VLSI/PCB PLACEMENT WITH OBSTACLES BASED ON SEQUENCE-PAIR

H. Murata®

K. Fujiyoshi®

M. Kaneko®

!Japan Advanced Institute of Science and Technology, Japan
murata@jaist.ac.jp
2Tokyo University of Agriculture and Technology, Japan
fujiyosi@cc.tuat.ac.jp
3Japan Advanced Institute of Science and Technology, Japan
mkaneko@jaist.ac.jp

ABSTRACT

In a typical VLSI/PCB design, some modules are
pre-placed in advance, and the other modules are requested
to be placed without overlap with these pre-placed mod-
ules. The presence of such obstacles introduces incon-
sistency to a coding scheme, called sequence-pair, which
has been proposed for an obstacle free placement problem.
We solve this difficulty by proposing a procedure, called
“adaptation”, which transforms inconsistent sequence-pair
to consistent one, with utmost consideration for minimiz-
ing the modification. It is shown that a simulated an-
nealing is well organized to test only feasible placements
with the adaptation procedure. Using the adaptation, an
MCNC benchmark data, ami49, is packed with 20% of
the modules being pre-placed. Further, a PCB example
which includes 32 free modules and 4 pre-placed modules
(connectors) is laid out successfully by our method with a
conventional wiring estimation followed by a commercial
router.

1. INTRODUCTION

In VLSI design, it often happens that the locations of some
macro cells, such as RAM, ROM, and CPU core, are fixed a
priori and the other components are subject to be placed
in the rest of the chip area. Also in PCB design, it is
common that the exact coordinates of connectors are de-
termined before designing the placement of the other com-
ponents. We formulate such situations as a problem called
“rectangle packing with pre-placed rectangles (RPP)”. Not
only the circuit components but also rectangular obstacles
in any type are candidates to be modeled as pre-placed
modules. For example, pre-placed modules can be used
for representing a rectilinear substrate and holes of the
substrate. The other “free” modules are requested to be
placed onto the substrate without any overlap with the
pre-placed modules.

Chi [2] studied a similar but restricted problem, where
all the free modules have a regular height, assuming they
are standard cells. Force-Directed-Relaxation method
(FDR) [3, 4] can be easily tailored to handle the obstacles,

but the method has inherent defects in the sensitiveness
to the initial placement and in the incompleteness of the
overlap elimination. The most practical way would be to
use a stochastic algorithm, such as simulated annealing or
genetic algorithm, if a proper coding scheme is available.

A coding technique for the slicing structure [5] is not
useful for RPP, since the pre-placed modules might be
given non-slicibly. For general (including both slicible
and non-slicible) placements, two coding schemes are re-
cently proposed, namely, sequence-pair [1] and Bounded-
Sliceline-Grid [6], and we follow the former. Using the
sequence-pair, it is easy to generate non-overlapping place-
ments of all the modules by encoding all the (free and
pre-placed) modules, but the code could be inconsistent to
recover the locations of the pre-placed modules.

In this paper, we present a procedure called adapta-
tion, which changes a sequence-pair so that it becomes
consistent to the pre-placed modules. The procedure only
changes the positions of pre-placed modules in a sequence-
pair, and it runs in O(n?) time, where n is the total number
of pre-placed modules and free modules. The alternative
ways to incorporate the adaptation procedure in a sim-
ulated annealing are demonstrated through experiments
on an MCNC building block benchmark example, named
ami49. The simulated annealing is applied to a PCB ex-
ample, with a standard wiring length estimation. The re-
sultant placement has turned out to be successfully routed
by a commercial router.

The organization of this paper is as follows. Section 2
gives a formal definition of RPP, and addresses that a
sequence-pair can be inconsistent to RPP. In Section 3,
the adaptation procedure is presented. Section 4 is devoted
for the experiments. Section 5 is for conclusion.

2. PRELIMINARY

2.1. Rectangle Packing with Pre-Placed Rectan-
gles (RPP)

A module is a rectangle. A packing of a set of modules
is a non-overlapping placement of the modules. The co-
ordinates of a module is the coordinates of the lower left
corner of the module. A pre-placed module is a module
whose coordinates as well as width and height are speci-
fied. A free module is a module whose width and height
are specified but the coordinates is not specified. Set P of
pre-placed modules is given such that no two pre-placed
modules overlap each other and all of them lie in the first
quadrant of the plane. Set F' of free modules is also given.
A feasible packing of P U F is a packing of P U F' on the
first quadrant of the plane such that all the modules in P

Fig. 1. Feasible packing example. The dark rect-
angles are the pre-placed modules.

are placed at their specified locations. The evaluation of a
feasible packing is the area of the minimum bounding rect-
angle whose lower left corner is at the origin of the plane.
Find the best feasible packing of P U F.

Fig. 1 shows a feasible packing of an instance of RPP.

When all the modules are free, i.e. P = (), then RPP
coincides with a known packing problem, denoted by RP,
which is proved to be N"P-hard [1]. Thus, RPP is also in
N'P-hard class.

2.2. Sequence-Pair

For the free packing problem (RP), an elegant coding
scheme is proposed in [1] as follows.

A sequence-pair for a set of n modules is a pair of se-
quences of the n module names. For example, (abc, bac) is
a sequence-pair for module set {a,b,c}. It is easily under-
stood ;hat the variety of the sequence-pair for n modules
is (n!)°.

A sequence-pair imposes a horizontal/vertical (H/V)
constraint for every pair of modules, as follows.

(“a-b--,~a-b--) — ashould be placed to the left of b

(“b-a-,-a--b-+) — ashould be placed below b

For example, sequence-pair (abc, bac) imposes a set of H/V
constraints: { a should be placed to the left of ¢, b should
be placed to the left of ¢, b should be placed below a}.

The H/V constraints of a sequence-pair can be intu-
itively grasped using the obligue-grid notation. For ex-
ample, Fig. 2(a) shows the oblique-grid of sequence-pair
(abc,bac). It is an n x n grid obliquely drawn on the plane,
so constructed that the first sequence is observed when one
reads the module names on the positive slope lines from
left to right, and the second sequence is observed similarly
with respect to the negative slope lines. It shows the H/V
constraints in such a way that: Modules c is in the right
quarter view range (between —45 degree and +45 degree)
of module a, then ¢ should be placed to the right of a.

It is proved in [1] that: The set of H/V constraints
imposed by every sequence-pair is satisfiable, and an area
minimum packing under the constraint can be obtained
in polynomial time, and further, there is a sequence-pair
which leads an (globally) area minimum packing. Then,
the sequence-pair is easily utilized as a coding scheme of a
stochastic algorithm.

To construct an area minimum placement for a
sequence-pair, one dimensional compaction is carried out
under the H/V constraints of the sequence-pair. The mod-
ules are greedily pushed to the left, and to the bottom, as
shown in Fig. 2(b). The resultant placement is called the
free-realization of the sequence-pair.

)
8 ©

(a) sequence-pair (abc, bac) (b) free-realization
Fig. 2. Oblique grid notation of a sequence-pair
and the free-realization of the sequence-pair

The free-realization can be obtained in O(n?) time *

by using the “H/V constraint graph” which is constructed
faithfully to the H/V constraints. More in detail: (Step 1)
Construct a vertex weighted directed acyclic graph whose
vertex set corresponds to the modules, and whose edge set
corresponds to the horizontal constraints in the direction
from left to right. The weight of each vertex is the widths
of the corresponding module. (Step 2) Determine X co-
ordinate of each module by the longest path length from
the source nodes to the node of the module. (Step 3 and
Step 4) Determine Y coordinate of each module in a simi-
lar way using the vertical constraints in the direction from
bottom to top.

2.3. Feasibility of Sequence-Pair

Now we assume P # 0, i.e., one or more modules are
pre-placed. If we only encode the free modules into a
sequence-pair, a free module and a pre-placed module
can easily overlap each other in the free-realization of the
sequence-pair, since the pre-placed module is totally ig-
nored. Fig. 3(a) illustrates such an example for this situa-
tion. In the figure, free modules a, b, ¢, d are placed without
considering the pre-placed modules x and y. As a result,
d and b overlap with y.

We employ an alternative approach, that is, to encode
both the free modules and the pre-placed modules into a
sequence-pair. One difficulty in the free-realization of such
a sequence-pair is, the X (as well as Y) coordinate of a
pre-placed module may be set too small, because modules
are compacted to left (bottom) without considering the
pre-assigned coordinates. Fig. 3(b) shows such an exam-
ple, where the X and Y coordinates of pre-placed module
x are set too small, and the X coordinate of pre-placed
module y is set too small. This difficulty is easily solved
by introducing an additional constraint for each pre-placed
module:

The X (Y) coordinate of each pre-placed module

should not be less than the specified value.
The free-realization procedure is easily modified to handle
the additional constraints without increasing the asymp-
totic complexity, by adding additional edges from source
to the pre-placed modules, with the pre-assigned coor-
dinates as their weights, in the H/V constraint graph
(Fig. 3(c)). The resultant placement is now called the
propped-realization, named from an intuitive image of the
additional constraints.

Fig. 3(c) shows the propped-realization for the same ex-
ample in Fig. 3(b). The arcs in the oblique-grid denote the

1The time complexity is reduced to O(nlogn) by [7].

(d) feasible sequence-pair

Fig. 3. Feasibility of Sequence-Pair

additional constraints. In the figure, pre-placed module z
is placed at the specified location. However, pre-placed
module y is not placed at the specified location (X coordi-
nate is set too large). This is because the additional con-
straints introduced above can not prevent the coordinates
being set too large. It is impossible to reform the X coor-
dinate of module y by adding another constraint, since the
sequence-pair inherently imposes y should be placed right
of . In the following, a sequence-pair is said feasible when
its propped-realization is feasible, otherwise infeasible.

It is concluded that a sequence-pair is not necessarily
feasible for RPP. However, it is still useful from the fol-
lowing fact.

Lemma 1: For any instance of RPP, there is a feasible
sequence-pair. Furthermore, there is a sequence-pair which
leads an optimal solution of the problem.

O

A proof is omitted here.
Fig. 3(d) shows an example of a feasible (and optimal)

sequence-pair and its propped-realization.

3. ADAPTATION

Among (n!)? sequence-pairs, there are feasible sequence-
pairs, including one for optimal solution of RPP, and in-
feasible sequence-pairs. We should consider how to treat
the infeasible sequence-pairs, when exploring the space by
a stochastic algorithm. The easiest way would be to eval-
uate them infinitely negative, but the smoothness of the
search would be strongly weakened. To keep the smooth-
ness as much as we can, it is desirable that each infeasible
sequence-pair is evaluated equally to a feasible sequence-
pair which resembles to the infeasible one. For this pur-
pose, we present a procedure, called adaptation, which
transforms a given sequence-pair to a feasible sequence-
pair, by changing only the positions of pre-placed modules.

3.1. Necessary Condition

Suppose unit square modules a and b are pre-placed at
(3,3) and at (5,5), respectively. Then, both of “a is left
of ” and “a is below b” are true, but “a is right of b”
and “a is above b” are both false. It turns out that a
is necessary to appear before b in the second sequence of
a feasible sequence-pair. More in general, we describe a
necessary condition for the second sequence of a feasible
sequence-pair.

For any two pre-placed modules a and b, we say that a
dominates b if

z(a) < z(b) + w(b) and y(a) < y(b) + h(b)

where

e z(a),y(a) : X and Y coordinates of module a,

e w(a),h(a) : width and height of module a.

The domination relation introduces a partial order into
the module set. Then, the second sequence of a sequence-
pair is said to be topologically sorted if it satisfies the con-
dition: If a dominates b, then a appears prior to b in the
second sequence. It is clear that the following lemma holds.

Lemma 2 : It is necessary for a sequence-pair being
feasible that the second sequence is topologically sorted.
O

3.2. Algorithm

In the propped-realization of a sequence-pair, the X and
Y coordinates of a module is determined only by the pre-
ceding modules in the second sequence. It turns out that
the coordinates of a module can be determined one by
one, traversing the second sequence. Then, we design our
adaptation procedure so that it iteratively “test and vir-
tually place” a module according to the second sequence.
Thus, after some iterations, free modules would be virtu-
ally placed, as well as pre-placed modules. The relation
“dominate” was already defined for the pre-placed mod-
ules, but in the following, we use the relation also for a
free module when it is virtually placed.

Procedure Adaptation

Input: A set of pre-placed modules, a set of free modules,
a sequence-pair.

Output: A feasible sequence-pair.

(Step 1) Topologically sort the second sequence, only
when it is not already topologically sorted.

(Step 2) For k = 1,2,...,n, repeat (Step 2.1) through
(Step 2.4).

(Step 2.1) Let the k’th module in the second sequence
be a. If module a is a pre-placed module, go to
(Step 2.4). Otherwise, temporary set the coordi-
nates of a, according to the propped-realization of a.

(Step 2.2) Determine whether there exists a pre-placed
module which dominates a, in the last n—k modules of
the second sequence. When it exists, determine a pre-
placed module ¢ such that g directly or transitively
dominates a, and there is no pre-placed module which
dominates ¢q. Otherwise, go to (Step 2) for the next
iteration.

(Step 2.3) In the second sequence, move q just before a.
After that, a is used for referring ¢. (since ¢ is now
the k’th module in the second sequence.)

(Step 2.4) If a is a free module, go to (Step 2) for the
next iteration. Let (z,y) be the coordinates of a in the
propped-realization. Let (z(a),y(a)) be the specified
coordinates of pre-placed module a. If z > z(a), then
in the first sequence, move a minimally toward the
top so that z < z(a) holds. Otherwise, if y > y(a),
then in the first sequence, move a minimally toward
the end so that y < y(a) holds.

3.3. Illustrative Example

A behavioral example is presented for the RPP instance
shown in Fig. 4(a), in which the dark two modules z and
y are pre-placed, and the rest of the modules a,b,c,d are
free.

Suppose sequence-pair (acdbyz, cadzyb) is given as the
input sequence-pair. Fig. 4(b) shows this initial sequence-
pair. In (Step 1), z and y are exchanged in the second
sequence, and the sequence-pair becomes (acdbyz, cadyzb),
as shown in Fig. 4(c).

Now, (Step 2) begins. In iteration k = 1 and in k =
2, free modules ¢ and a are processed because they are
the first and the second modules in the second sequence,
respectively. They are virtually placed at the positions
shown in Fig. 4(a).

In iteration k = 3, module d is once tried to be placed
at the right of ¢ in (Step 2.1), as indicated by the rect-
angle with dotted lines, which is marked “d” in Fig. 4(a).
Then, module y is selected in (Step 2.2), and it is brought
before d in the second sequence in (Step 2.3). As a re-
sult, the sequence-pair becomes (acdbyzx, caydxb) as shown
in Fig. 4(d). Module y is virtually placed at its specified
position, as it is marked “y” in Fig. 4(a).

In iteration k = 4, module d is placed at the position
marked “d’'”in Fig. 4(a).

In iteration k = 5, pre-placed module x is processed. In
(Step 2.4), it is once tried to placed at the position indi-
cated by the rectangle with dotted lines, which is marked
“x” in Fig. 4(a), since it is the position imposed by the
sequence-pair shown in Fig. 4(d). Then, the X coordi-
nate is found too large, and module z is moved toward
the top of the first sequence, and put between a and d.
The sequence-pair becomes (axcdby, caydxb), which is il-
lustrated in Fig. 4(e). Module z is virtually placed at its
specified position, as it is marked “z'” in Fig. 4(a).

This sequence-pair is not changed in iteration k = 6,
and becomes the output of the procedure.

One can examine on this example that the resultant
sequence-pair is feasible. It is important to note that the
H/V constraints among the free modules are preserved.

(a) The packing example (b) (acdbyz, cadzyb)

(¢) (acdbyz, cadyxb) (d) (acdbyz, caydzb)

(e) (axcdby, caydxb)

Fig. 4. Snapshots of the adaptation procedure. (a)
shows the packing corresponding to the sequence-
pair shown in (e). (b) shows the input sequence-
pair. In (c), y is brought before z in the second
sequence. In (d), y is brought before d in the sec-
ond sequence. In (e), z is brought before ¢ in the
first sequence.

3.4. Proof of Adaptation

Theorem 1 : The adaptation procedure changes the

given sequence-pair such that

(1) the output sequence-pair coincides with the input
sequence-pair if the given sequence-pair is feasible,

(2) the output sequence-pair is always feasible,

(3) the H/V constraints with respect to the free modules
are preserved,

(4) the procedure runs in O(n?) time, where n is the total
number of the pre-placed modules and the free mod-
ules.

Proof :

(1) and (3) are easily understood. A proof for (2) is
omitted because of the space limitation. Outline of a proof
for (4) is presented in the following.

(Step 1) can be done in O(n?) time as follows.

(a) Construct an n x n matrix D such that

1
D(a,b) = { o

D can be constructed in O(n?) time by sorting the
modules by their coordinates in X and in Y, essen-
tially because of the fact: If a transitively dominates
b and z(a) < z(b), then there is a series of modules
from a to b, dominating one after another, and their
X coordinates are monotonically increasing.

(b) Topologically sort the second sequence using D. This
can be done also in O(n?) time by a selection sort
algorithm.

(The claim is easily proved also by the ordinary depth first
algorithm, but we use the above algorithm with utmost
consideration for minimizing the modification.)

(Step 2.1) is easily done in O(n) time. (Step 2.2) can
be done in O(n) time by traversing the modules reversely
in the second sequence. (Step 2.3) can be easily done
in O(n) time. (Step 2.4) can be done in O(n) time by
introducing two arrays X[1...n]and Y[1...n] which holds
a “negative locus” [1] of the k’th module in the second
sequence after the module is virtually placed.

(Step 2.1) through (Step 2.4) is repeated n times in
(Step 2). Therefore, the adaptation can be done in O(n?)
time. O

if module a directly or transitively
dominates b
otherwise

4. EXPERIMENTS

4.1. Packing Experiments

The adaptation procedure is implemented in a standard
simulated annealing to solve RPP. The outline of the sim-
ulated annealing is as follows.

Procedure SA

Input: Set P of pre-placed modules, set F' of free modules,
number of iterations, initial temperature, and final
temperature.

Output: A feasible packing of P U F'.

(Step 1) Generate a random sequence-pair, initialize the
loop counter, set temperature to the initial value, and
set the decreasing ratio of the temperature such that it
reaches to the final temperature when the loop counter
reaches to the limit.

(Step 2) If the loop exceeds the given limit, output the
best packing obtained so far and then stop.

(Step 3) Apply one of the following three move opera-
tions to alter the sequence-pair.

e exchange two module names in the first sequence,

e exchange two module names both in the first se-
quence and the second sequence, and

e exchange the width and the height of a module.

(Step 4) Evaluate the sequence-pair by the area of the
corresponding placement.

(Step 5) If the evaluation is improved or not changed,
then accept the change. Otherwise, accept the change
stochastically depending on the temperature and on
the difference of the evaluations.

(Step 6) Decrease the temperature exponentially by the
ratio obtained in (Step 1), and go to (Step 2).

Fig. 5. Three packings of ami49. The left fig-
ure is obtained by RP. The middle and the right
figures are obtained by Adapt-in-Eval method and
Adapt-in-Move method, respectively, setting the
dark modules being pre-placed.

Table 1. An experimental result of ami49. (average
of 10 runs)

RP Adapt-in-Eval [Adapt-in-Move
Area (mm?) | 37.978808 38.353762 40.062617
Time (sec) 331.78 1004.15 949.68

The adaptation can be used in one of the following two
manners:

e Adapt-in-Eval : Use the adaptation procedure inter-
nally in the evaluation step (Step 4), intending to
evaluate an infeasible sequence-pair as an equivalent
of a feasible sequence-pair.

e Adapt-in-Move : Use the adaptation procedure inter-
nally in the initialization step (Step 1) and in the
move step (Step 3) so that an infeasible sequence-
pair is never generated.

The major difference of the two methods would be as
follows. In both methods, the SA explores the space of
(n!)? sequence-pairs. Suppose there is a cluster of infeasi-
ble sequence-pairs in the solution space. The search may
go into the cluster in the Adapt-in-Eval method, while
in the Adapt-in-Move method, it is flicked out from the
cluster right after an infeasible sequence-pair is generated
eventually. Then, the reachability to an optimal solution
is guaranteed in the Adapt-in-Eval method, and not in the
Adapt-in-Move method.

The biggest MCNC building block benchmark exam-
ple amif9 is used as the input data. As a preliminary
run, the 49 modules are all treated as free modules, and
they are packed by the simulated annealing. The first 10
biggest modules, with respect to the areas, are specified as
pre-placed modules whose coordinates are fixed to those
obtained by the preliminary run. The reason why these
modules are selected is because of our experience that the
obstacles are usually not many, but big. The same in-
put, except for the presence of the pre-placed modules, is
applied to Adapt-in-Eval method and to Adapt-in-Move
method.

Fig. 5 shows the resultant packing of these methods,
including the preliminary run. Table 1 shows the aver-
age performance of 10 runs of the Adapt-in-Eval method,
Adapt-in-Move method, and also the preliminary run in
the column RP for reference. Every trial is performed on
a Sun SS-5 (75 MHz).

The run time is shortest in RP, as in Table 1. This
would be natural because the adaptation is not executed,
and also because (Step 4) runs in O(nlogn) time when

5]

Ay

r L/

g = A

Fig. 6. A place-and-route result of DEMOSMD.
Connectors J1,J2,J3 and J4 are pre-placed.

there is no pre-placed modules, with an algorithm sim-
ilar to [7]. The reason why Adapt-in-Move runs faster
than Adapt-in-Eval method would be because the input
sequence-pair of the adaptation in Adapt-in-Move method
is feasible or almost feasible, while that of Adapt-in-Eval
method can be far from feasible.

It is interesting that RP achieved the minimum area, al-
though the number of the tested sequence-pairs is the same
as those for Adapt-in-Move and Adapt-in-Eval. This im-
plies that the adaptation can not compensate completely
the inconsistency introduced by the pre-placed modules. It
is also observed from Table 1 that Adapt-in-Eval method
achieves better than Adapt-in-Move method. This result
seems to reflect the reachability difference which is men-
tioned earlier in this section. From this reachability dif-
ference together with the above experimental result, we
can conclude that Adapt-in-Eval method is preferable for
practical applications.

4.2. Place and Route Experiments

Based on Adapt-in-Eval method, a PCB example is
placed with setting the connectors pre-placed.

Wires are considered additionally to the area in the
evaluating function. To keep the wiring space, the widths
and the heights of the modules are uniformly enlarged.
After the packing is obtained from a sequence-pair, the
minimum spanning tree is calculated for each net, and the
sum of the length of each edge in the tree is used as an esti-
mation of the wiring length of the net. The evaluation of a
sequence-pair is the area of the packing plus the total sum
of the estimated length of every net, with weighting coeffi-
cients which are assigned so that the term of the area and
the term of the estimated wiring length are approximately
balanced.

A PCB example which includes 36 modules and 88
multi-terminal nets was used in the experiment. The data
is called DEMOSMD, which is provided with a commercial
layout editor (Protel Advanced PCB 2.8). The simulated
annealing was scheduled on this data to try 100, 000 moves,
on a note-type personal computer (Sharp Mebius PC-
A355, Pentium 100MHz). The resultant placement was

Table 2. An experimental result of DEMOSMD

MST MBOX

Total wiring length (mm) | 7,914.64 | 8,188.96
Number of vias 368 382
Placement time (sec.) 630 150
Routing time (sec.) 568 590
Total time (sec.) 1,198 740

given to a commercial router (Protel AdvancedRoute3) to
finish the design using 4 layers.

All the nets were successfully routed, as shown in Fig. 6.
The performance is summarized in Table 2, in the column
labeled with “MST”.

By replacing the MST estimation with the half perime-
ter of the minimum bounding box, which is a popular way
to speed up the estimation, the same trial was carried out
and also completely routed by the router. Results are in
Table 2, in the “MBOX” column.

5. CONCLUSION

We showed that the presence of the pre-placed modules
introduces an inconsistency to the sequence-pair coding
scheme. An adaptation procedure is proposed to transform
an inconsistent sequence-pair to a consistent one. It is
shown that a simulated annealing is well organized to test
only feasible placements with this adaptation procedure. A
PCB example is placed with a standard wiring estimation,
and is routed successfully by a commercial router.

ACKNOWLEDGMENT

Authors would like to thank Professor Yoji Kajitani and
Research Associate Shigetoshi Nakatake of Tokyo Institute
of Technology for their helpful discussions. This work was
supported in part by Research Body CAD21.

REFERENCES

[1] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kaji-
tani, “Rectangle-Packing-Based Module Placement,”
in IEEE International Conf. on Computer Aided De-
sign, pp. 472479, 1995.

[2] M. C. Chi, “An Automatic Rectilinear Partitioning
Procedure for Standard Cells,” in 2/th ACM/IEEE De-
sign Automation Conference, pp. 50-55, 1987.

[3] L. Sha and R. W. Dutton, “An Analytical Algorithm
for Placement of Arbitrarily Sized Rectangular Blocks,
” in Proc. 22th ACM/IEEE Design Automation Conf.,
pp. 602-608, 1985.

[4] A. Alon and U. Ascher, “Model and Solution Strategy
for Placement of Rectangular Blocks in the Euclidean
Plane,” IEEE Trans. on CAD, vol. 7, no. 3, pp. 378—
386, 1988.

[5] D.F. Wongand C. L. Liu, “A New Algorithm for Floor-
plan Designs,” in Proc. 23rd ACM/IEEE Design Au-
tomation Conf., pp. 101-107, 1986.

[6] S. Nakatake, K. Fujiyoshi, H. Murata, and Y. Kajitani,
“Module Placement on BSG-Structure and IC Layout
Applications,” in IEEE International Conference on
Computer-Aided Design, pp. 484-491, 1996.

[7] T. Takahashi, “An Algorithm for Finding a Maximum-
Weight Decreasing Sequence in a Permutation, Moti-
vated by Rectangle Packing Problem,” Technical Re-
port of IEICE, vol. VLD96, no. 201, pp. 31-35, 1996.

	CD-ROM Home Page
	ISPD97
	Front Matter
	Table of Contents
	Session Index
	Author Index

