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Abstract
We propose a pipelined division architecture for

low-power ECC applications, which is based on partial-
division on group basis and lookahead technique
exploiting the linearity in finite field arithmetic. The
throughput is one division per clock regardless of the
degree of the dividend polynomial. The salient feature of
this architecture is that it leads very low power-delay
product. To verify the relative performance of the proposed
division architecture over the conventional one using
LFSR, three RS and BCH code applications were
fabricated using  0.8µm double metal CMOS technology.
Experimental results show about 32, 65, 67 times
improvement in power consumption compared with
conventional one using LFSR.

I. Introduction
Division in the finite field GF(2m) is the most

important building block in ECC(Error Correction
Coding) systems such as BCH(Bose-Chaudhuri-
Hocquenghem) and RS(Reed-Solomon) codes, since these
block codings are based on long polynomial divisions[1].
The conventional Euclidean division architecture in finite
field uses LFSR(Linear Feedback Shift Register).
However, as the high-speed requirement for real-time
audio/video coding as well as the low-power requirement
for portable applications increase, this serial architecture
has shown several limitations as follows. 1)The
throughput is limited by the degree of the dividend
polynomial. 2)The presence of a global feedback signal
imposes severe constraints on the switching speed and
necessitates the use of a global clock[2]. 3)This feedback
signal limits the degree of parallelism that can be
exploited for low-power consumption[3]. 4)The fact that
the complete LFSR and serial buffer registers should be
clocked for every clock cycle without concerning the
change of contents, can not avoid useless power
consumption[4]. Therefore, for high-speed/low-power
ECC applications, a new division architecture which does
not suffer from limitations mentioned above is
necessitated.

II. New Division Algorithm based on LAPR
While the conventional division algorithm does

symbol or bit basis serial  processing, our division
algorithm processes on group basis parallel processing. It
starts from the definition of P(x) as the long arbitrary
dividend polynomial of degree n and M(x) as the fixed
divisor polynomial of degree k, i.e.,
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. If we define q

as the maximum number that satisfies n q k k≥ + +( )1
then the elements in the dividend polynomial can be
grouped into q+2 orthogonal groups as follows :
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P xj( ) for q j≥ ≥ 0  has the same format as S(x)

defined as S x s x xi
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Figure 1 The schematic diagram of new division
algorithm based on LAPR for hardware

implementation



Figure 1 shows our division algorithm
schematically for hardware implementation. Q xq( ) and
R xq( ) are the quotient and the remainder, respectively,

resulting from P x M xq( ) / ( ) . P xj’ ( ) for

q j− ≥ ≥1 0  is the sum of 1 left symbol shift  of

R xj + 1( )  and P xj( ) . Here, to notice is that, in finite

field, adding two symbols or polynomials with the same
degree does not produce carry, leading to the resulting
polynomial P xj’ ( ) has the same format as P xj ( ) . All of

the Q xj( )  and R xj( )  for q j− ≥ ≥1 0  are the

quotients and the remainders resulting
from  ’ ( ) / ( )P x M xj . We define them as partial-qutient

and partail-remainder respectively, since those are the
results from a partial-division. The overall quotient of
P(x)/M(x) is the weighted sum of all the partial-quotients
Q xj( )  for q j≥ ≥ 0  and the overall remainder is the

sum of R x0( ) and last group P x− 1( ) .

Since all of the P xj( ) for q j≥ ≥ 0  has the

same format as S(x), all of the Q xj( )  and R xj( )  can be

obtained by looking the results from S x M x( ) / ( )  using

identical circuits. To obtain the result from
S x M x( ) / ( ) by circuits with less complexity and also

by systematic way, we exploited the linearity of the finite
field arithmetic[1]. That is S x M x( ) / ( )  is the same as

the linear sum of each element in S(x) divided by M(x).
For one simple example in the binary field, if the divisor

polynomial is M x x x x x( ) = + + + +6 4 2 1 then S(x)

can be expressed as follows: S x s x xi
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. By

exploiting the linearity of the finite field arithmetic, all
the necessary information to form the lookahead circuits
can be listed as shown in Table I.

Table I Division table for lookahead circuit :
M x x x x x( ) = + + + +6 4 2 1

By superposing the result in Table I we can
obtain an optimized lookahead circuit for partial-
remainder and partial-quotient as shown in Figure 2. One

last thing to notice is,  since our algorithm based on
LAPR does not need partial-quotients to proceed the
division process, partial-quotient lookahead circuitry can
be completely eliminated unless application to apply needs
quotient explicitly.

INS[6]

INS[5]

INS[4]

INS[3]

INS[2]

INS[1]

INS[0]

OUTR[5]

OUTR[4]

OUTR[3]

OUTR[2]

OUTR[1]

OUTR[0]

a) Lookahead circuit for partial-remainder

b) Lookahead circuit for partial-quotient

Figure 2 Circuit for Lookahead :
M x x x x x( ) = + + + +6 4 2 1

III. Division Architecture based on LAPR
Noting the inherent regularity and feedforward

natures of our algorithm, we make it fully be pipelined.
Figure 3 shows the block diagram of the pipelined
architecture based on LAPR. Here, the block FIRST is the
register for the first group P xq( ) . The q identical blocks
INT are intermediate group registers, which form new
intermediate groups ’ ( )P xj  for q j− ≥ ≥1 0  by adding

the partial-remainder from the previous group and the
input group P xj( ). The block LAST is the remainder
register. Adding the partial-remainder from  ’ ( )P x0  and
P x- ( )1  forms the overall remainder. All of the group
registers can be implemented using only FFs(Flip-Flop)
and EXORs. There are (q+1) identical blocks LOOK-
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AHEADR and LOOK-AHEADQ that generate the
partial-quotient and partial-remainder respectively. Figure
4 shows the operation diagram of the pipelined
architecture. Each group in the dividend polynomial is
inserted one by one sequentially to its own specific stage
from the first to the last. Each group in the next dividend
polynomial can be inserted as soon as the group of the
present dividend polynomial of that stage is processed.
After (q+2) cycles, all the blocks in Figure 3 operate
simultaneously so that the throughput of this pipelined

architecture is 1 remainder and 1 quotient per clock cycle.
An area efficient sequential architecture based on LAPR
is shown in Figure 5.  It uses single cell recursively to
perform the division process based on LAPR. Every (q+2)
cycles, one remainder and one quotient are produced.
Although this is slower than the pipelined architecture
shown in Figure 3, as far as the authors know, it is still
faster than any other division architecture ever reported.
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Figure 3  The pipelined division architecture based on LAPR.
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Figure 4 The operation diagram of pipelined division
architecture. Here, for simple illustration, we assumed
each lookahead circuits are included in its group
register block.
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Figure. 5 An area efficient sequential division
architecture based on LAPR.

IV. Experimental Verification and Performance
Comparisons

To show the superiority of the proposed
architecture based on LAPR compared with the



conventional one using LFSR, in terms of speed, area, and
power consumption, we designed some popularly used
BCH/RS coding applications in COMPASS ASIC
development environment using 0.8µm double metal
CMOS technology. Three applications: 1) (32,28) RS
encoder, 2) (63,51) BCH encoder, 3) syndrome generator
for (63,51) BCH decoder, were designed as benchmark
circuits to verify the relative performance of the proposed

division architecture over the conventional LFSR one.
The (32,28) RS code in GF(2m) and the (63,51) BCH code
are now being used in CD(Compact Disk) error correction
coding[6] and AMPS(Advanced Mobile Phone Service)
cellular phone respectively. The chip micro-photograph is
shown in Figure 6.

Figure 6 Photo micrograph of the fabricated chips

The experimental results are summarized in
Table II. The clock frequency used to obtain the same
throughput(500K div/sec) is shown in the second column.
Power consumption with supply voltage 5V, is measured
and listed in the 4th column. It indicates that the pipelined
architectures based on LAPR show 17, 28, 29 times
improvement in power consumption compared with those
using LFSR. The corresponding improvement for
sequential architectures based on LAPR are 10, 13, 18
respectively. To show the power reduction that can be
obtained by the architecture driven voltage scaling, we
measured power consumption at the minimum supply
voltage at which circuits are in proper operation. Since
reducing the supply voltage comes at the cost of increased
gate delays, as the used clock speeds are higher, lower
functional throughput is inevitable. The 5th column in
Table II shows this minimum power consumption. It
indicates that further power reduction can be obtained by
voltage scaling. Pipelined architectures based on LAPR

show 32, 65, 67 times improvement in power consumption
compared with those using LFSR. The corresponding
improvements for sequential architectures based on LAPR
are 14, 22, 28 respectively. To show the power efficiency
in terms of energy aspect, the normalized power-delay
product is depicted on Figure 7. All the circuits are in
operation at 5V supply voltage and 10MHz clock
frequency. It indicates that pipelined and sequential
architecture based on LAPR has very small power-delay
product compared with conventional one using LFSR. We
also can see, at identical clock frequency, fully-pipelined
LAPR architecture produce orders of magnitude big boost
in speed for very little power cost.

(32,28) RS encoder (LAPR, PIPELINED)

(LAPR, SEQUENTIAL)

(32,28) RS encoder (LFSR)

(63,51) BCH encoder (LAPR, PIPELINED)

(LAPR, SEQUENTIAL)

(LFSR)

(63,51) BCH decoder, syndrome (LAPR, PIPELINED)

(LAPR, SEQUENTIAL)

(LFSR)



Table II Summary of experimental results for identical throughput
Architecture
(Throughput

500K division/sec)

Clock
frequency

Latency
delays
(cycle)

Power
Consumption

@VDD=5V

Minimum
Power

consumption

Multipliers
used

Size
(mm)

Number of
Transistor

1) (32,28) RS code => Error correction code of Compact Disk[5], encoder
     Divisor polynomial :  ( ) =  ( + )( + )( + )( + )M x x x x xα α α α0 1 2 3

     Degree of dividend : 31, The finite field used : GF(28)
Pipelined(LAPR) 0.5M 7 4.186mW 1.051mW@2.5V Not used 2.50 x 1.89 34881
Sequential(LAPR) 3.5M 7 7.201mW 2.422mW@2.9V Not used 1.56 x 0.85 6702
Serial(LFSR) 16M 32 72mW 33.29mW@3.4V ROM 3.35 x 0.78 4207 +

4x(28 x 8) ROM
2) (63,51) BCH code => Error correction code of AMPS, encoder
    Divisor polynomial :  ( ) =  + + + + +M x x x x x x x12 10 8 5 4 3 1+
    Degree of dividend : 62, The finite field used : GF(2)
Pipelined(LAPR) 0.5M 6 0.557mW 0.118mW@2.3V - 2.71 x 0.35 6852
Sequential(LAPR) 3M 6 1.210mW 0.352mW@2.7V - 0.94 x 0.21 1455
Serial(LFSR) 31.5M 63 15.81mW 7.747mW@3.5V - 1.34 x 0.21 2018
3) (63,51) BCH code, syndrome generator as a decoder building block
    Divisor polynomial : M x x x x x( ) = + + + +6 4 2 1
    Degree of dividend : 62, The finite field used : GF(2)
Pipelined(LAPR) 0.5M 11 0.509mW 0.107mW@2.3V - 2.50 x 0.31 6085
Sequential(LAPR) 5.5M 11 0.815mW 0.255mW@2.8V - 0.36 x 0.16 526
Serial(LFSR) 31.5M 63 14.81mW 7.258mW@3.5V - 1.25 x 0.21 1958
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 Figure 7 Normalized power-delay product

V. Conclusion
We proposed long polynomial division

architectures based on LAPR division algorithm. Both the
partial-division on group basis and lookahead technique
exploiting the linearity of the finite field arithmetic,
enables complete elimination of polynomial multiplication
leading to highly increased throughput per unit time.
Experimental verification for three benchmark circuits
show that at identical throughput, pipelined architecture
based on LAPR consumes about 32, 65, 67 times smaller
power compared with conventional one using LFSR.
Since proposed division algorithm based on LAPR is
efficient, regular and easily expandable, it can be used
directly in VLSI implementation of various ECC
applications where high-speed and/or low-power is
dictated for application to communication, optical disks,
portable equipment and computer systems.
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