
Power Reduction Techniques for a Spread Spectrum Based Correlator

David Garrett (garrett@virginia.edu) and Mircea Stan (mircea@virginia.edu)
Center for Semicustom Integrated Systems

University of Virginia - Department of Electrical Engineering
Charlottesville, VA 22903

Abstract

This paper presents the design of a low power spread spec-
trum correlator. We look at two major approaches and eval-
uate the best alternative for power reduction. We first
consider a shift register FIFO implementation and look at
reducing the switching activity for the arithmetic operations
with a change in the addition algorithm. The correlation
calculation can be modified to include storage of the previ-
ous result so that arithmetic circuits need only compute the
difference between the present and next value. A binary
adder tree with bypass can then reduce power by shutting
off unnecessary computations. We then look at minimizing
the power for sample storage by limiting the amount of data
moved per cycle. This can be achieved by using a register
file FIFO implementation. Interestingly, the two power min-
imization techniques, bypass adder tree and register file
FIFO implementation, were found to be strongly non-
orthogonal, with the final effect that the register file
changes the data statistics in such a way that it cancels the
savings for the adder tree with bypass. The final solution of
a register file with standard adder tree was found to have
the lowest power dissipation. Using Bus-Invert for encod-
ing the data as it enters the FIFO further reduces the power
consumption due to the global bus of the register file.

Keywords: Direct sequence spread spectrum, adder tree
with bypass, low power FIFO, Bus Invert.

1. Introduction

In the design of a direct RF to baseband receiver, the phase
shift keying (PSK) modulation with direct sequence spread
spectrum (DSSS) requires despreading to recover the sym-
bol data. A correlator is used to recognize certain spread
spectrum signals and ignore others according to the
despreading code. Figure 1 shows a block diagram of the
receiver section, with the low noise amplifier (LNA), the
quadrature mixer with local oscillator (LO), low-pass fil-
ters, A/D converters (ADC), and finally the despreading
correlation block, which is the subject of this paper.

Figure 1: PSK DSSS Receiver Block Diagram

For mobile applications, the power consumption needs to
be reduced to a minimum in order to maintain battery life.
In the following sections we describe power reduction tech-
niques by re-examining the structure of the correlator and
then optimizing the arithmetic operations. Significant
power savings in the correlator will have a large effect on
the overall power consumed by the receiver.

2. Correlator Design

2.1 FIFO Sample Storage

After downconversion, the I and Q streams need to be sam-
pled, digitized, and stored in a first-in-first-out (FIFO) for
correlation. A typical implementation for a FIFO is an n-bit

wide shift register of length 2m-1 as shown in figure 2. As a
sample comes in, another drops off of the end of the chain.
All of the samples are passed into a correlation filter which
performs sequence recognition on the samples according to
internally stored (+1,-1) code coefficients.

Figure 2: Shift Register FIFO implementation

LNA

ADC Correlation
Block

chip clk

ADC Correlation
Block

LO

-90

I(k)

Q(k)

2m-1
registers

I(k)

I(k-1)

I(k-2)

I(k-3)

I(k-2m)

Correlation

Filter

clk

clk

clk

clk

clk

n

The power consumed by CMOS circuits is directly propor-
tional to the number of transitions, with a single transition

dissipating CLV
2
DD [1]. The total switching energy can then

be determined by summing all switching events:

In order to simplify the analysis, we will assume a constant
logic voltage swing throughout the design, and consider that
each gate provides a unit load to the corresponding driver.
The power consumed by the shift register has two compo-
nents:
• transitions on the register inputs and outputs,
• clock transitions.

One problem with the shift register implementation is that
since the samples are moved every cycle, each register in
the chain is switching all the time, unnecessarily consuming
power. For random sample data, it can be shown that on
average n/2 bits will transition per cycle at the output of
each register as the data is passed through the FIFO [2]. The
clock causes two extra transitions (rising and falling) per
cycle on every flip-flop. Each register has an extra fanout
load in the correlation filter. The power consumed in every
cycle will then be proportional to the switching activity
according to the following equations, where n is the number

of bits in each sample, and 2m-1 is the number of samples
(number of coefficients in the DSSS code):

A two register section of an 8-bit wide shift register chain
was simulated using a transistor level model for the 2.0um
Orbit process available through MOSIS. The power dissipa-
tion was estimated from simulation by integrating the sup-
ply current through an RC network [3]. For a 25MHz clock,
and a 5Volt supply, the average power dissipation per 8-bit
flip-flop for random data was 3.3mW. Each register sees the
load of the next register and the buffers into the correlation
adder tree. By extrapolation, the average power consump-
tion for an entire 255 length shift register is approximately
842mW for a 5Volt supply. Lowering the supply voltage
will decrease power consumption quadratically [1], hence
this simulation data is only meant to be comparative for the
switching activity, not the absolute minimum.

2.2 Adder Tree Design

The next major block of the correlator is the arithmetic core.
The correlator is designed to despread incoming sequences
based on a finite impulse response (FIR) filter equation with
binary coefficients (+1 and -1). Figure 5 shows the standard
block diagram for such a filter taking the samples from the

Eswitching CLVDD
2

∑= (1)

PSR bitshifts clocktrans fanout+ +∝

PSR
n
2
--- 2

m
1–

2n 2

m
1–

 n
2
--- 2

m
1–

+ +∝

PSR 3n 2
m

1–

∝

(2)

(3)

registers (the control logic for the registers has been
removed for simplicity). The adder network computes the
sum which is compared to a threshold. When the incoming
samples are aligned with the code coefficients, the correla-
tion will have a large value. If the samples are not aligned,
or if a different code was used at the transmitter, the sum
will be much less then the threshold.

Figure 5: Correlator Block Diagram

The equations for the correlation filter can be described as:

where k is the time step.

2.3 Maximum Length Codes

The despreading codes for our application of DSSS are
maximum length sequences generated by linear feedback
shift registers (LFSR) like the eight bit generator in figure 6,
which generates a pseudorandom sequence of length 255.

Figure 6: LFSR Code Generator

The code sequence has distinct properties that characterize
the coefficients over the length of the code. In particular, the
run property defines the number of runs (streams of consis-
tent 1s or 0s) to be dependent solely on the length of the
code [4]. The runs are as follows:
• one run of 1’s of lengthm,
• one run of 0’s of lengthm-1,
• one run of 1’s and one run of 0’s of lengthm-2,
• two runs of 1’s and two runs of 0’s of lengthm-3,
• four runs of 1’s and four runs of 0’s of lengthm-4,
• “ “

• 2m-2 runs of 1’s and 2m-2 runs of 0’s of length1.

I(1) h2 -1m

I(2) h2 -2m

I(2m-2)

h1I(2m-1)

h2

Adder
Network correlation

sum

CS k() hnI k n–()
n 1=

2
m

1–

∑= (4)

+ + +

clk clk clk clk clk clk clk clk

2.4 Algorithm Change for Low-Power Addition

The run property of maximum length codes allows us to
reduce the number of transitions in the correlator design as
only half of the terms in the correlation sum will have a dif-
ferent coefficient and change their contributions to the over-
all sum in each cycle. Although the data will have shifted
one state, the previous coefficient and the new coefficient
will remain the same for half the number of samples (in
runs of length 2 or greater). In order to capture this behavior
we define “bypass bits” which will be set for terms that are
not changing (see figure 7). These status bits tell the adder
stages if a term is not changing and if it has zero contribu-
tion to the difference between the present and next correla-
tion sums.

Figure 7: Bypass bit generation

By identifying the factors that have changed, and by storing
the previous sum, we can streamline the arithmetic opera-
tion to reduce the number of terms. Although we cannot
reduce the overall number of adders (in any one clock
cycle, any adder can be required), we can shutdown the
unused adders, and prevent power consumption. The equa-
tion for the correlator can be rewritten to express this new
method as follows:

If the coefficient for a sample has not changed from the pre-
vious calculation, then h*n is 0 in equation (6), otherwise
h*n will reflect the new polarity (+1 or -1). When the coeffi-
cient changes, the original sample value must be removed
from the sum, and then the sample with the new polarity
must be added. This can be handled in one step by adding
twice the sample with the new polarity (which explains the
2 before the summation symbol in equation 5).

Also, in each cycle, the newest sample that enters the chain
must be added and the offgoing sample must be subtracted
from the overall correlation sum.

2.5 Adder Tree with Bypass

In order to take advantage of the new method of calculating
the correlation sum, a specialized adder cell was developed

h1

h2

+

h3

+

bypass bit

bypass bit

2

3

CS k() CS k 1–() 2 hn
∗

 I k n–()

n 1=

2
m

1–

∑+=

hn
∗ hn hn hn 1–⊕

 =

(5)

(6)

to take advantage of the properties of the maximum length
code. In the case where a coefficient has not changed as a
sample is shifted, its particular contribution is zero to the
overall sum. When a term is bypassed, the adder can be con-
figured to ignore its value, and only pass the other input as
the result. Figure 8 shows a full-adder surrounded by pass-
gates. According to the state table, when the bypass bit is set
for thea input, the lower passgate allowsb to pass along as
the output. In this case the adder inputs are disconnected,
and no changes are propagated to the internal adder cir-
cuitry. When both bypass bits are set, the adder cell is com-
pletely removed from the chain and the adder cell
propagates a bypass status bit along with its output to the
next stage in the binary adder tree.

Figure 8: Modified Adder Cell with bypass

Let us consider the performance of the bypass adder as
compared to the simple adder block. When both inputs are
active, the bypass adder suffers from the overhead of the
passgates. On average, an 8-bit adder cell suffers a 7%
power dissipation increase as measured in SPICE simula-
tions for random data. The bypass adder is burdened from
an overhead in the case where it is adding two numbers, but
it uses much less power in the other three cases (bypass
modes). When either of the inputs is bypassed, or when the
entire adder is shut down, the bypass adder cell power con-
sumption becomes almost negligible.

Figure 9 shows a slice of the first layer of the correlation
adder tree, and how the simple adder tree differs from the

full

adder

cs

cs
cs

cs

cs

cs

ca

ca

cb

cb

a

b

sum

Za Zb
0 0
0 1
1 0
1 1

ca cb cs
0 0 1
1 0 0
0 1 0
0 0 0

d4

d3

d2

d1

0

1

+/-

+/-

0

0

+/-

+/-

0

d4

d3

d2

d1

0

1
+/-

0

0

+/-

0
Simple Adder Adder w/ Bypass

Figure 9: A hardware comparison of the simple adder
the adder with bypass

adder with the bypass cells. In the simple adder case,
regardless of the coefficient, the data is recomputed on
every cycle in every adder. The adder with bypass on the
other hand, only adds in computations when the successive
coefficients are different. The passgates remove unused
adders from the tree and allow single values to continue to
the next level.

The run property statistics determine how many bypass bits
are set and the particular spread spectrum code dictates
where the bypass bits are located. For example, a run of
three coefficients will set two bypass terms. Depending on
how the bypass bits fall on the adder tree, either two adders
will be in single bypass mode, or one adder will be in shut-
down mode. With runs of four or more, at least one adder
will be shutdown.

Using these observations and the average power dissipation
values recorded from each of the bypass configurations, the
overall power dissipation of the correlation adder tree can
be accurately estimated. Table 1 shows the power dissipa-
tion calculations for the first three rows of the bypass adder
configuration. The bypass adder configuration numbers
were generated from a typical set of coefficients from the
maximum sequence generator as seen in figure 6.

As the data passes through the adder tree, it becomes highly
correlated but we can still estimate the overall power con-
sumption of the binary tree using approximations based on
the simulation data. Power consumption for the adders cells
were taken from 8 bit adders. Each successive row adds
another bit, so the power consumption for each adder can be
computed by multiplying by the ratio of bits to the original
8-bit cell.

Table 2 shows power calculations for the standard and
bypass adder tree implementations. According to the esti-
mate, the bypass cells can reduce power consumption by
29% as compared to the regular correlation adder tree for 8-
bit data samples (371mW versus 531mW).

The advantage of the bypass adder is that the unused adders
are held in a latched state so that no transitions occur inter-
nally when data is bypassed. To fully realize the correlation

Rows of
adder tree

bypass adder
configurations

Pavg/cell
(mW)

power
(mW)

first row 33 - on
60 - bypass
35 - off

1.5 50

second row 36 - on
23 - bypass
5 - off

1.7 61

third row 32 - on 1.9 61

Table 1: Bypass Adder Power Dissipation

filter, an additional 16 bit adder stage is required to add the
previous sum to the current difference value stored in a
latch. The latch power has been extrapolated from the shift
register simulations. The final adder tree results must be
shifted left by one place (multiply by two) before being
added to the previous sum.

3. Alternate Correlator Design

3.1 Register File Storage

In order to reduce the correlator switching activity, a differ-
ent starting point is to use a register file (with pointer) FIFO
implementation instead of the n-bit wide shift register, as
seen in figure 10 [5]. With this scheme, only one register

out of the total of 2m-1 will experience clock and output
transitions. The trade-off is that now a global bus must be

Components
Pavg/
cell

(mW)

Pavg/
row

(mW)

Pavg/cell
(mW)

Pavg/
row

(mW)

Simple Adder Bypass Adder

128 (8 bit) 1.4 179 from table 1 50

64 (9 bit) 1.6 102 from table 1 61

32(10 bit) 1.8 58 from table 1 61

16 (11 bit) 1.9 30 1.9 30

8(12 bit) 2.1 17 2.1 17

4(13 bit) 2.3 9 2.3 9

2(14 bit) 2.5 5 2.5 5

1(15bit) 2.6 3 2.6 3

1(16bit) n/a 2.8 3

16 latch n/a 6.6 7

coefficient
multiplier
(256)

0.5 128 0.5 128

overall power
estimate

531 374

Table 2: Adder Tree Power Consumption

2m-1
registers

I(k)

I(k+1)

I(k+2)

I(k+3)

I(k+2m)

Correlation

Filter0

0

0

1

0

clk
clk

clk

clk

clk

clk

clk

clk

clk

clk

Figure 10: Register File Concept

connected to each register, increasing the load due to the
inputs of all the registers. To create the illusion of the FIFO
structure, we also need a one-hot shift register of length

(2m-1) as a pointer to the register to be loaded with the
incoming sample.

The power consumed by the register file FIFO comes from
seven main components:
• transitions on the global bus,
• the fanout of the registers into the correlation block,
• the clocked registers,
• the clock transitions on the AND gates,
• the clocks on the address bit registers,
• the hot-bit shifting through that register,
• the filter coefficients that must be now rotated.

The total number of transitions per cycle becomes:

3.2 Register File versus Shift Register FIFO

When a comparison of the power between the register file
and the shift register is plotted for varyingn andm, it is
shown that the register file has a power advantage as long as
the bus width is greater than four bits and there are more
than 31 samples. For any practical sample storage require-
ment, the register file has an immediate impact on the
power dissipation. Figure 11 shows a plot of the power
reduction graph over various samples sizes and bus widths.
The practical power savings tracks an asymptote for maxi-
mum power reduction for each of the particular bus widths.

Figure 11: Power Reduction of Register File over Shift
Register

PRF bus fanout regclk gatedclk+ + +∝

PRF
n
2
--- 2

m
1–

 n
2
--- 2n 2 2

m
1–

+ + +∝

(7)

(8)

PRF
n 12+

2
--------------- 2

m
1–

 5n 260+
2

---------------------+∝

b+ itclk bitshift coefclk coefs+ + +

2+ 2
m

1–

2 2 2
m

1–

128+ + +

3 7 15 31 63 127 255 511 1023
number of storage cells

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

P
ow

er
 r

ed
uc

tio
n

(%
)

16 bits
14 bits
12 bits
10 bits
8 bits
6 bits
4 bits
2 bits

In order to find an absolute power consumption approxima-
tion for the register file, the SPICE simulation results can be
used in conjunction with theoretical equations developed in
this paper. For an 8-bit register file with a 255 length code,
the average power consumption at 25MHz is approximately
56% of the shift register implementation (842mW as com-
puted in section 2.1) and the register file will have an aver-
age power consumption of around 370mW.

3.3 Bus Invert

A decomposition of the power equation for the register file
shows that the majority of the power is consumed in the
global bus that drives the registers (in the case of the shift
register, the global bus does not exist). A proven technique
for reducing power consumption on a global bus is the Bus
Invert method [6]. In this technique, an extra line is added
to the bus to encode the data to have fewer transitions
between samples. If the Hamming distance between the
current sample and the previous sample is greater then n/2,
the data is inverted to provide a closer match to the current
bus state, and the invert bit is used to store the inversion
state. On an 8 bit communication bus, this can be shown to
reduce the transitions by approximately 20%, and can be
easily used for the register file implementation of the FIFO
for power reduction. In our application, the overhead for
Bus Invert is reduced because anyhow the samples need to
be available in either the inverted or non-inverted form
depending on the correlation coefficients. Adjusting the
global bus factors with a 20% derating from equation 8
yields the relative power consumption for the register file
with Bus Invert as follows:

For an 8-bit wide 255 length register file FIFO, Bus Invert
lowers the overall power consumption by an additional
7.5% for a total reduction in 60% over the shift register.

3.4 Arithmetic Operations with Register File FIFO

By optimizing the FIFO implementation to use a register
file, the input statistics to the arithmetic unit are signifi-
cantly changed. The data is now mostly static with the coef-
ficients shifting around them. This leads to the unexpected
outcome that using the bypass adder tree with this configu-
ration actually adds power overhead to the correlation cal-
culation. Whereas the bypass adder significantly reduced
power for the shift register FIFO due to the changing inputs,
the register file FIFO inherently keeps adder inputs stable
even without the bypass cells. A simulation of a single
adder with stable sample data and the polarity changing
according to the DSSS code coefficients had an average
power dissipation of 0.8mW (compare with 1.4mW for
shift register and changing samples as in table 2) in the first

PRF
0.8n 12+

2
----------------------- 2

m
1–

 4.8n 260+
2

--------------------------+∝ (9)

row while a bypass adder in the first row of the adder tree
had a power dissipation of 1.7mW. Similarly, simulations
on the second row for the regular adder tree showed an
average power dissipation of 1mW per adder cell (compare
with 1.6mW in table 2). The bypass adder had an average
power dissipation of 1.9mW in the second.

Simulation data was not available for the remaining rows of
the register file FIFO adder tree because of the computa-
tional expense. Since each third row adder inputs depend
on four adders from the first row, and the probability of all
eight of the inputs to the first row remaining static was very
low, the power consumption on the third row and lower was
estimated as if the data was randomly changing. Recomput-
ing the adder tree power consumption as in table 2 results in
a power estimate of 416mW for the regular adder tree fed
by the register file FIFO. Recomputing the bypass adder
tree calculations with the new data gives a power estimate
of 594 mW.

4. Overall Comparison

When all of the alternatives are evaluated, the clear winner
is the register file FIFO with Bus Invert coupled with a reg-
ular adder tree. As seen in table 3, it has a power consump-
tion of only 54% of the shift register FIFO with regular
adders and 60% of the shift register FIFO with bypass
adders. The bypass adder tree reduced power when inputs
were changing into the adder tree (29% power reduction in
the adder tree, 11% for the overall correlator) power reduc-
tion, but the register file FIFO not only lowers the power
consumption in the sample storage circuitry, but also con-
siderably reduces the switching activity into the adder
tree. The FIFO optimization and the adder tree with bypass
turn out to be two non-orthogonal greedy algorithms where
minimizing each of the individual components does not
lead to the global optimum.

Design
storage
 Pavg
(mW)

adder
tree Pavg

(mW)

total
Pavg
(mW)

nor-
malized

Shift register
regular adders

842 531 1373 1.0

Shift register
bypass adders

842 374 1216 0.89

register file
regular adders

370 416 786 0.57

register file
bypass adders

370 594 964 0.70

register file
w/ bus invert

337 416 753 0.54

Table 3: A Comparison of Power Saving for Correlation
Implementations

5. Conclusions and Future Work

We have presented several power minimization tech-
niques for a direct sequence spread spectrum correlator
working at the chip rate. Depending on the FIFO
implementation (shift register or register file), different
adder tree solutions are optimal for low power design.
When samples are shifted each cycle (as for the shift
register FIFO), an adder tree with bypass reduces the
overall power by 11%. When the samples are static and
only the coefficients are shifted (as for the register file
FIFO), a regular adder tree gives the best results for an
overall 43% power reduction. Using Bus Invert further
reduces the overall power by an extra 3%.

Future work should include a VLSI implementation of
the low power correlator followed by actual power
measurements in order to verify simulations and ana-
lytical results.

Acknowledgments

The authors would like to thank Dr. Jim Harris for
inspiring some of this work and Dr. Ron Williams, Dr.
Steve Jones, Max Salinas, Adam Von Ancken, and
Peter Schaefer for many interesting discussions. This
work was partially supported by NSF Career Grant
MIP-9703440.

References

[1] A. Chandrakasan, I. Yang, C. Vieri, D. Antoniadis,
Design Considerations and Tools for Low-voltage Dig-
ital System Design, Proceedings of the Design Auto-
mation Conference, pp. 113-118, June 1996.

[2] M. Stan, W. Burleson,Low-Power Encodings for
Global Communication in CMOS VLSI, to appear in
IEEE Transactions on VLSI Systems, 1997.

[3] S. Kang,Accurate Simulation of Power Dissipation
in VLSI Circuits, IEEE Journal of Solid-State Circuits,
Vol SC-21, No. 5, October 1986, p. 899-901.

[4] R. Ziemer, R. Peterson,Digital Communications
and Spread Spectrum Systems, Macmillan Publishing
Company, 1985, pp. 386.

[5] E. Tsern, T. Meng,A Low Power Video-Rate Pyra-
mid VQ Decoder, IEEE Journal of Solid-State Circuits,
November 1996.

[6] M. Stan, W. Burleson,Bus-Invert Coding for Low
Power I/O, IEEE Transactions on VLSI Systems,
March 1995, p. 49-58.

	CD-ROM Home Page
	ISLPED97
	Front Matter
	Table of Contents
	Session Index
	Author Index

