

n�1X
j=1

w
(R)
j L

(R)(nj)j ! min (16)

analogous to (12) and (14), where LRAM represents
the available size of the RAM. The objective function
in the improvement of the RAM utilization is the min-
imization of the access to the mass storage. Hence, we
have to claim that the size of the LSGP-partitions in
the third co-partitioning (Fig.(5)) becomes maximum,

i.e.
Qn�1

i=1 #
(5)

i ! max. That means, that we are look-
ing for the largest for-loop programs, which satisfy
condition (15) or (16). If we include the foreground
memory and cache in the consideration, then we ob-

tain the objective function
Q5

j=1

Qn�1
i=1 #

(j)

i ! max.
Since we intend to improve the utilization of the cache
and RAM, we have to include here as second objective

function
Qn�1

i=1 #
(3)
i ! max. This represents the cache

utilization as discussed above.

Obviously, the example given in section 2 can also be
solved by a two-fold co-partitioning, where the opti-
mization of the cache and RAM utilization has to be
realized by the parameters #

(3)
i . However, the opti-

mization of the RAM utilization can be realized with-
out an inuence on the cache utilization for algorithms
with an index space of dimension n > 3. One param-

eter #
(3)
i is bounded by the extend of the algorithms

index space. Therefore, the optimization of the cache
utilization causes a reduction of the dimension of the
for-loop program, which represents the scheduling of
the co-partitions, by one. (cf. Fig.(4b) symbolizes the
one-dimensional scheduling of the two-dimensional co-
partitions Fig.(4a).) We obtain a for-loop program,

which represents the scheduling of the co-partitions
after the second co-partitioning, of dimension n � 2
for an algorithm with index space of dimension n > 3.
Such a program of dimension n � 2 can be partitioned
for the improvement of the RAM utilization analogous
to the cache problem without an inuence onto the

parameters #
(3)
i . Hence, the application of a six-fold

partitioning for the RAM utilization establishes the
more general model.

4 Concluding Remarks

The proposed memory utilization procedure can be
stated as follows: The size of the implemented fore-
ground memory (number of registers) de�nes the num-
ber of accesses of the array (or single processor) to the
background memory in given time interval. This de-
pendency has been discussed in [4]. The foreground
memory allocation is realized by a co-partitioning. A
repeated co-partitioning of the resulting program is
performed to minimize the number of accesses to the
RAM and mass storage level during the processing of
the algorithm. This number of accesses depends di-
rectly on the size of the implemented cache memory.
A third co-partitioning can be performed to minimize
the number of accesses to the mass storage level during
the processing of the algorithm. This number of ac-
cesses depends directly on the size of the implemented
RAM memory.
The numerical values for the number of accesses to
the di�erent memory levels during the processing of
the algorithm can be achieved by means of the for-
mulas given in [4, 5] (see [3]). The computation of
the I/O access pattern of the hierarchical partitioned
for-loop program has been given in [2]. The program
transformation of the initially given for-loop program
by co-partitioning has been given in [4].
We proposed a mathemtical framework for the hierar-
chical partitioning of systems of URE's. However, the
most algorithms represents conditional URE's. The
index space of conditional URE's is the union of all
conditional spaces. The parameters of the partition-
ing have to be adjusted to the worst case over all con-
ditional spaces to achieve a homogeneous partitioning
for the whole algorithm.

References
[1] J. Bu. Systematic design of regular VLSI processor

arrays. PhD thesis, Delft University of Technology,

1990.

[2] U. Eckhardt. I/O management for hierarchically

structured array architectures. In Proc. 5th Euromi-
cro Workshop on Parallel and Distributed Processing,

pages 205 { 210, 1997.

[3] U. Eckhardt. Memory management by partition-
ing. Technical Report SFB 358-A1-1/97, Deutsche

Forschungsgemeinschaft, TU Dresden, 1997.
[4] U. Eckhardt and R. Merker. Co-partitioning- a

method for hardware/software codesign for scalable
systolic arrays. In R. Hartenstein and V. Prasanna,

editors, Recon�gurable Architectures, pages 131 { 138.

ITpress, 1997.
[5] U. Eckhardt and R. Merker. Scheduling in co-

partitioned array architectures. In Proc. Int. Conf. on
Application-Speci�c Array Processors (ASAP), 1997.

[6] Y.-T. Hwang and Y. Hu. Novel scheduling scheme for
systolic array partitioning problem. In Proc. IEEE

Workshop on VLSI Signal Processing, pages 355 {

364, 1992.
[7] K. Jainandunsing. Optimal partitioning scheme for

wavefront/systolic array processors. In Proc. IEEE
Symp. on Circuits and Systems, 1986.

[8] R. Karp, R. Miller, and S. Winograd. The organi-
zation of computations for uniform recurrence equa-

tions. Journal of the ACM, 14(3):563 { 590, July

1967.
[9] D. Moldovan and J. Fortes. Partitioning and mapping

of algorithms into �xed-size systolic arrays. IEEE
Trans. Computers, C35(1):1 { 12, Jan. 1986.

[10] J. Moreno and T. Lang. Matrix computations on
systolic-type meshes. IEEE Computer, 23(4):32 { 51,

April 1990.
[11] J. Navarro, J. Llaberia, and M. Valero. Partitioning:

an essential step in mapping algorithms into systolic

array processors. IEEE Computer, 20(7):77 { 89, July
1987.

[12] H. Nelis and E. Deprettere. Automatic design and
partitioning of systolic/wavefront arrays for VLSI.

Circuits systems signal processing, 7(2):235 { 252,

1988.
[13] J. Teich. A compiler for application speci�c processor

arrays. PhD thesis, Verlag Shaker, 1993.
[14] J. Teich and L. Thiele. Partitioning of processor ar-

rays: a piecewise regular approach. INTEGRATION,
the VLSI journal, 14(3):297 { 332, 1993.

[15] J. Teich, L. Thiele, and L. Zhang. Scheduling of
partitioned regular algorithms on processor arrays

with constrained resources. In Proc. Int. Conf. on

Application-Speci�c Array Processors (ASAP), 1996.
[16] L. Thiele and V. Roychowdhury. Systematic design

of local processor arrays for numerical algorithms. In
E. Deprettere and A.-J. van der Veen, editors, Al-

gorithms and parallel VLSI architectures, volume A,

pages 329{339. Elsevier Science Publisher B.V., 1991.
[17] I. Verbauwhede, F. Catthoor, J. Vandevalle, and

D. H. Background memory synthesis for algebraic
algorithms on multiprocessor DSP chips. In VLSI

89, pages 209{218. Elsevier Science Publisher B.V.
[18] I. Verbauwhede, F. Catthoor, J. Vandevalle, and

D. H. In-place memory management of algebraic algo-

rithms on application speci�c ics. In Algorithms and

Parallel VLSI Architectures, pages 353{362. Elsevier

Science Publisher B.V.

	CD-ROM Home Page
	ISSS97
	Front Matter
	Table of Contents
	Session Index
	Author Index

