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Abstract

In this paper we present a formal framework to ver-
ify timing properties of embedded systems. We propose
a process calculus as an intermediate model to map be-
tween language-level constructs of process-based specifica-
tion and implementation models, and Petri net operations.
We present an elegant translation scheme to generate Petri
nets starting from the intermediate process expressions. The
approach has been applied to verify the freedom of deadlock
in a QAM modem design, with promising results.

1. Introduction

As embedded systems become increasingly complex,
they become increasingly prone to errors and difficult to
design. From experience gained with several large scale
design projects in digital communications [4, 8], we have
encountered a number of subtle errors during both the spec-
ification and implementation phases, that were difficult to
trace using traditional analysis methods such as simula-
tion. Since most modern embedded systems are concur-
rent in nature, usually implemented using a heterogeneous
architecture containing multiple hardware/software compo-
nents, hard to detect errors can result from unanticipated
interactions between the concurrent parts. Over the past
years, a number of automated formal verification meth-
ods [5, 6, 12, 15] have emerged, that can address some
of these verification problems. However, to leverage these
methods, the specification model used to represent the sys-
tem must be formal in the first place as ambiguity in speci-
fication semantics is in itself a major source of errors.

In this paper, we propose a formal model based on Petri
nets [13] for reasoning about the behavior of a concurrent
system. We have chosen the Petri net formalism, because it
is well suited to model concurrency, choice, and causality,
and because there is a wealth of formal verification tech-
niques [15, 18] that can exploit the inherent partial order
properties explicitly captured in the model. However, a ma-

jor problem when using Petri nets as a model for verifica-
tion, is the lack of a formal mapping between constructs in
the (system) specification language itself and Petri net oper-
ations. We address this problem by providing such a formal
mapping using a CSP [9]/CCS [10]-like process calculus as
an intermediate model. The underlying idea is that many of
the existing process-based specification languages (e.g. [2])
can be translated to what we call “intermediate code” of
this process calculus, which can subsequently be translated
into a Petri net representation by applying a syntax-directed
mapping scheme. Once arrived at the Petri net level, ex-
isting formal verification methods can then be leveraged.
Because the overall mapping is semantics preserving, these
methods can be used to validate the various intermediate
specifications of the design process.

The impact of this work on the design of embedded sys-
tems is twofold. At the specification phase, errors can be de-
tected quickly without requiring extensive simulations. Sec-
ondly, when designing an embedded system, many prob-
lems occur at the hardware/software interface. Therefore,
a design support tool has been developed [19] to assist the
designer in the mapping of software components on pro-
grammable processors. Such a tool assembles the hard-
ware/software interface by selecting and combining I/O sce-
narios from a library. Individual scenarios are correct by
construction. However, when assembling these scenarios
to construct the complete interface, subtle (timing) prob-
lems may arise, as will be shown in section 5. The for-
mal framework presented in this paper allows to diagnose
these problems, such as possible deadlocks. This necessi-
tates the modeling of the complete hardware/software inter-
face, including the processor core, run-time operating sys-
tem, hardware and software device drivers, etc.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the basic concepts of the used process calcu-
lus. Section 3 reviews the basic definitions of Petri nets, and
details thesyntax-directedtranslation procedure of process
expressions to Petri nets. Section 4 highlights the verifi-
cation framework. Section 5 extensively describes a case
study. Finally, conclusions are drawn in section 6.



2 Process Calculus

In our model we start from a set of givenatomic rendez-
vous actions. These actions are taken to be indivisible, and
form the “leaf” processes of the model. The occurrence of
an action is called an event1, and it is the result of two con-
current processes - in some cases the environment is implic-
itly assumed to be the counterpart process - both engaging
in the execution of the event under consideration. Every
event can thus be seen as abinary synchronization. Two
types of events exist:visibleevents andhiddenevents. Vis-
ible events representexternalsynchronizations (i.e. which
are externally observable); the set of all visible events is de-
noted asV is . Hidden events representinternal synchro-
nizationsand are denoted by the special symbol� . The en-
vironment cannot prevent a process from engaging in ahid-
denevent. Indeed, as� denotes an internal synchronization
and all synchronizations are binary, it cannot be synchro-
nized upon by any other process.

Processes are built from other (leaf) processes by means
of the following operators:sequential composition, deter-
ministicandnon-deterministic choice composition, parallel
composition, recursionandinterrupt composition.

Processes are denoted byprocess expressions. We also
assume a setV ar of process variablesdenoted byx, y, etc.
The setPE of all possible process expressions is defined
by the following production system, whereR is used as start
symbol:

R ::= S j T
S ::= x j S:R
T ::= a j T:R j T + T j T �kT � j T �

� T � j �x:T
where a 2 (V is [ f�g)

T � is T without free occurrences of variables

In the following, the intuitive meaning of the different
operators is described.

Sequential Compositionof two processesP andQ, de-
notedP:Q, is a process that starts the execution ofQ after
thesuccessful completionof P . Successful completion of a
processP is defined as processP reaching a wanted2 state
from which no actions can be performed. This operator con-
stitutes a mixture of theprefix andsequential composition
operators, as they are used in CSP [9].

Choice. The deterministic choice of two processesP
andQ, denotedP + Q, is the process that can do eitherP
or Q, where the choice is made by the environment. The
non-deterministic choice of two processesP andQ, on the
other hand, denotedP uQ, is the process that can either do
P or Q, where the choice is made by the process itself. In
both cases, the decision of which alternative to take, should
be made at the beginning of the choice. Notice that the no-
tationP u Q is a shorthand for the process(�:P ) + (�:Q).

1In the sequel we will indistinctively use the notations “event” and
“action”

2Because we have to exclude the deadlock state.

Indeed, as� denotes a hidden or internal synchronization
event, the outside world cannot interfere at the beginning
of the choice;(�:P ) + (�:Q) then degenerates to a non-
deterministic choice. This construction is borrowed from
CCS [10].

Parallel Composition of two processesP andQ, de-
notedPkQ, executes the processesP andQ simultaneously
and independently, except for events that are common to
both processes; if both processes contain an eventa, this
event can only occur if both parties are ready to engage in
a. With the exception that we only allow binary synchro-
nization, this operator is also used in CSP.

Interrupt Composition of processP by a processQ,
denoted asP � Q, is the process that behaves likeP but
which is interruptedon the occurrence of the first event of
Q. When interrupted, processP arrives in ahalt state, and
P �Q behaves likeQ. AfterQ has terminated successfully,
P leaves its halt state andP �Q resumesP , until possibly
being interrupted again. IfP terminates unsuccessfully, it
is still possible forP �Q to behave likeQ. If P terminates
successfully, on the other hand,Q cannot start execution
any more. The semantics of the interrupt composition, as
they are presented here, differ from the ones defined by CSP
and LOTOS [11]. In the latter models, an interrupt is inter-
preted as anabort; when a processQ “interrupts” a process
P , processQ is executed, butP is never resumed. Clearly,
this kind of preemption cannot be reduced to the interrupt
behavior of today’s processors.

Recursion is introduced by considering solutions of
equations of the formx = F (x), denoted as�x:F (x), with
F (x) an expression in (process) variablex, constructed
solely in terms of the sequential composition, choice com-
position, parallel composition and interrupt composition
operators. Notice that an expression beginning with a vari-
able, can only be used in a composition if it is preceded by
an eventa 2 V is [ f�g.

Besides the interrupt operator, our process calculus has
no larger expressiveness than CSP and CCS. The key idea
of our approach is that we believe many of the existing
process-based languages (e.g. [2]) used to specify hetero-
geneous systems, can be translated to “intermediate code”
of this calculus which then serves as a starting point for per-
forming a syntax-directed Petri net translation, as described
in the next section.
Example. Consider the following program fragment, writ-
ten in C, as it can be found in a process description within
the CoWareTMdata model [2]:

while(!(x%y)) {
send(a,x);
x++;
receive(b,y);

}
send(c,(x+y));

The send(a,x) statement initiates a communication to
send data along channela. If the environment, at the other



side of the channel, is not ready to receive data along this
channel, the program is halted at this point. As soon as
the environment becomes ready, data is transfered, and both
parties proceed independently. The occurrence of this com-
munication is modeled by the atomic eventa. For the
receive(b,y) and send(c,(x+y)) statements the
same reasoning applies. This program fragment is then
modeled asX = (a:b:X) u c. Every time we encounter
thewhile statement, the decision of (re-)entering the loop
is made internally (!(x%y) ) - we abstract from all internal
data -and cannot be influenced by the environment. As a
result, it is modeled as a non-deterministic choice.

3. Syntax-directed Translation to Petri Nets

In this section the translation of process expressions into
Petri nets [13] is described in more detail. In section 3.1 we
review some of the basic definitions and properties of Petri
nets. In section 3.2 the composition operators are defined at
the Petri net level. In section 3.3 we discuss the translation
process itself.

3.1. Basic Definitions and Properties

Definition 3.1 (Labeled Petri Net) A labeled Petri net
(LPN) is a tuple� = hP;A; F;m0i with P \ A = ;,
F � 2P �A� 2P andm0 : P ! N.

In the above definitionP denotes a set ofplaces, A a
set of actions, F the set oftransitionsandm0 an initial
marking. For a transitiont = (p; a; q), a denotes thelabel
or theactionof t, where asp andq are often referred to as
the set ofinputandoutputplaces oft, respectively.

Besides the structure of a Petri nets, there is also an as-
sociated dynamics. Astateor marking, is the mapping of
the places to the natural numbers, indicating the number of
tokens in the places. Transitions between states are dictated
by the following firing rule. In the sequelMP denotes the
set of all states (markings) of a Petri net withjP j places.

Definition 3.2 (Enabling Rule) Let (p; a; q) be a transi-
tion,m 2MP . Enabled((p; a; q);m) � 8p : m(p) � 1

Definition 3.3 (Firing Rule) Let t = (p; a; q) be a transi-
tion,m 2MP ,Enabled(t;m) = true.

NextState(m(p0); t) =

8<
:

m(p0)� 1 if p0 2 p n q
m(p0) + 1 if p0 2 q n p
m(p0) otherwise

Definition 3.2 states that a transitiont can fire if all its
input places contain at least one token. Definition 3.3 states
that firing oft removes one token in all its input places and
adds a new token in all its output places.

The set of all reachable states is represented in areach-
ability graph. In such a reachability graph all vertices cor-
respond to a valid marking of the Petri net and all arcs cor-
respond to a transition from one marking to another due to

firing of some transition in the net. The reachability graph
of a Petri netN , denoted asRG(N), can then be interpreted
as the reflexive transitive closure of the next-state relation
defined in definition 3.3.

Two important properties of Petri nets arelivenessand
safeness. Liveness concerns the question whether a transi-
tion can ever be fired, and is clearly opposed todeadlock.
Safeness means that a placedoes notcontain more than one
token at any time.

3.2. Process Operators on Petri Nets

In this section the process of translating process expres-
sions into Petri nets is highlighted. The approach is similar
to the macro-module mapping approach [16] for translat-
ing a concurrent program into an asynchronous circuit. For
each syntactical construct a Petri net element or operator is
defined. In this way a process expression can be translated
into a Petri net using asyntax-directed mappingscheme,
detailed below.

In literature a lot of research has been devoted to the de-
velopment of operators for the composition of Petri nets.
In [17] finite and safe nets are constructed for theAlgebra of
Communicating Processes(ACP) of Bergstra and Klop [1]
without recursion. The notion of a non-deterministic choice
is absent either. In [14] safe and finite Petri nets are gen-
erated from a so-calledanonymouslanguage that contains
CCS and almost the whole CSP as special “cases”. The al-
ternatives of a choice may however not contain parallelism,
and every body of a recursion starts with an invisible action
� . In [7] a Communication Petri Net Modelis proposed.
The focus is a Petri net algebra; the concepts of success-
ful completion (cf. sequential composition) and recursive
processes are therefore missing.

In this work, the translation of a process expression into
Petri nets is defined by means of translation functionPT .
The syntax-directed organization ofPT makes it neces-
sary to include all possible syntactic constructs of a process
expression in the domain ofPT , i.e. the set of variables
V ar , the atomic actions, as well as the process operators.

As discussed in section 2, the sequential composition op-
erator requires the notion of successful completion. As a
result, the definition of a Petri net has to be extended to rep-
resent successful termination. Therefore we have chosen to
classify certain places of the Petri net asend places. When
all end places contain a token, the involved Petri net has ter-
minated successfully. This new Petri net model is denoted
as aPE-netand is defined below.

Definition 3.4 A PE-net is a tuple� = hP; T;A;m0; Ei,
P \ T = ;, F � 2P �A� 2P , m0 � P andE � P .

In the above definitionP , T , F andm0 have the same
meaning as in (classical) labeled Petri nets (see defini-
tion 3.1) andE denotes the end places. The definitions and
properties of (classical) labeled Petri nets can be lifted to



PE-nets in a straightforward way. The initial marking of a
PE-net, however, is represented by the set ofinitial places,
i.e. the set of places that contain a token in the initial mark-
ing. This is possible due to the safe Petri net representa-
tions of the allowed process expressions. A safe Petri has in
each place at most one token and its marking can therefore
be represented by a set of placesm, wherepi 2 m indi-
cates that there is a token inpi. A non-safe representation
would imply that the corresponding process expression ex-
hibits auto-concurrency, i.e. is of the formx = Pkx; : : :,
which is not allowed in our syntax.

Leaf Processes.The PE-net representations of an atomic
actiona 2 V is [ f�g and a variablex 2 V ar are illus-
trated in Figure 1. The end places are depicted as circles
with double perimeter.

(a) (b)

a x

Figure 1: PE-net representations of (a)a 2 V is [ f�g (b)
x 2 V ar

Definition 3.5 Given an atomic actiona 2 V is [f�g, the
corresponding PE-net, denoted asPT (a), is defined as
hfp1; p2g; fag; f(fp1g; a; fp2g)g; fp1g; fp2gi

Definition 3.6 Given a variablex 2 V ar , the corre-
sponding PE-net, denoted asPT (x), is defined as
hfp1; p2g; fxg; f(fp1g; x; ;)g; fp1g; fp2gi

Sequential Composition.For the PE-net representation
of a process expressionQ1:Q2, the end places ofPT (Q1)
are combined with the initial places ofPT (Q2), by means
of a Cartesian product, effectively “abutting” the two PE-net
representations together. This is shown in Figure 2.

(a) (b) (c)

a b c

p1

p2

p3

p4

a b c

p1 p3

d

p6

p2xp5 p4xp5

e

p5

d

p6

e

Figure 2: Petri net representations (a)PT (Q1) (b)
PT (Q2) (c) PT (Q1:Q2)

Definition 3.7 (Sequential Composition)Let Q1 andQ2

be two process expressions, withPT (Q1) = h P1, A1,
F1, M01 , E1 i and PT (Q2) = h P2, A2, F2, M02 , E2

i. PT (Q1:Q2) is defined as:
h(P1 nE1) [ (P2 nM02) [ (E1 �M02); A1 [ A2; F

0;
M01; E2i

where
F 0 = f(p; a; q nE1 [ (q \ E1)�M02) j (p; a; q) 2 F1g

[f(p nM02 [ E1 � (p \M02); a;
q nM02 [ E1 � (q \M02)) j (p; a; q) 2 F2g

In contrast to [17] there is no need for one-step unfold-
ing of PT (Q2), as well as an expensivecomplementstep.
In [14] sequential composition is defined as a special case of
parallel composition; by doing so, however, there is a need
for an extraconcealmentor hideoperator.

Choice Composition. For the PE-net representation of
a processQ1 + Q2, conflicts are introduced between all
pairs of initial transitions ofPT (Q1) and PT (Q2), by
means of a Cartesian product construction. The end places
are combined similarly. For this to work properly, the ini-
tial places that are in cycles have to extracted by a one-step
unfolding; in a choice, once the decision of what branch to
take is made by the first execution of a transition, a loop iter-
ation may then not cause the other branch to be taken. In our
translation scheme, the PE-net representation of a recursive
process definition already implements the desired unfolding
(see Definition 3.9). Then, the above situation can only re-
sult from process expressions of the formP + (R�Q) : : :.
In these situations the one-step unfolding is accomplished
through a separateroot-unwindingstep. This preprocess-
ing step is only effective for those initial transitions that are
in cycles. The PE-net equivalent of the choice operator is
shown in Figure 3.

(a) (b) (c)

a

p4

p5

a

cd

c

p1xp4

p2

p3

p6xp5

cd

p2

p3

p1

p6

c

Figure 3: Petri net representations (a)PT (Q1)
= RootUnw( PT (Q1)), with Q1 = �x:(c:d:x) (b)
PT (Q2) = RootUnw( PT (Q2)) (c) PT (Q1 +Q2)

Definition 3.8 (Root Unwinding) LetN = hA,P ,F ,M0,
E i be a PE-net. LetPnew be new places62 P , Pcyc the
initial places ofN , that are not in cycles, defined byfs 2
P j M0(s) 6= 0 ^ :(9(p; a; q) 2 F : s 2 q)g, and� a
bijection betweenPnew andPcyc. Theroot-unwindingof
N , denoted asRootUnw(N) is defined as:
hA;P [ Pnew; F

0; (P n Pcyc) [ Pnew ; Ei

where



F 0 = F [ f(p [ pn; a; q) j pn � Pnew^
(p [ H(pn); a; q) 2 Fg

H(fp1; :::; png) = f�(p1); :::; �(pn)g

Definition 3.9 (Choice Composition)Let Q1 and Q2 be
two process expressions, withRootUnw( PT (Q1)) =
hP1; A1; F1;M01 ; E1i and RootUnw( PT (Q2)) =
hP2; A2; F2;M02 ; E2i. PT (Q1 +Q2) is defined as:
h((P1 nM01) nE1) [ ((P2 nM02) nE2) [ (M01 �M02)
[E1 �E2; A1 [ A2; F

0;M01 �M02; E1 �E2i

where
F 0 = f(p1 nM01 [ (p1 \M01)�M02; a1;

q1 nE1 [ (q1 \ E1)�E2) j (p1; a1; q1) 2 F1g
[f(p2 nM02 [M01 � (p2 \M02); a2;

q2 nE2 [ E1 � (q2 \ E2)) j (p2; a2; q2) 2 F2g

Besides the treatment of the end places, the above con-
struction is similar to [7, 17]. In [17], however, the root-
unwinding step introduces2#Pcyc new transitions, with
Pcyc the set of initial places that are in cycles. In [7], an
extra restriction applies: all transitions that have initially
marked input places must be enabled.

Parallel composition. In Petri nets a transition can be
regarded as a synchronization mechanism since it can only
fire if all input places contain at least one token. To model
parallel composition with rendezvous synchronization, it is
then sufficient to “join” the transitions that have the same
action label, different from� . Since more than one transi-
tion may be labeled with the same action, all combinations
have to be considered. This is shown in Figure 4.

(b)

(a)

(c)

a

d

d

a b a a b a

d

d

Figure 4: Petri net representations (a)PT (Q1) (b)
PT (Q2) (c)PT (Q1kQ2)

Definition 3.10 (Parallel Composition) LetQ1 andQ2 be
two processes, withPT (Q1) = h P1, A1, F1, M01 , E1 i

and PT (Q2) = h P2, A2, F2, M02 , E2 i. PT (Q1kQ2)
is defined as:
hP1 [ P2; A1 [A2; F

0;M01 [M02; E1 [ E2i

where
F 0 = f(I; a; O) 2 F1 [ F2ja 62 (A1 \A2) n f�gg

[f(I1 [ I2; a; O1 [ O2)j a 2 (A1 \ A2) n f�g
^(Ii; a; Oi) 2 Fig

Besides the treatment of� events, the above construction
is similar to [7].

Interrupt Composition. For the PE-net representation
of Q1 � Q2, we create a new place for every transition of

PT (Q1). Each new place is then connected via a self-
loop with its corresponding transition. These new places
are then combined with the initial places as well as the end
places ofPT (Q2), by means of a Cartesian product con-
struction. IfQ2 is a recursive process expression, the one-
step unfolding withinPT (Q2) (see Definition 3.12) then
prevents the transitions ofPT (Q1) from firing for every
loop iteration within the former net. However, ifQ2 is of
the form(P � R) : : :, within PT (Q2) there can still be
initial places that are in cycles (see Definition below). In
this case an extra root-unwinding step is necessary. For the
other cases, this preprocessing step has no effect. This con-
struction is shown in Figure 5.

(b) (c)

(a)

d e

a b a a b

d e

a

Figure 5: Petri net representations (a)PT (Q1) (b)
PT (Q2) = RootUnw( PT (Q2)) (c) PT (Q1 �Q2)

Definition 3.11 (Interrupt Composition) Let Q1 andQ2

be two processes, withPT (Q1) = hP1; A1; F1;M01 ; E1i

andRootUnw( PT (Q2)) = hP2; A2; F2;M02 ; E2i. Let
Pnew be new places such thatP1 \ P2 \ Pnew = ;, andH
a bijectionH : F1 ! Pnew. PT (Q1 �Q2) is defined as:
hP1 [ (P2 n (M02 [ E2)) [ (Pnew �M02 �E2);
A1 [ A2; F

0;M01 [ (Pnew �M02 �E2); E1i

where
F 0 = f(p1 [ pn; a1; q1 [ pn) j (p1; a1; q1) 2 F1

^pn = H(p1; a1; q1)�M02 �E2g

[f(p2 nM02 [ (Pnew � (p2 \M02)�E2); a2;
q2 nE2 [ (Pnew �M02 � (q2 \ E2))) j

(p2; a2; q2) 2 F2g

Recursion. For the PE-net representation of a process
�x:F (x), with F (x) a process expression containing vari-
ablex, we first computePT (F (x)), using the translation
techniques described above. The input places of each tran-
sition with labelx are then combined with the initial places,
by means of a Cartesian product, effectively creating the de-
sired loop. The initial places as well as the initial marking
are kept; this construction implements a one-step unfold-
ing making the root-unwinding step obsolete for the PE-net
translation of process expressions of the formsP + P and
Q�P , with P a recursive process definition. This is shown
in Figure 6.

Definition 3.12 (Recursion) Let F (x) be process expres-
sion with process variablex, constructed by means of se-
quential composition, (non-)deterministic choice composi-
tion, parallel composition and interrupt composition, and



(a) (b)

a c x

p2 p3p1 p4

a

c

p2p1

p1xp3

a

p4

Figure 6: Petri net representations (a)PT (F (x)) (b)
PT (�x:F (x))

PT (F (x)) = hP;A; F;M0; Ei. PT (�x:F (x)) is de-
fined as:
h(P n Px) [ (M0 � Px); A n fxg; F 0;M0; Ei

where
Px =

[
(p;x;;)2F

p

F 0 = f(p nM0 [ (p \M0)� px; a;
q n Px [M0 � (q \ Px)) j a 6= x

^(p; a; q) 2 F ^ (px; x; ;) 2 Fg
[f(p; a; q n Px [M0 � (q \ Px)) j a 6= x

^(p; a; q) 2 Fg

3.3. Translation of Process Calculus expressions

The translation of a (complex) process expression into
a Petri net can be defined recursively as follows. We start
at the bottom of the syntax tree by translating the “leaf”
atomic actions to PE-nets, according to definition 3.5. As
we go up in the syntax tree, we gradually build up the
PE-net representations of the intermediate subexpressions.
This is illustrated in the example of Figure 7. Consider

(a) (b)

A

B

||

C

A

P1A

B

P2B

P2A P1Bx

C

P2C

P1CP2Ax

.

Figure 7: (a) Syntax-tree ofA:(BkC) (b) PT (A:(BkC))

the process expressionA:(BkC). This expression has
the simple syntax tree shown in Figure 7(a). Starting
at the bottom of the tree, the leaf actions areA, B and
C with corresponding PE-netsPT (i) = ffp1i,p2ig,fig,
f(fp1ig,i; fp2ig)g,fp1ig,fp2igg for i 2 fA,B,Cg. As we
go up in the syntax tree, we first encounter the parallel com-
position operator, and we can computePT (B:C) as an
intermediate result. Next, as we go up, we arrive at the
sequential composition operator, and use the intermediate
result to computePT (A:(BkC), which is depicted in Fig-
ure 7(b).

4. Verification Framework

The techniques presented in this paper have been im-
plemented in a tool, calledJULIE, which consists of about
9000 lines of C code. The tool starts from the process cal-
culus, applies a syntax-directed mapping scheme to trans-
late between process expressions and Petri nets and per-
forms an efficient analysis on the resulting Petri nets (e.g.
checks for deadlocks, liveness properties, etc). Currently,
we are developing an automated translation between het-
erogeneous C-VHDL specifications, as they are used in the
CoWareTMdata model, and our process calculus. Because
the overall mapping is semantics preserving, the analysis
technique can be applied to validate the various intermedi-
ate specifications of the design process.

The analysis technique itself, calledgeneralized partial-
order analysis[18], tackles the two primary sources of com-
binatorial explosion that may occur in conventional reach-
ability analysis. The first source is due to concurrently en-
abled actions for which standard analysis requires enumer-
ating all possible orderings. This problem can be avoided by
e.g. applying existing partial-order techniques where only
one interleaved sequence needs to be analyzed for deadlock
and liveness checks [15]. The second source is due to con-
currently marked conflict places. This problem is solved by
a generalized partial-order method which explores simulta-
neously concurrently enabled conflicting paths. The tech-
nique is based on a modified representation of markings to
distinguish the different conflicting paths and can achieve
an exponential reduction in algorithmic complexity.

5. Case study

To assess the viability of our approach we performed an
extensive case study. More specifically, we experimented
with the design of a Quadrature Amplitude Modulation
(QAM) modem, integrating both a sender and a receiver
section. The block diagram of the modem design is de-
picted in Figure 8. In the sender part (bottom square) the
data to be sent is first formatted into a stream of alternat-
ing I-dataandQ-data, each three bits wide. Then, this data
is discretely levelized by the slicer and sent to the modula-
tion block, which multiplies the I-data and the Q-data by or-
thogonal carriers. The middle square of Figure 8 represents
the test bench including the channel model and the user in-
terface. The upper square represents the receiver part. A
tracking module is needed to derive ”a local copy” of the
carrier frequency, as well as ann-taps adaptive equalizer
for correcting channel induced distortion. The de-slicer and
symbol extraction block perform the inverse operations of
their sender counterparts.

The QAM modem was modeled using the
CoWareTMenvironment [3]. The implementation target was
a heterogeneous single-chip solution; because the (de)slicer
and symbol creation (extraction) modules are dependent on
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the characteristics of the data, these modules were chosen to
be implemented in software on an ARM-7 RISC processor.
The other modules were specified in VHDL to be imple-
mented in application-specific hardware. Simulations and
formal verification using the techniques presented in the pa-
per, revealed that the heterogeneous C-VHDL specification
was indeed deadlock free.

To implement the communication between the hardware
and the software, the ARM-7 processor boundary has to be
crossed. This is shown in Figure 9 for the communication
between the tracking module of the demodulator and the de-
slicer. To realize the software drivers and the hardware in-

Tracking
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Deslicerdata = Read(ESTI);
send(r1, data);
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send(r2, data);
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Figure 9: (a) Simplified view of communication between
tracking module and de-slicer; (b) Implementation scheme
of communication

terface, as depicted in Figure 9(b), the Symphony toolbox3

has a number of I/O scenarios to select from. An I/O sce-
nario (e.g. memory mapped I/O, interrupt driven I/O) con-

3Symphony is part of CoWareTMand is responsible for the hardware/-
software interfacing and system architecture co-synthesis and integration
problems.

sists of a software driver and a hardware counterpart for
implementing a specific channel type on a particular pro-
cessor. The Symphony toolbox assigns I/O scenarios on a
per-channel basis. The I/O scenarios are designed to work
correctly in a stand-alone operation mode. However, when
assembled to a complete hardware/software interface, dead-
locks may be introduced for a particular combination of I/O
scenarios. Exhaustively verifying all these combinations by
simulation is very time consuming as a new compilation
step is required for every investigated I/O-configuration.
Selecting the right I/O-configuration simply by inspection
is quasi impossible, as the “real” problem instance is far
more complex than what is presented here. Our verification
approach formally diagnoses the cause of a possible dead-
lock, and provides the necessary feedback to select the right
I/O scenario combination(s). To get an insight in what this
means, an example is worked out below.

Consider the following I/O-configuration. The symbol
creator of the sender part receives incoming samples from
the INCHAR channel via software polling. ProcessesP1
andP2 of the de-slicer (see Figure 9(a)), on the contrary, are
assigned to the FIQ and IRQ interrupt routines of the ARM-
7, respectively. The corresponding hardware interface does
not wait for the interrupt routines to complete; they are only
“triggered”.

Without loss of generality, we focus on the communica-
tion between the tracking module and the de-slicer. This
can be modeled in our process calculus as follows:

/* Software */
P1 = r1.ack1;
P2 = r2.ack2;
P3 = ((r1.ack1.r2.Deslice.ack2) +

(r2.ack2.r1.Deslice.ack1)).P3;
SOFTWARE = P1 || P2 || P3;
/* Software drivers */
IRQ = P1; /* P1 -> IRQ routine */
FIQ = P2; /* P2 -> FIQ routine */
/* Main Body */
MAIN = ; /* Empty ! */
/* Processor Model of ARM-7 */
ARM = (MAIN > (IRQ_B.IRQ.IRQ_E))

> (FIQ_B.FIQ.FIQ_E);
/* Hardware Interface */
EST_I = FIQ_B; /* I/O-scenario fiq_trigger */
EST_Q = IRQ_B; /* I/O-scenario irq_trigger */
/* Tracking block of Demodulation */
TRACKING = EST_I.EST_Q.TRACKING;
SYSTEM = SOFTWARE || ARM || TRACKING;

The suffixesBand Edenote the triggering and the com-
pletion of the interrupts involved.FIQ andIRQ represent
the (calling of) the respective interrupt routines themselves.
The (simplified) processor model of the ARM-7 models
that the FIQ-interrupt has a higher priority than the IRQ-
interrupt; in other words, the former interrupt can preempt
the latter. If we run this example throughJULIE we get the
following reachability graph.

> Reach(SYSTEM);
Deadlock in State9 !



STATE TRANSITIONS:
{
( State0 { FIQ_B } State1 )
( State1 { r2 } State2 )
( State2 { ack2 } State3 )
( State3 { FIQ_E } State4 )
( State4 { IRQ_B } State5 )
( State5 { r1 } State6 )
( State6 { Deslice } State7 )
( State7 { ack1 } State8 )
( State8 { IRQ_E } State0 )
( State5 { FIQ_B } State9 )
}

State0

State1

State2

State3

State4

State5
State6

State7

State8

State9

From stateState9 in the table above, no progress is
observed which shows that this particular I/O configuration
results in a deadlock. Indeed, after the first FIQ-routine has
finished, the IRQ-routine is called. However, this latter rou-
tine, before being effective, can be preempted immediately
by a new FIQ interrupt, which has a higher priority, and as
result we arrive in a deadlock situation.

In Table 1, a number of possible I/O configurations are
listed. As can be observed, verifying a particular configura-
tion takes less than1 second CPU time. From the table one
can conclude that two configurations can result in a dead-
lock. For selecting the “optimal” I/O configuration, Sym-
phony only pursues with the remaining alternatives. This
result clearly shows that the process calculus and the subse-
quent Petri net translation, being able to model all commu-
nicating processes involved as well as the processor model
of the ARM-7 itself, is indeed a powerful combination for
analysis and synthesis of embedded systems.

Table 1: I/O configurations for implementing the hardware
interface and the software drivers of Figure 9(b)

I/O scenarios dead- time
INCHAR ESTI ESTQ lock (sec)4

sw-polling irq-trigger fiq-trigger NO 0:46

sw-polling fiq-trigger irq-trigger YES 0:41

sw-polling irq-wait fiq-trigger NO 0:36

sw-polling fiq-trigger irq-wait NO 0:35

sw-polling irq-trigger fiq-wait NO 0:44

sw-polling fiq-wait irq-trigger YES 0:36

sw-polling fiq-wait irq-wait NO 0:33

sw-polling irq-wait fiq-wait NO 0:37

4Run-times measured on a HP 900/715 64 MB.

6. Conclusions

In this paper we proposed a formal model based on Petri
nets for reasoning about the behavior of a concurrent sys-
tem. Using this Petri net level, existing formal verification
techniques can then be leveraged.

To provide a formal mapping between language-level
constructs and Petri net operations, we proposed a process
calculus as an intermediate model. We believe many of the
existing process-based languages, used to specify heteroge-
neous systems can be first translated to “intermediate code”
of our process calculus. We presented an elegant syntax-
directed translation scheme for building Petri net represen-
tations starting from process expressions.

The viability of our approach was tested, on a “real-life”
example, for which the results were very promising. We are
currently investigating the inclusion of explicit timing con-
straints. In the future we plan to fully integrate the presented
verification framework into the Symphony design flow.
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