
REGULAR LAYOUT GENERATION OF
LOGICALLY OPTIMIZED DATAPATHS

R.X.T. Nijssen C.A.J. van Eijk

Eindhoven University of Technology
Department of Electrical Engineering/ICS EH9.28

P.O. Box 513, 5600MB, Eindhoven, The Netherlands
Email: R.X.T.Nijssen@ele.tue.nl, C.A.J.v.Eijk@ele.tue.nl

ABSTRACT

The inherent distortion of the structural regularity of VLSI data-
paths after logic optimization has until now precluded dense regu-
lar layouts of optimized datapaths despite their implicit regularity.
This paper presents a methodology enabling utilization of datapath
regularity for dense layout even after extensive logic optimization.
A structural netlist analysis extracts regularity from the initial un-
optimized netlist which serves as a partial relative regular preplace-
ment. After each customary iteration of placement, backannota-
tion and logic optimization, functional correspondences between
the optimized and the original netlists are identified by a logic
correspondence extractor. The functional and structural analyses
results are then merged yielding a regular preplacement for the
logically optimized design.

1. INTRODUCTION

The logic parts of most VLSI designs are dominated by data-
paths which employ bit-wise parallelism for high performance.
Two main methodologies are presently used for datapath synthe-
sis, namely datapath compilers (DPCs) and general logic synthe-
sis. In both cases, the netlists containing the datapath instances
are inferred from a higher-level description by module generators
using parameterized templates. Induced by the repetition of per-
bit operators to form datawords referred to as datapath functions,
datapath circuitry has an inherently regular interconnect structure.
An example of a datapath function is an ALU or a register.

1.1. Logic Synthesis-based Datapath Generation
In the generic approach using logic synthesis, the generated data-
path netlists are technology-independent gate netlists, and no no-
tion of regular placement is provided or used. The placement is
generated in the conventional way. Hence no advantage can be
taken from the netlists’s structure because generic placement tech-
niques also lack any notion of regularity, nor will their typical
wirelength minimization strategy yield a regular datapath place-
ment even if the input netlist were completely regular. Since it
is in no way restricted, logic optimization can use its freedom to
perform its techniques which involve structural transformations.
These transformations include constant propagation, collapsing,

factoring, redundancy removal, technology mapping, gate or tran-
sistor sizing, and test logic insertion. The main attractiveness of
this approach is its flexibility. It allows complex trade-offs and
extensive and specific tuning. For instance, if the constant value
8 is hard-wired to an input of a 16 bit adder, performing constant
propagation will remove significant portions of the netlist yielding
a smaller and faster, but much less regular circuit. The phase of
a net may be inverted, the fanout drive of a cell may be adapted,
cells and nets may be removed or added, nets may be connected to
other pins, etcetera. Figure 1 illustrates some of these effects on
the interconnect structure on a simple example. On the left side

.
.

.

.
.

.

s1

s1

s2

s2

s3

s3 s5

s4

s4

2x 2x4bits adder

OptimizedUnoptimized

s5

Figure 1. Effect of logic optimization on regularity

2 bitslices of an unoptimized of a carry ripple adder created by a
portable module generator are shown. The right side shows the
same circuit after logic optimization. We imposed a timing con-
straint on the carry path which made it more than twice as fast as
the original general version. As can be seen, the circuit has been
restructured without preservation of the regular interconnect struc-
ture: in the unoptimized circuit, all cells are part of the regular
structure, but in the optimized circuit, only the two nands form a
regular pattern. Subsequent conventional layout methods will thus
create a placement as if the circuit were random logic.

1.2. DPC-based datapath generation

In contrast, DPCs exploit datapath regularity by preserving the
netlist structure of the datapath functions so that their internal
placement which is also created by the module generator can be
mapped onto regular layout almost directly. For example, some
of the so called designware products use ECO placements for this

purpose. The main attractiveness of DPCs is that the strictly im-
posed and preserved regularity along the entire design flow pro-
duces very dense layouts in many cases. Many serious drawbacks
of this method come from the entailing rigidity regarding the de-
sign flow because DPC tool suites necessarily make up an entirely
separate, often technology dependent design subflow. As a result,
the integration of datapath blocks with the rest of the design is of-
ten far from seamless. Furthermore, within the DPC framework
the circuit netlist may not be modified without maintaining con-
sistence with respect to the internal function placement created by
the module generator. Since there exist no logic optimization tech-
niques with any notion of interconnect structural regularity, much
if not all of the datapath regularity will be lost while the given ini-
tial function placements are no longer valid for the modified data-
path functions. This drawback almost completely precludes logic
optimization on datapaths to satisfy area, timing and power con-
straints and objectives. Although the DPC generated layouts are
more predictable regarding aspect ratios and wire lengths hence
timing, a consequence of the impossibility to logically optimize the
datapath is that the resulting dense layouts may in fact be subop-
timal in many important aspects, while meeting design constraints
can be a very tedious if not impracticable task. In general, the fun-
damental problem of DPCs is that the high extent of structural reg-
ularity required for high density layouts can not be provided, while
the layout quality decreases rapidly as the circuit is less regular.
Common sources of datapath structural irregularities vary from a
different number of bits within a datapath to datapath functions
which are only partially regular such as carry lookahead logic.

1.3. Regularity Extraction based Datapath Generation

To alleviate this problem, much of the remaining regularity of the
interconnect structure can be identified by regularity extraction [5].
The extracted regularity information is then used to compute both
horizontal and vertical alignments and orderings for the cells that
were identified as being part of a regular circuit. From this infor-
mation, apartial relative placement initialization is obtained for
the subsequent cell placement stage in the design flow.

The efficacy of this method depends on the amount of structural
regularity that can still be found after logic synthesis. Hence, as the
extent of optimization performed by logic synthesis increases, the
amount of placement initialization tends to decrease. In netlists
generated by logic synthesis, the amount of regularity recogniz-
able bystructural techniques can drop below the extent where it
is still beneficial. Observations from our experiments indicate that
placement with structural hints as compared to generic placement
pays off less if the extracted fraction of cells drops below 20%. For
instance, in figure 1, both slices shown are identical in the unopti-
mized circuit on the left, so they will all be aligned regularly in the
placement initialization. However, the bit slices in the optimized
circuit on the right are no longer identical; the remaining struc-
turally regular cells are labeled. The amount of regular placement
initialization has clearly dropped significantly, possibly to an such
an extent that it is hardly useful.

1.4. Exploiting the Locality of Logic Synthesis

Importantly, most transformations performed by logic synthesis
are effectively local. Their impact on the overall structure of the
circuit is consequently limited. In figure 1 it can be observed that
the unoptimized and optimized circuits have an underlying struc-
ture which is largely similar. More specifically, this means that in
the netlists before and after logic synthesis, many points can be

identified which implement the same function. In fact, it is an in-
trinsic property of existing logic optimization techniques that the
interconnect structure of points in the unoptimized circuit is almost
identical to the interconnect structure of their equivalent points in
the optimized circuit. In experiments on an RTL description of
the minmax benchmark, we observed that even with a high opti-
mization level, a functional equivalence could be found for roughly
50% of the nets in the optimized netlist. These experiments were
conducted using the SIS logic optimization system developed at
UCB. We exploit this property of similar interconnect structures
of functionally equivalent points by inferring a regular placement
of the optimized circuit from the regularity information extracted
from the unoptimized circuit. The basic idea is that even though
these cells are structurally not as regular as in the unoptimized ver-
sion, they placementwise still form a sufficiently regular pattern to
benefit from a regular placement. We therefore use these cells to
augment the amount of regular placement initialization.

The reasons why logic synthesis has such a limited effect on
the overall structure of the circuit are that it is computationally ex-
pensive to collapse a larger circuit, and moreover, this very often
yields much worse implementations. Especially for arithmetic cir-
cuits, the best results are obtained when only local optimizations
are used. Thus, logic synthesis along the design flow implicitly
but inherently preserves much of the underlying structure of the
circuit. Consequently there is a high extent of implicit structural
and functional correspondence left between individual circuit ele-
ments in the netlists before and after logic optimization which our
method can obtain even if the optimized circuit is no longer strictly
regular.

In the work done by Brand et al. [1] on incremental synthesis,
the placement of a logically unoptimized circuit is utilized to ob-
tain a similar placement of an optimized version, but there are im-
portant differences in approach and objectives. The prime purpose
of their method is to preserve as much as possible of a placement
after minor changes to the function of the circuit. Importantly,
they therefore preserve the placement itself rather than the regu-
lar structure, which is the goal of our method. Doing the latter is
more flexible for our purpose in that it allows a different regular
placement for the optimized circuit subject to the same intercon-
nect structure. Also, they use a feature in their specific logic opti-
mization tool to prevent almost the entire logic netlist from being
modified. While such features are not generally available in logic
optimizers, it in fact impedes what we want to achieve, namely
optimize the circuit. Interestingly, in order to derive which cells
should be assigned the same placement, they employ ATPG tech-
niques to find nets in the optimized circuit that can be replaced by
nets from the unoptimized circuit without changing the function
of the entire circuit. Functional net equivalence is however more
suitable for our purpose than circuit level equivalence because the
latter may introduce many ambiguities.

2. OVERVIEW OF THE METHODOLOGY

We developed a methodology which combines the advantages of
DPCs with the flexibility offered by logic synthesis. It fits into
existing design flows by adding a number of extra steps, shown
shaded in figure 2. These steps primarily consist of 2 recently
introduced algorithms.

First, the input cell netlist is analyzed by a regularity extrac-
tion algorithm. It automatically extracts most of the 2-dimensional
interconnect structure in the netlist. Next, a relative placement

netlist
optimized

placement
finalization

regularity
extraction

partially regular
placement of

optimized netlist

correspondence

merge

correspondence
extraction

partial netlist

logic
optimization

placement
finalization

partial relative

regularity info

arrangement
Hor + Ver

non-optimized
netlist

regular placement

partial regular placement
of optimized netlist

Figure 2. The design flow showing the new extensions shaded

is computed for the extracted datapath cells serving as a partial
placement initialization for the subsequent placement finalization.
The regular placement is then evaluated as usual, and if the de-
sign objectives and constraints are not satisfied, the gate netlist is
backannotated for a logical optimization step yielding a much less
regular netlist.

The second important algorithm in our scheme therefore ex-
tracts the functional correspondences between the unoptimized
and the logically optimized netlists so that the initially discovered
regularity can be merged along these correspondences into the op-
timized netlist. Finally, after the merging step, a regular placement
for the logically optimized netlist is obtained. The remainder of
this paper is organized as follows. The next section explains the
principle of the datapath regularity analysis step. Section 4 de-
scribes the basic concepts of how the functional correspondence
extraction is performed. The merging step is outlined in section
5, and experimental results are presented in section 6. The paper
ends with concluding remarks and future directions.

3. REGULARITY EXTRACTION

The goal of structural regularity extraction is to identify a 2-
dimensional alignment structure of the components of the netlist
induced by the repetition of the bit-slices implementing the bit-
wise parallelism of datapaths. It is based on both the physical
properties of the components and their interconnect characteris-
tic categories, namely large hard macros such as memories, struc-
tured logic cells like datapaths, and unstructured glue logic. If the
regularity of the netlist is not (yet) too severely distorted by opti-
mizations that modify the netlist interconnect structure, the extrac-
tor recognizes it allowing even medium non-regularities. Further-
more, circuits are commonly described using the functional hierar-
chy used throughout the design flow, because the size of indiscrim-
inately flattened netlists is often practically intractable for generic

layout generation. At the same time, manual selective flattening
will become more impracticable as design complexities increase,
especially for circuits automatically generated from behavioral de-
scriptions. The advantages for placement entailing from the local-
ity and restricted problem sizes implied by this hierarchy however
do not counterbalance against the disadvantages from the narrow
optimization scope in case a physical hierarchy is used, as is done
by DPCs. The extraction process selectively flattens the hierarchy
on the fly so that datapath member cells end up in the same level.
Although this may lead to placement tasks of the datapath cells
that would otherwise be too large, we use the extracted regularity
information to drastically reduce the placement problem size.

3.1. Datapath Regularity Modeling

The aforementioned alignment structure is constituted by 2 par-
titionings of the circuit, namely one decomposing it by bit-slice,
and the other by datapath-stage. Components assigned to the same
class will be aligned linearly. Figure 3 sketches the two orthogo-

columnwidth

ro
w

he
ig

ht

DATAFLOW

C
O

N

 T
R

O
L

slices

t3

t4

t4

t4

t4

stages

t2

t2

t2

t2

t1

t1

t1

t1

t1

t1

t1

t1

t2

t2

t2

t2

t3

t3

t3

t3

t3

t3

t3 t2

t2

t2

t2

Figure 3. Orthogonal alignment classes

nal partitionings. The cells associated with the same bit are aligned
horizontally, coinciding with a row in the common row-based lay-
out style, hence they have about the same height. The cells in a ver-
tical alignment group have the same type, hence the same width.
Next to this stronggeometricalregularity allowing compact place-
ment, there is also a strong intrinsicinterconnectregularity in that
most nets are confined to either one stage or one slice. As a result
of the datapath architecture, few nets run almost randomly. These
properties allow obtaining a relative placement of the datapath by
separately computing a linear arrangement for the slices and the
stages. This substantially reduces the size of the solution space of
the placement task, enabling larger subcircuits to be placed in one
run.

3.2. Regularity Quantification

The extractor identifies regular structures by expanding datapath-
wide search-waves through the network. An essential innovation
of our method is that it is guided by a relative regularity measure
introduced in [5] where it is presented in more detail. An analysis
is made of the regularity of the neighborhood of a reference stage,
i.e. the set of components that have an incidence to the components
of the reference stage. More specifically, the analysis considers
the respective incidencesignatures(RSes) of the adjacent compo-
nents. An RS consists of at least the terminal-type of the incidence
between a net and a cell, which is known in any circuit description.
Other attributes such as signal flow direction can also be used if
available. The relative regularity measure then computes a value

for each signature in the neighborhood of this reference stage, ex-
pressing the extent of regularity between the reference stage and
the set of adjacent components with that signature. This metric
is a weighted sum of the distribution of the degree of the vector
of incidences between the slices in the reference stage, their aver-
age value and the number of zero-entries. The value of the metric
decreases monotonically as the candidate extension is placement-
wise considered more regular. Maximum regularity is indicated by
the value 0.

For example, the bipartite graph in figure 4 depicts the relation
between the bitsbi of a reference stage on the right and the adja-
cent signatures�j on the left. The pin-sets on the edges denote the

t1 τ1

τ2

t5 τ3

t4
{p3,p4}

{p
5}

{p10}

{}

PINSET

{p13,p14}

{p6,p7}

{p1,p2}

{p11,p12}

SLICES

{p8,p9}

b1

b2

b3

{n1,n2}

{n3,n4}

{n5,n6}

SIGNATURES

Figure 4. Example regularity analysis

incidences. The incidence vector for�1 is [2; 2; 2], which corre-
sponds to a high degree of regularity, since[1; 1; 1] is maximum.

3.3. Extraction Algorithm

Importantly, the above metric imposes a global linear ordering of
the candidate extensions by their regularity. This allows compar-
ison of all candidate extensions, from which the most regular ex-
tension is selected. Candidates are made up of sets of incidences,
one per bit in the reference slice. A new stage is then added to the
datapath by assigning all elements in the selected candidate to one
new stage, while each element inherits one slice-membership via
the incidences.

The search wave is expanded until no more sufficiently regular
extensions remain. A new search-wave is started for everyseed-
stage which are automatically recognized by utilizing the datapath
characteristic that there are several control-nets that connect to all
slices to cells of the same type via the same terminal [6]. After all
seeds have been used, the extracted datapath with the best statis-
tics, such as size, width, average regularity etc. is selected, and all
overlap with other waves is removed.

Finally, the alignment groups are linearly arranged to obtain a
relative placement for the cells that were recognized as being part
of regular circuitry. This partial placement then serves as a partial
placement initialization. The subsequent placement process pulls
many non-initialized cells closely related to the initialized cells
into position so that non-initialized positions due to irregularities
will still be filled.

4. FUNCTIONAL CORRESPONDENCE EXTRACTION

The objective of functional correspondence extraction is to find
a partial correspondence between the cells of the netlists before
and after logic optimization. Because the names of cells and nets

are typically not preserved during logic optimization, correspond-
ing points do not necessarily have identical names. Therefore, we
propose the following approach to extract this partial correspon-
dence. First we identify nets that implement the same Boolean
function (modulo negation). With this information, a partial corre-
spondence between the cells of both netlists is constructed.

We restrict the discussion to combinational circuits. In [4], it
is explained how the approach can be extended to automatically
extract the register correspondence for circuits with identical state
encodings. Finding a functional correspondence after sequential
optimizations such as retiming is beyond the scope of this paper.

4.1. Detecting equivalent nets

We assume that the correspondence between the primary inputs
of both netlists is known. Therefore, we can associate a Boolean
function with each net, which expresses the value of that net as
a function of the primary inputs. We want to partition the nets
into classes of nets with the same function (modulo negation).
More precisely, two netsni andnj with functionsfni

andfnj

are called equivalent iff:(fni
� fnj

) _ (fni
� fnj

). Gener-
ally, calculating this partition is a difficult problem, because deter-
mining the equivalence of Boolean functions is a co-NP complete
problem. However, for circuits with a similar structure, efficient
methods are known to calculate an accurate approximation of this
partition. We use the method from [3] which was originally de-
veloped to formally verify that the netlists before and after logic
optimization implement the same functionality. It combines the
use of binary decision diagrams (BDDs) [2] with a technique to
automatically detect and utilize equivalent internal nets. Because
an equivalence check can be performed in constant time on BDDs,
the efficiency of a BDD-based verification method is largely de-
termined by the efficiency with which the required BDDs can be
constructed. There are types of circuits for which the BDDs be-
come intractably large. To alleviate this problem, the functions of
the nets are not expressed over the primary inputs only, but also
over extra variables representing equivalent internal nets. A set of
equivalent nets for which an extra variable is introduced is called a
breakpoint, and the associated variable is called a breakpoint vari-
able. Figure 5 illustrates the meaning of breakpoint variables.

Unoptimized Design

Optimized Design

Figure 5. Functionally equivalent nets

The main advantage of introducing breakpoints is that if suffi-
cient equivalences exist between the two circuits, all BDDs remain
compact. If for two nets the same BDD is calculated, then these
nets are equivalent. If two nets have different BDDs, variable as-
signments apparently exist for which the functions differ. How-

ever, these assignments may not be valid, because the breakpoint
variables cannot be assigned values independently. Such invalid
assignments are called false negatives. This problem is avoided by
replacing each breakpoint variable by the function it represents.
It can only be decided that the functions are not equivalent, if
the difference expressed over the primary input variables is not
zero. Hence, a disadvantage of introducing breakpoints is that the
equivalence check may require substitutions, possibly resulting in
a large BDD representation for the difference of two nets. How-
ever, if the equivalent nets are the result of a similar structure, we
expect the difference to be relatively small or even zero, in which
case no substitutions are required at all.

Equivalent nets are detected in a single traversal of both netlists.
In order to detect and introduce breakpoints on the fly, both circuits
have to be traversed simultaneously. To synchronize these traver-
sals, it is necessary to already have a notion of which nets are likely
to be equivalent. Therefore, the first step of the functional corre-
spondence extraction is to partition the set of nets into classes of
potentially equivalent nets. Simulation with random input vectors
is used to compare the functions of the nets for a small part of the
input space. It forms a coarse check for the equivalence of two nets
without excluding any equivalences. The accuracy of the analysis
and the required run time depend on the number of input vectors.
If possible, we also try to exploit name equivalences.

After calculating the potentially equivalent nets, the circuits are
traversed by repeatedly performing the following steps. First, a
set of potentially equivalent nets is selected which is close to the
nets that have been calculated thus far. Then BDDs are calculated
for these nets, and the functions of the nets are compared. Heuris-
tics are used to decide which nets actually need to be compared.
This may result in the detection of one or more classes of func-
tionally equivalent nets. If equivalences are found abundantly, it is
not necessary to actually introduce a new variable for each set of
equivalent nets. This is decided in a last step. The details of the
method can be found in [3].

4.2. Constructing the cell correspondence

When the equivalent nets have been identified, a partial correspon-
dence between the cells of both netlists is constructed. Single-
output cells are said to be in correspondence if their outputs drive
functionally equivalent nets. Similarly, multiple-output cells are
said to be in correspondence if for each output of one cell, there
is an output of the other cell which drives an equivalent net. We
require that for each cell, there is at most one corresponding cell.
Furthermore, we add the extra constraint that the correspondence
does not conflict with the topology of both netlists, i.e. if two cells
cs1 andcs2 in the unoptimized netlist correspond with respectively
cellsci1 andci2 in the optimized netlist, and there is a directed path
from cs1 to cs2, then there may not be a directed path fromci2 to
ci1. In practice, this is rarely a problem, and therefore we have a
greedy algorithm based on some simple heuristics to construct a
cell correspondence which meets these constraints.

5. MERGING STRUCTURAL AND FUNCTIONAL
EXTRACTIONS

The merging step in the design flow combines the results of the two
extraction steps by folding the regularity extraction results from
the unoptimized circuit into the optimized circuit via the extracted
functional correspondence information between the two circuits.
The cells are member of categories as shown in figure 6. Observe

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

Nonregular logic�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

Unoptimized Circuit

Regular Extracted

Merged

Regular logic

Functional Corr.

Optimized Circuit

Unused logic

Figure 6. Sets of cells associated with the two extractions

that the extraction results may not be complete, especially in the
case of the logically optimized circuit. The regularity extraction
result is in general a subset of the set of cells that are part of the
structured logic of a circuit. Likewise, the set of cells for which
a functional correspondence exists in general does not cover the
entire circuit. Note that since unused cells are removed after the
optimization step, there can be no overlap between the set of un-
used cells and the set of cells for which a functionally equivalent
cell is found in the optimized network.

Basically, for every cell in the unoptimized circuit with both
regularity information and a functional correspondence to a cell
in the optimized version, the merging step assigns this regularity
information to the latter cell. In the figure, this applies to the area
where the two hatched areas overlap, which is crosshatched.

An additional phase of the merging step is to combine the regu-
larity information that could still be found in the optimized circuit
with the regularity information that was obtained via the above-
mentioned method. In the diagram, the corresponding area is en-
closed with a fat line. Our experiments however showed that in
practice, the amount of additional regularity thus obtained is small,
whereas this step involves many ambiguities that are hard to solve
in a robust way. Since the coverage of the regular part of the opti-
mized circuit found is already sufficiently large for the purpose of
cell placement, we ignore this additional data.

The run-time complexity of the actual merging step is only
O(n log n) wheren is the number of cells for which a func-
tional correspondence exists. Like the extraction steps, it therefore
doesn’t noticeably add to the run-time of the design flow.

6. EXPERIMENTAL RESULTS

We performed a number of experiments on four example cir-
cuits to evaluate the proposed methodology. These circuits con-
tain only combinational logic cells and can be regarded as pipeline
stages of a larger datapath. DP1 contains two 8-bits wide cascaded
adder/subtractors. DP2 is a 32-bit datapath made up of various el-
ements including a multiplier, an adder and several multiplexers
so that there are many paths with different lengths from the pri-
mary inputs to the primary outputs. In contrast, the primary paths
in DP3 have almost uniform length. DP4 is a realistic complex
32-bit datapath pipeline stage consisting of an ALU, multiplexers,
a shifter and a comparator. It must be noted that cases with a high
complexity and size like DP2 are rare in practice.

All circuits were optimized in flat mode to meet realistic global

Table 1. Structural and Functional analyses results
Structural Functional Merged

Circuit unoptimized optimized
Name Size Perc. Time Size Perc. Time Corr. Perc. Time Size Perc.
DP1 138 89% 0.3s 128 0% 0.0s 71 55% 0.4s 67 52%
DP2 1719 94% 2.0s 1591 88% 3.3s 1020 64% 11.7s 955 60%
DP3 421 92% 0.2s 424 0% 0.0s 244 58% 1.1s 235 55%
DP4 1047 92% 1.3s 902 50% 1.0s 477 52% 9.5s 434 51%

timing constraints on the pipeline stage. We observed that through
logic optimization large speedups can be obtained which would not
have been allowed within a DPC framework. In the case of DP4,
the circuit speedup obtained was more than 300%. Table 1 shows
the results from structural extraction on both the unoptimized and
optimized circuits. Clearly, the regularity extraction works well on
the unoptimized netlists. Note that the percentages mentioned are
relative to theentirecircuit as opposed to only its datapath logic.
In designs DP1 and DP3 in which almost all paths are critical,
hardly any structural regularity remains after logic optimization. In
larger more complex circuits like DP2 and DP4, the ratio of critical
versus non-critical nets is typically much smaller, which explains
why more regularity in those circuits was preserved. The reason
why the non-critical parts are not modified is that the structure
created by the module generator is generally very good areawise.

Table 1 lists the results from functional correspondence extrac-
tion between the unoptimized and optimized circuits. It shows the
number of cells in the optimized circuit for which a corresponding
cell is found in the unoptimized circuit. The percentages men-
tioned for the structural extraction results are relative to the entire
associated circuit, not only the part of the circuit that is really reg-
ular, because the ratio between glue logic and structured logic is
not known for these examples. The percentages for the functional
analyses are relative to the number of cells in the optimized netlist,
as it is the target of the design process. The high percentages con-
firm that the amount of placement initialization can be augmented
utilizing functional correspondences.

Note that the set of cells assigned to an alignment set in the un-
optimized netlist does not necessarily fully overlap the set of cells
in the same netlist for which a functional correspondence exists.
In practice, this overlap turns out to be sufficiently large. Since the
run-times of the algorithms are low, clearly our method is applica-
ble for large designs without significant computational effort. The
results also confirm that while the degree of distortion of the inter-
connect structure increases as the circuit size decreases, and that
our method provides a way to still place those circuits regularly.

We also experimented with actually generating both regular and
non-regular placements for both unoptimized and heavily opti-
mized circuits. These experiments indicate that the improvement
obtained when placing an unoptimized circuit regularly as com-
pared to a general placement is also obtained for optimized circuits
to a similar extent.

7. CONCLUDING REMARKS

We exploit several properties that are intrinsic to the techniques
used for existing VLSI datapath design and synthesis to get rid of
the conventional mutual exclusion of dense regular datapath lay-
out generation and logic optimization. Application of functional
correspondence extraction between the initial logic netlist and its
optimized implementation greatly augments the amount of layout

regularity alignment information for the optimized netlist. This
data is obtained by performing a structural analysis on the netlist
while it is still sufficiently regular, and merging the result with
the no longer regular optimized implementation via the correspon-
dences extracted by the functional correspondence analyzer. Thus,
a partial regular placement initialization for the logically optimized
netlist is obtained so that extensive logic optimizations no longer
preclude regular layouts. This approach allows generation of larger
layouts of flat netlists as compared to conventional methods at a
low computational overhead.

Future work is needed to provide more insight on how the
amount of regular placement initialization supplied to the place-
ment tools influences the improvement on the layout quality sub-
ject to the placement algorithms used, the target device technol-
ogy and the involved characteristics of the design. The proposed
methodology nonetheless in many cases clearly enables utilization
of datapath regularity. In our experiments, practically realistic tim-
ing constraints appeared to topologically coincide with the regular
structure, hence placement. This observation gives rise to further
research the impact of the entailing higher timing predictability
during logic synthesis on the convergence of the design flow itera-
tion. Finally, sequential signal correspondence techniques must be
added to allow larger networks and more complex restructurings
like retiming, so that more comprehensive evaluations of the prac-
tical effects of the methodology can be surveyed on a large set of
designs.

REFERENCES

[1] D. Brand, et al.Incremental Synthesis.Proc. IEEE/ACM Int.
Conf. on Computer-Aided Design, pp. 14-18, 1994.

[2] R.E. Bryant.Graph Based Algorithms for Boolean Function
Manipulation.IEEE Trans. on Computers, vol. C-35 no. 8, pp.
677-691, August 1986.

[3] C.A.J. van Eijk and G.L.J.M. Janssen.Exploiting structural
similarities in a BDD-based verification method.Proc. 2nd Int.
Conf. on Theorem Provers in Circuit Design, LNCS vol. 901,
pp. 110-125, 1995.

[4] C.A.J. van Eijk and J.A.G. Jess.Detection of Equivalent
State Variables in Finite State Machine Verification.Workshop
notes of the 1995 ACM/IEEE Int. Workshop on Logic Synthe-
sis, pp. 3.35-3.44, 1995.

[5] R.X.T. Nijssen and J.A.G. Jess.Two-Dimensional Data-
path Regularity Extraction.Workshop notes of the 5th
ACM/SIGDA Physical Design Workshop, pp. 110-117, 1996.

[6] G. Odawara, T. Hiraide and O. Nishina.Partitioning and
Placement Technique for CMOS Gate Array.IEEE Trans. on
Computer Aided Design, vol. 6, no. 3, pp. 355-363, 1987.

	CD-ROM Home Page
	ISPD97
	Front Matter
	Table of Contents
	Session Index
	Author Index

