
TIMING DRIVEN PLACEMENT IN INTERACTION WITH NETLIST

TRANSFORMATIONS

Guenter Stenz1 Bernhard M. Riess2 Bernhard Roheisch2 Frank M. Johannes1

1Institute of Electronic Design Automation
Technical University of Munich

80333 Munich, Germany
Stenz@regent.e-technik.tu-muenchen.de

2Siemens AG
Semiconductor Group

81617 Munich, Germany
Bernhard.Riess@hl.siemens.de

ABSTRACT

In this paper, we present a new approach that performs
timing driven placement for standard cell circuits in inter-
action with netlist transformations. As netlist transforma-
tions are integrated into the placement process, an accurate
net delay model is available. This model provides the basis
for e�ective netlist transformations. In contrast to previous
approaches that apply netlist transformations during place-
ment, we are not restricted to local transformations like
fanout bu�ering or gate resizing. Instead, we exploit global
dependencies between the signals in the circuit. Results for
benchmark circuits show excellent placement quality. The
maximum path delay is reduced up to 33% compared to the
initial timing driven placement of the original netlist and
up to 18% compared to the results obtained by consecutive
optimization of the netlist and timing driven placement of
the optimized netlist. This delay reduction is achieved with
almost no increase in chip area.

1. INTRODUCTION

1.1. Motivation

Performance requirements are steadily increasing. There-
fore, timing optimization has become one of the most chal-
lenging problems faced in the design of today's highly in-
tegrated circuits. Consequently, timing optimization tech-
niques have been developed for all stages of the design pro-
cess. However, interaction between the stages has to be
improved.
In Figure 1a), the traditional design ow is shown. On

the logic synthesis stage, timing optimization is guided by
crude path delay models. They are mainly based on gate
delays and rough estimations of the net delays as layout in-
formation does not exist in this early design stage. The net
delays are often estimated by using the individual output
resistances and input capacitances of the gates provided by
the library. The fact that the delay of a net mainly depends
on its length is ignored. Other approaches use statistical
data derived from previously generated designs for net de-
lay estimation. These statistical data often do not represent
the net delays of the current design very well. As net delay
models lack su�cient accuracy during logic synthesis, the

subsequent placement and routing stages have to optimize
the net delays in the most critical paths.
Since VLSI geometries are scaled down more and more,

net delays become dominant compared to gate delays. Con-
sequently, suboptimal decisions may be performed during
logic synthesis as only rough estimations for the most domi-
nant part of the path delays are available. Nevertheless, the
subsequent placement stage assumes this suboptimal netlist
to be static. This problem will become even more important
for future design processes.

?

Placement

Routing

Improvement

Logic Synthesis

Yes

2) Placement

No

Routing

a) b)

POINT

Optimization

Improve-
Timing

ment?

Logic Synthesis

Placement

1) Netlist

Figure 1. Comparison of Design Flows: a) Tradi-
tional, b) Deep-Submicron

1.2. Outline of our approach

To overcome this problem, we propose a new approach that
exploits the optimization potential of netlist transforma-
tions during the placement process. As netlist transforma-
tions are performed during the placement process, they are
based on more accurate estimations of the net delays.
We propose a design ow as shown in Figure 1b). Af-

ter logic synthesis, a placement is generated. We use this
placement as initial placement for our new approach POINT
(Performance Optimization by Interacting Netlist Trans-
formations and Timing Driven Placement). POINT per-
forms a sequence of netlist transformation and placement
improvement phases which are closely coupled. To trans-
form the logic netlist, we have adopted a method that ef-
fectively reduces the delay of mapped circuits [1]. Accurate
estimations of the net delays are obtained from the current
placement to guide the selection of the netlist transforma-
tions. After the netlist has been modi�ed, the placement is

updated by a placement improvement phase. For this pur-
pose, we developed a new timing driven iterative placement
improvement algorithm.

1.3. Previous work

The problem of combining logic and layout synthesis proce-
dures has been addressed in several papers in recent years.
The existing techniques can be divided into logic synthesis
approaches that use a companion placement [2, 3, 4] and
placement procedures that apply local netlist transforma-
tions after initial placement and update the placement ac-
cordingly [5, 6, 7].
The approaches of the �rst group use the companion

placement to guide the synthesis process by providing more
accurate estimations on area, delay, or routability. This
companion placement is dynamically updated during the
logic synthesis process. Pedram and Bhat [2] present a
technique that considers net lengths during both, area and
delay oriented technology mapping. The key idea is to es-
timate the interconnection dependent contributions to cir-
cuit area and delay by referring to a dynamically updated
global placement [2, 8] of the unmapped network. The same
authors [3] extend this idea to logic restructuring and tech-
nology decomposition. Vaishnav and Pedram [4] propose
an e�ective fanout optimization algorithm that generates
fanout trees that are free of internal edge crossings resulting
in reduced chip area after �nal routing. In this approach,
the companion placement is used to get an order restriction
on the fanouts of the gates. All these approaches su�er from
the fact that predicting post-layout net lengths during logic
synthesis is extremely di�cult.
The approaches of the second group are placement algo-

rithms that apply local netlist transformations after initial
placement. Kannan et al. [5] start from an initial placement
followed by timing optimization using fanout bu�ering and
gate resizing transformations. Estimations of the net de-
lays based on the initial placement are used for selecting
the most useful transformations. A linear programming
approach has been applied for resizing and relocating of
critical gates by Chuang and Hajj [6]. Liu et al. [7] propose
to resynthesize the logic in the most congested regions of
the chip to reduce routing area. The approaches of the sec-
ond group are able to estimate net lengths accurately since
they operate on a placed circuit. However, they only apply
local netlist transformations like fanout bu�ering and gate
resizing which strongly restricts the optimization potential.
POINT combines the advantages of previous approaches.

It operates on a placed circuit which allows more accurate
net delay estimation. Additionally, our new approach is not
restricted to local netlist transformations like fanout bu�er-
ing or gate resizing. Instead, global dependencies between
the signals in a circuit are exploited to improve the circuit's
performance. Nevertheless, our experiments show that the
netlist transformations perturb the placement only moder-
ately such that the perturbed placement can be used as a
good initial solution for the subsequent placement improve-
ment phase. Results for benchmark circuits show excellent
placement quality. The maximum path delay is reduced up
to 33% compared to the initial timing driven placement of
the original netlist and up to 18% compared to the results
obtained by consecutive optimization of the netlist and tim-
ing driven placement of the optimized netlist. This delay
reduction is achieved with almost no increase in chip area.
The remainder of this paper is organized as follows. The

next section presents our delay model. We describe our new
approach of timing driven placement in interaction with

netlist transformations in Section 3. In Section 4, experi-
mental results are presented and discussed.

2. DELAY MODEL

POINT is independent from the choice of a speci�c delay
model. We use a model that was recently proposed for
analytical timing driven placement [9]. In this section, we
will give a short review of this delay model.
We model the total delay of a path as the sum of the

gate delays and the sum of the net delays on this path. The
gate delays represent the intrinsic delay of a gate and are
considered to be independent from the fanout of the gate.
Instead, fanout dependencies are modeled by the net delays.
For net delay estimation we use the Elmore delay [10].
As the �nal routing of a net is not available during place-

ment, a net model must be used to estimate the net delay.
We use the following star model: Assuming given coordi-
nates of the pins connected by a net, the star point is com-
puted as the center of gravity of all pins of the net. The
star point is connected to the source pin and all sink pins
of the net. The star model for a four{pin net is shown on
the left of Figure 2. Let k denote the number of pins of a

x

y

v0

sink v2

sink v3

Rl4

Rl1

Rl2

Rl3

CL3

CL2

CL1
source v4

ly3

sink v1

lx3

RS

Cl4

Cl1

Cl2

Cl3

Figure 2. Star model and derived electrical model

net, v0 denote the star point, v1, . . . vk�1 the sink pins, and
vk the source pin of a net. Let lxi and lyi denote the dis-
tances from the star point to pin vi in x{ and y{direction,
respectively. From this net model, a corresponding electri-
cal model can easily be derived, which is used for net delay
estimation. On the right of Figure 2, the electrical model of
the four{pin net is given. It consists of an output resistance
Rs, a series resistance Rli and a parallel capacitance Cli for
each edge of the star and a load capacitance CLi parallel
to each sink pin. The lumped resistances and capacitances
Rli and Cli are de�ned as

Rli = rx � lxi + ry � lyi and Cli = cx � lxi + cy � lyi , (1)

where rx, ry, cx and cy denote the resistances per unit
length and capacitances per unit length in x{ and y{
direction, respectively.
Now, we are able to compute the Elmore net delay

nd(vk ! vq) from the source pin vk to the sink pin vq:

nd(vk ! vq) = (RS + Rlk
)(Clk

+

k�1X
i=1

(Cli +CLi))

+Rlq(Clq +CLq) (2)

To evaluate the circuit's timing behavior, we assign ar-
rival times to all pins of the circuit. An arrival time of 0
is assigned to all primary inputs of the circuit and the ar-
rival times of all other pins are computed by traversing the
netlist starting from the primary inputs towards the pri-
mary outputs in a breadth-�rst-search manner. The max-
imum path delay is given as the largest arrival time of all

primary outputs. Tracing back from the primary outputs
with the largest arrival times to the primary inputs, the
critical paths of the circuit are identi�ed.

3. THE NEW APPROACH

In this section, we will �rst give an outline of POINT. Then
we will discuss the netlist transformation and placement
improvement phase in more detail.

3.1. Outline of POINT

Our approach POINT is illustrated in Figure 1b). The al-
gorithm starts from an initial standard cell placement of
a logic netlist. It consists of two closely coupled phases
(phases 1 and 2). In phase 1, transformations of the logic
netlist are performed to reduce the maximum path delay.
To select a delay reducing transformation, the critical paths
have to be determined. For that purpose, we use the cur-
rent placement to obtain the net delays as described in Sec-
tion 2. Of course, only netlist transformations that do not
change the circuit's logic behavior are performed. Due to
the netlist transformations, gates may be removed as well
as new gates may be added. For each gate that is added to
the netlist we immediately determine a tentative location
allowing temporary gate overlaps. Therefore, all gates have
a location at any time. The critical paths of every inter-
mediate netlist are determined based on these coordinates.
The netlist transformations aim at shortening these critical
paths. It should be noted that in general the placement is
not legal after netlist transformations have been performed.
After a speci�ed number of netlist transformations has

been performed, phase 2 of our approach is entered. Now,
the perturbed placement is legalized and improved by ap-
plying a placement improvement phase. In this phase we
�rst compute an overlap{free placement and then re�ne this
placement iteratively by rearranging subsets of gates in cer-
tain regions of the chip area. The two phases are repeated
until no further improvement can be obtained.
In the following, we will discuss the netlist transformation

phase and the placement improvement phase in more detail.

3.2. Timing Optimization by Structural Netlist
Transformations

To transform the netlist in phase 1 of our approach, we
use the concept of signal substitutions, which has been
shown to be e�ective for timing optimization of mapped
logic netlists [1]. In the following, we will give a brief re-
view and an illustrating example of this method. In this
context, the same label is used for a gate and for the signal
at its output pin.
An output substitution OS2(a,b) is a netlist transforma-

tion that substitutes the stem signal a by signal b.
An input substitution IS2(a1,b) is a netlist transformation

that substitutes the branch signal a1 by signal b.
In the example shown in Figure 3a), the gate a is con-

nected to the two fanout gates d and e. For the output
substitution OS2(a,b), both fanout gates of a are discon-
nected from gate a and connected to gate b instead (Fi-
gure 3b)). After the substitution, the output of gate a is
oating and therefore gate a and all gates in its fanout-free
region can be removed from the netlist. If an input substi-
tution IS2(a1; b) is carried out, only one of a's fanout gates
(gate d) is re-connected, as shown in Figure 3c). For input
substitutions, no gates can be pruned. Nevertheless, they
are valuable for timing optimization. Furthermore, substi-
tutions with inverted signals are also considered. In this
case, an inverter has to be added to the netlist.

a2

b)a) c)

b

a

f

d

e

a

b
f

d

e

a

b
f

d

e

a1

Figure 3. a) Original netlist, b) Output substitution
OS2(a,b), c) Input substitution IS2(a1,b).

2.8

3.53.0

2.8 3.4

3.7

4.8

4.0

3.8

b)a)

3.0

6.0

b

e

d

b

c

d

e

a

a2

net cc

net b

6.0
6.6

a1

a

6.8

net a
6.3

3.9
4.2

Figure 4. a) Original netlist with critical path and
b) Input substitution IS3(a1,b,c).

The concept of substitutions can be extended to substi-
tutions involving more than only two signals. The follow-
ing 3-signal substitutions provide more powerful methods
to transform the netlist.
An output substitution OS3(a,b,c) is a netlist transforma-
tion that substitutes the stem signal a by the output signal
of a new gate driven by b and c.
An input substitution IS3(a1,b,c) is a netlist transformation
that substitutes the branch signal a1 by the output signal
of a new gate driven by b and c.
An input substitution IS3(a1,b,c) with an AND-gate is

illustrated in Figure 4. For the newly inserted gate, all
types of 2-input gates can be considered.
Intuitively, the transformations performed on the logic

netlist must not change the circuit's logic behavior. Trans-
formations that preserve the logic behavior are called per-
missible. Permissible substitutions can be computed using
well developed ATPG-methods. For details of the compu-
tation of permissible substitutions we refer to [1].
We use an example to illustrate how substitutions can be

used to shorten the critical paths. In the following, all nets
driven by a gate on a critical path are called critical nets.
Assume that the bold-printed path shown in Figure 4a) is
critical. The numbers next to the sink and source pins of
nets a, b, and c denote the arrival times at the respective
pins. The branch signal a1 is part of a critical net and
therefore we want to substitute it. Assume that the part
of the netlist shown in Figure 4 is embedded in the whole
netlist in such a way that the substitution IS3(a1,b,c) with
an AND-gate is permissible. To perform the substitution,
we add an AND-gate driven by b and c. The output of the
AND-gate is used to substitute the critical branch signal a1
as shown in Figure 4b). We initially place this AND{gate
in the center of gravity of all pins it is connected to. The
critical input of gate d has an arrival time of 6.8 before the
substitution. The substitution reduces the arrival time at
this input to 4.8. In the example of Figure 4, a branch signal
contained in a critical path has been substituted. Note that

a substitution of the branch signal a2, which itself is not
contained in a critical path, would also decrease the arrival
time at the input of gate d as the fanout of a decreases.
Therefore, we also consider substitutions of branch signals
not contained in a critical path but connected to a critical
net. After a transformation we perform timing analysis to
identify the new critical paths, which are then targeted by
the next substitution. To reduce the maximum path delay
we compute all substitutions for all signals connected to
critical nets and select the one with highest gain.
This concept of substitutions is particularly suitable for

incorporating it into timing driven placement. Assuming
that net delays are known, they can be easily considered
during the netlist transformations as shown in the exam-
ple above. Furthermore, the substitutions are incremental
netlist transformations. This is especially important if the
transformations are performed during the placement pro-
cess. A consistent integrated optimization is only possi-
ble if the transformations of the logic netlist do not lead
to a totally di�erent placement. Please note that IS2-
transformations which contribute more than 50% to the to-
tal number of performed transformations, do not perturb
the placement at all. This supports the convergence of the
integrated optimization process.

3.3. Timing Driven Iterative Placement Improve-
ment

The subsequent placement phase that legalizes this per-
turbed placement must ful�l two requirements. First, the
placement procedure must start from the perturbed place-
ment including the tentative locations for the newly added
gates. If the new netlist would be placed starting from
scratch, convergence between the netlist transformation and
the placement procedure could not be expected at all. Sec-
ond, the modi�cations of the perturbed placement should
not be too small. If the perturbed placement is trans-
formed into a legal placement with as few changes to the
placement as possible, the subsequent netlist transforma-
tion phase will �nd no more netlist transformations. To
meet the �rst requirement, ECO placement techniques are
usually used. However, ECO placement techniques do not
meet the second requirement. In this section, we will dis-
cuss a placement improvement procedure that meets both
requirements.
It has been shown theoretically as well as experimentally

that the linear assignment method combined with appro-
priate net models can be applied successfully to determine
high-quality placements in terms of area and wire length. A
typical method of this kind was implemented in the iterative
placement program DOMINO [11]. Due to its good results
in non-timing-driven placement, we adopt DOMINO's ba-
sic strategy for timing driven placement. In the following,
we will �rst outline the new placement improvement ap-
proach and then discuss its di�erences and improvements
compared to the DOMINO procedure [11].

3.3.1. Outline of the Placement Improvement Procedure

The algorithm as outlined in Figure 5 consists of the fol-
lowing three steps: First, an overlapfree placement is com-
puted from the given perturbed placement. Next, the proce-
dure iteratively generates a sequence of intermediate place-
ments. In each iteration, an improved legal placement is
generated from the current placement. Finally, we perform
an intra-row permutation of gates. During this optimiza-
tion, gates are rearranged within their row only. Except
of the �rst step, new placements are only accepted if the
maximum path delay has been decreased.

1. Generate overlapfree placement

3. Permute gates in rows

Generate improved placement

2. WHILE timing is improved

Timing Driven Placement Improvement

Figure 5. Overview of the timing driven iterative
placement improvement procedure

In all steps of our algorithm, the chip area is covered by
an array of regions. To each region we assign the subset of
gates currently placed inside that region. We obtain sub-
problems, which consist of rearranging the gates currently
placed inside a region. Solving subproblem by subproblem
from the left to the right border of the chip yields an im-
proved placement. Figure 6 illustrates a subproblem. For
the regions on the left of the border line we have already
computed an improved placement. The rearrangement pro-
cess takes the gates in the current region shown in grey
and assigns them onto locations on the right of the border
line and within the lateral borders of the region. The three
steps of the procedure shown in Figure 5 mainly di�er in
the choice of the regions. In the �rst and second step, a
region contains gates from more than one row as shown in
Figure 6. Therefore, gates can move from one row to an-
other. As regions overlap, gates can also move from one
region to the neighboring region. In the third step, a region
only contains gates from one row.

current region

improved placement

border line

current placement

set of gates
contained in

Figure 6. Generation of an improved placement by
rearranging the gates in a region of the chip

Rearranging the gates contained in one region, i.e. solv-
ing one subproblem, can be formulated as a transportation
problem. Gates are simultaneously transported to locations
in an overlap{free manner by minimizing the transportation
cost. This transportation problem can be e�ciently solved
by transforming it into a minimal-cost maximum ow prob-
lem [11]. The cost of assigning a gate a to location � is
denoted by ca� where

ca� = c
wl

a� + c
delay

a�
(3)

The cost in terms of wire length cwl
a�

is computed accor-
ding to a net model similar to the half perimeter bounding
box of all pins of a net. For details of this net model and

the formulation of the transportation problem we refer to
[11]. To take timing into account, we add the cost in terms

of path delay cdelay
a�

as it will be discussed in the following
section.

3.3.2. Transportation Costs for Gates in Terms of Path
Delay

Since during a placement phase the sum of the gate delays
in a critical path is �xed, the entire path delay can only be
reduced by shortening the delays of the nets contained in
the critical path. As can be seen from equation 2, not only
the gates contained in critical paths but all gates which are
connected to a critical net contribute to the delay of the
net. Consequently, in the following we consider all gates
connected to a critical net as critical.
To minimize the length of a critical net we compute target

coordinates P t

a = (xta; y
t

a) for each gate a incident to the

net. We compute the cost in terms of path delay cdelay
a�

proportional to the distance dta� of location � to the target
position of gate a, where s is the gradient:

d
t

a� = jx
t

a � x�j+ jy
t

a � y�j (4)

c
delay

a�
=

�
dta� � s if a is critical
0 if a is not critical

(5)

Thus, we obtain a function with a cost of 0 at the target
position and increasing cost with increasing distance to the
target position. The gradient s is chosen such that the costs
in terms of path delay are much higher than the costs in
terms of wire lengths. Using these additional costs for the
critical gates, these gates are pulled to their target positions
with high priority. The non-critical gates are assigned to the
remaining locations by minimizing the wire length.
Figure 7 illustrates how we compute the target coordi-

nates P t

a for a critical gate a. It shows a region as well

net

movable gate

x

y
�xed gate

direct connection

critical path

target position

Figure 7. Target coordinates

as a part of a critical path entering the region through the
left border and leaving the region through the right border.
Since only gates inside the region can be moved, all gates
outside the region are �xed. The �xed gates contained in
the critical path are drawn in black. The movable critical
gates are shown in white.
To reduce the net delays of the critical paths, we try to

place the critical gates on the direct connection between
the �xed gates outside the region. Intuitively, placing the
critical gates onto these direct connections will minimize
the length of the critical nets and therefore provide reduced
path delays. The target coordinates of the movable gates
contained in critical paths are equidistantly placed on these
direct connections. This allows to consider the ordering
of the gates in the path. The target coordinates of the
gates are marked by crosses in Figure 7. Target coordi-
nates of gates that are not contained in a critical path,

but connected to a critical net are placed in the middle of
the source and the critical sink of the net. This procedure
allows to connect all gates of this net with minimal net
length. Therefore it results in low net delay. Dotted lines
in Figure 7 indicate the assignment of the critical gates to
their computed target coordinates.
Using these target coordinates we are able to calculate

the additional transportation cost in terms of path delay
and obtain the total cost for assigning a gate to a location.

4. EXPERIMENTAL RESULTS

To evaluate POINT, we used combinational ISCAS{85 and
ISCAS{89 benchmark circuits. The circuits were optimized
and mapped to the SCMOS2.2 library by SIS using the de-
lay oriented synthesis script script.delay. For the nets
we assumed a capacitance per unit length of 242 pF=m and
a resistance per unit length of 25.5K
=m [9]. Output re-
sistances vary between 1 and 3K
 and input capacitances
range from 0.07 to 0.14 pF . Typical gate delays are between
0.27 and 1.1ns.
To get a fair comparison, we performed the following ex-

periments on a set of 15 benchmark circuits. First, we gen-
erated a placement for the original logic netlist with the
timing driven placement tool SPEED [9] which is the tim-
ing driven version of the well known placement procedure
GordianL. We use this placement as the initial solution for
evaluating POINT. For comparison, we generated a place-
ment according to the traditional design ow consisting of
netlist optimization followed by timing driven placement of
the static, optimized netlist. For this purpose, we applied
the netlist transformation procedure proposed in Section
3.2 to the original netlist generated by SIS, but without
guidance by the placement. In this run, all terms in the El-
more Delay formula that depend on net lengths were set to
zero as they are not known. This optimized netlist was then
placed by the placement tool SPEED. All our experiments
were performed on a DEC 250 4/266 workstation.

SP CONS POINT
tmax tmax CPU tmax Imp. Imp. CPU

circuit [ns] [ns] [s] [ns] SP CONS [s]
alu2 23.6 18.4 68 15.9 32.6 13.6 380
C1355 18.1 17.4 23 16.6 8.3 4.6 73
C880 17.9 17.7 4 16.6 7.3 6.2 56
C1908 26.1 24.5 41 23.2 11.1 5.3 215
alu4 27.9 27.4 37 22.8 18.3 16.8 544
vda 18.1 18.3 212 16.2 10.5 11.5 898

misex3 19.8 19.8 90 17.7 10.6 10.6 430
dalu 22.3 23.0 106 20.4 8.5 11.3 237
C3540 34.5 31.9 193 29.7 13.9 6.9 669
frg2 17.6 15.1 92 14.6 17.0 3.3 520
i8 20.2 20.4 97 18.9 6.4 7.3 346
pair 21.6 19.5 255 17.0 21.3 12.8 843
C5315 33.7 34.6 203 28.2 16.3 18.5 1 913
i10 40.4 37.3 1 362 33.0 18.3 11.5 2 652

C6288 80.1 79.9 1 295 76.7 4.2 4.0 3 125
AVG 13.6 9.6

Table 1. Results of POINT compared to SPEED
and CONS

In Table 1, the placement results obtained by SPEED
(denoted by SP), the consecutive design ow (denoted by
CONS), and POINT are compared. Column 2 shows the
maximum path delay after the placement of the original
netlist by SPEED. Columns 3 and 4 of Table 1 show the
maximum path delays and CPU{times of the consecutive
design ow CONS as described above. Finally, columns
5 to 8 present the maximum path delay, the relative im-
provement compared to the placement result of SPEED

area percentage compared to
circuit gates POINT SPEED CONS
alu2 271 1847 � 753 97.2 97.9
C1355 367 2023 � 885 100.0 100.0
C880 429 2012 � 899 101.7 102.2
C1908 535 2534 � 1119 108.4 109.2
alu4 598 2683 � 1389 99.7 101.6
vda 604 2903 � 1524 106.5 101.8

misex3 805 3148 � 2015 95.9 105.7
dalu 924 3292 � 1842 98.9 103.6
C3540 948 3141 � 1911 98.4 100.5
frg2 1 041 3136 � 1708 97.3 103.3
i8 1 069 3453 � 2204 99.1 103.0
pair 1 507 4102 � 2583 102.9 102.9
C5315 1 890 4526 � 3281 104.2 106.5
i10 2 325 4752 � 4231 103.6 104.1

C6288 2 650 5628 � 3330 102.2 112.6
AVG 101.1 103.7

Table 2. Chip area obtained by POINT compared
to SPEED and CONS

and CONS and the CPU{times of POINT. On the aver-
age, POINT outperforms SPEED by 13.6% and the con-
secutive design ow by 9.6% in terms of maximum path
delay. Please note that in the technology we used for our
experiments net delays only contribute 37% to path delays
on the average. In modern technologies, net delays may
contribute more than 60% to path delays. Therefore we
expect that results in these new technologies are even bet-
ter as the inuence of the net delays is larger than in our
technology. Furthermore, we expect that considering net
delays in larger circuits is even more important since die
size and therefore maximum net lengths are larger.
The CPU{times for POINT are larger than for CONS.

This is caused by the intermediate placement improvement
phases and by a larger number of performed modi�cations.
After the placement update, new promising netlist modi�-
cations may occur. Thus, alternating placement and netlist
transformation phases allow each other to escape from local
minima which leads to a larger amount of found transfor-
mations.
Table 2 compares the chip areas obtained by SPEED,

CONS, and POINT after routing with TimberWolf 1.3.
Column 2 shows the number of gates of the original netlists
and column 3 the chip area obtained by POINT. As shown
in columns 4 and 5, the placement obtained by POINT re-
quires only 1.1% larger chip area than SPEED and 3.7%
larger chip area than CONS on the average.
The results also show that the main limitation of POINT

in its current implementation is the circuit size that can be
handled due to high CPU requirements. The determination
of permissible transformations can be performed for circuits
containing several thousands of gates. However, in layout
synthesis circuits with more than 100 000 gates have to be
placed. Nevertheless, this is no fundamental limitation of
our approach. Performance of a circuit is determined by
quite small parts of the circuit containing the critical paths.
To transform the logic netlist, only parts of the circuit that
contain critical paths, have to be optimized. First exper-
iments show that the CPU requirements can be reduced
drastically by using this fact.

5. CONCLUSIONS

We presented a new approach to timing driven placement in
interaction with netlist transformations. Starting from an
initial placement and a logic netlist, our new approach iter-
atively performs netlist transformation and placement im-
provement phases, which are closely coupled. As the netlist

is transformed during the placement process, accurate net
delay models can be applied. Our research leads to the
following conclusions:
Allowing netlist transformations during placement o�ers

additional degrees of freedom to optimize the circuit's per-
formance compared to placement techniques that operate
on a static netlist. Since net delays can be estimated more
accurately during placement, performing netlist transfor-
mations during placement leads to better results than per-
forming them before placement only.
POINT reduces the maximum path delay up to 33% com-

pared to the timing driven placement of the original netlist
and up to 18% compared to results obtained by consecutive
optimization of the netlist and timing driven placement of
the optimized netlist. This delay reduction is achieved with
almost no increase in chip area.

REFERENCES

[1] B. Roheisch, B. Wurth, and K. Antreich, \Logic
clause analysis for delay optimization," in 32nd
ACM/IEEE Design Automation Conference (DAC),
pp. 668{672, June 1995.

[2] M. Pedram and N. Bhat, \Layout driven technol-
ogy mapping," in 28th Design Automation Conference
(DAC), pp. 99{105, 1991.

[3] M. Pedram and N. Bhat, \Layout driven logic re-
structuring/decomposition," in IEEE/ACM Interna-
tional Conference on Computer-Aided Design (IC-
CAD), pp. 134{137, 1991.

[4] H. Vaishnav and M. Pedram, \Routability-driven
fanout optimization," in 30th ACM/IEEE Design Au-
tomation Conference (DAC), pp. 230{235, 1993.

[5] L. N. Kannan, P. R. Suaris, and H. Fang, \A methodol-
ogy and algorithms for post-placement delay optimiza-
tion," in 31st ACM/IEEE Design Automation Confer-
ence (DAC), 1994.

[6] W. Chuang and I. N. Hajj, \Delay and area opimiza-
tion for compact placement by gate resizing and re-
location," in IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pp. 145{148, 1994.

[7] S. Liu, K. Pan, M. Pedram, and A. M. Despain, \Al-
leviating routing congestion by combining logic resyn-
thesis and linear placement," in European Conference
on Design Automation (EDAC), pp. 578{582, 1993.

[8] W.-L. Lin, M. Sarrafzadeh, and C. K. Wong, \The re-
producing placement problem with applications," in
IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pp. 686{689, 1994.

[9] B. M. Riess and G. G. Ettelt, \Speed: Fast and e�cient
timing driven placement," in IEEE International Sym-
posium on Circuits and Systems (ISCAS), pp. 377{380,
1995.

[10] J. Rubinstein, P. Pen�eld, and M. A. Horowitz, \Sig-
nal delay in rc tree networks," IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems CAD, pp. 202{211, 1983.

[11] K. Doll, F. M. Johannes, and K. J. Antreich, \Iterative
placement improvement by network ow methods,"
IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems CAD, vol. 13, pp. 1190{
1200, Oct. 1994.

	CD-ROM Home Page
	ISPD97
	Front Matter
	Table of Contents
	Session Index
	Author Index

