
Switching Activity Estimation using Limited Depth Reconvergent Path Analysis

José C. Costa José C. Monteiro Srinivas Devadas
IST/INESC IST/INESC MIT

Lisboa, Portugal Lisboa, Portugal Cambridge, MA

We describe a method of polynomial simulation to calculate
switching activities in a general-delay combinational logic circuit.
This method is a generalization of the exact signal probability
evaluation method due to Parker and McCluskey, which as been
extended to handle temporal correlation and arbitrary transport
delays.

Our method is parameterized by a single parameter l, which
determines the speed-accuracy tradeoff. l indicates the depth
in terms of logic levels over which spatial signal correlation is
taken into account. This is done by only taking into account
reconvergent paths whose length is at most l. The rationale is that
ignoring spatial correlation for signals that reconverge after many
levels of logic introduces negligible error.

We present results that show that the error in the switching
activity and power estimates is very small even for small values
of l. In fact, for most of the examples we tried, power estimates
with l = 1 are within 5% of the exact. However, this error can be
higher than 20% for some examples. More robust estimates are
obtained with l = 2, providing a good compromise between speed
and accuracy.

I. INTRODUCTION

The estimation of average switching activity and power dissipation
in digital logic circuits is recognized as an important problem. Aver-
age switching activity estimation is computationally difficult, because
the input space of the circuit, over which the averaging needs to be
done, is very large. Further complications arise due to correlation
between internal signals in the logic circuit and logic gate delays. As
a result, exact methods are viable only for relatively small circuits,
and approximate methods are required for most circuits.

Approximation schemes proposed for power estimation thus far
lack some desirable properties. Most schemes are not based on an
exact strategy, but based on heuristic rules that model correlation
between internal signals in the circuit. While their runtime is typically
polynomial, they are rarely parameterizable to improve accuracy at the
expense of runtime, and are not calibrated against an exact strategy.

We describe a method of polynomial simulation to calculate switch-
ing activities in a general-delay combinational logic circuit. This
method is a generalization of the exact signal probability evaluation
method due to Parker and McCluskey [10], which as been extended to
handle temporal correlation and arbitrary transport delays.

Our method is parameterized by a single parameter l, which deter-
mines the speed-accuracy tradeoff. l indicates the depth in terms of
logic levels over which signal correlation is taken into account. This is
done by only taking into account reconvergent paths whose length is at
most l. When l = L, where L is the total number of levels of logic in

the circuit, the method will produce the exact switching activity under
a zero delay model, taking into account all internal signal correlation.
Under a generic delay model, the method although very close, is still
not exact due to temporal correlation issues.

The rationale behind our approximation scheme is that spatial cor-
relation between internal signals is more important when reconver-
gence paths meet within a few logic levels. This observation implies
that only small errors are introduced when signal independence is as-
sumed for two or more signals, which share input variables and meet
after some long path.

We present results that show that the error in the switching activity
and power estimates is very small even for small values of l. In fact,
for most of the examples we tried, power estimates with l = 1 are
within 5% error of the exact. However, this error can be higher than
20% for other examples. More robust estimates are obtained with
l = 2, providing a good compromise between speed and accuracy.

In Section II, we survey previous work on probabilistic switching
activity estimation and discuss how it relates to our own. We describe
the polynomial simulation method in Section III. We introduce in
Section IV the concept of dominators and super-gates, concepts used
in our approximation scheme. The approximation algorithm based on
limited circuit depth signal correlation is presented in Section V. In
Section VI, we provide a set of experimental results that show that with
this approximation method very accurate power and node switching
estimates can be achieved even for small values of l. We present some
conclusions in Section VI.

II. PREVIOUS WORK ON LOGIC LEVEL POWER ESTIMATION

There has been a great deal of work in the area of power estimation
in the past few years. We describe some representative approaches in
this section.

A. Zero-Delay Signal Probability Evaluation

Signal probability evaluation methods compute the probability that
a Boolean function will evaluate to a 1 on a randomly applied input vec-
tor. They model Boolean functionality and disregard circuit delays.
The earliest method of signal probability evaluation is the Parker-
McCluskey method [10] upon which our method is based. Various
other methods to approximate signal probability for testability appli-
cations have been proposed.

The use of probabilities to estimate power was first proposed by
Cirit [3]. In this work, both signal spatial and temporal correlation are
ignored. The transition density work of Najm [8] introduces temporal
correlation, but still ignores correlation between internal signals. Im-
provements to the basic strategy [4] model some internal correlation,
but do not serve as a basis for an exact method. In [6], signal probabil-
ity evaluation and power estimation is based on pairwise correlations
between signals. This results in efficient estimation schemes, how-
ever, correlation between triplets of signals is ignored. Our method
takes into account correlation between two or more signals; our ap-
proximations are based on the depth of reconvergence between these
multiple signals. The Boolean Approximation Method [13] uses the
first term in the Taylor series expansion to efficiently compute signal

probabilities taking into account some internal correlation.
Recent work by Cheng generalizes the Parker-McCluskey method

to handle transition probabilities by using four-valued variables rather
than Boolean variables [2]. The proposed method can be used to
obtain exact switching activities for the zero delay model, but no
generalization to handle gate delays was made. Methods to improve
the efficiency of zero delay switching activity estimation based on the
notion of super-gates were described by Cheng. We use the notion of
super-gates to improve the efficiency of our method as well.

B. General-Delay Switching Activity Estimation

Methods limited to zero-delay models do not account for spurious
transitions (glitching) at the output of a gate. Due to different input path
delays, gates may switch more than once during a clock cycle. In order
to model general-delay transport delays, Najm proposes in [9] propa-
gating probability waveforms through the circuit. These represent the
time instants where nodes can toggle, together with information about
static signal probability between these instants. Still, correlation be-
tween internal signals is ignored. Tsui [12] extends Najm’s method by
including some correlation coefficients in the probability waveforms.

In [7], Boolean functions representing all possible logical values
at each time point for each gate are computed, and the probability of
switching activity is evaluated by XOR’ing consecutive time instants.
The method relies on the creation of a symbolic network which can
become quite large. To perform exact switching activity estimation,
BDDs [1] have to be created for each output of the symbolic network,
which can be very time-consuming. To handle transition probabilities
at primary inputs the method requires constraints on the BDD ordering,
which further reduces efficiency. However, the symbolic simulation
method is useful in calibrating approximation strategies since it is an
exact method, for a given gate delay and capacitance models.

III. POLYNOMIAL SIMULATION

We base the computation of the switching activity at each node
in the circuit on the Parker-McCluskey method [10]. A desirable
feature of this method is that spatial correlation of internal signals is
accurately taken into account. In this section we describe this method
and its extension to handle temporal correlation and generic delays.

A. The Parker-McCluskey Method

Consider a Boolean function f with inputs x1; : : : ; xN . The
Parker-McCluskey method generates a polynomial that represents the
probability that the gate output is a 1, for each gate in the circuit. It
follows basic rules for propagating polynomials through logic gates.

Definition 1: Given a polynomial P (x1; : : : ; xN), the function
supexp(P) is defined as the polynomial resulting from replacing each
xi

k
2 P with xi for all k > 1.

For example, if P = x1
2 + x1 � x2, supexp(P) = x1 + x1 � x2.

Given a polynomialPg for gate g, if g is an input to an inverter, the
polynomial for the output of the inverter is 1�Pg . Given polynomials
Pg1 and Pg2 at the inputs of an AND gate h, the polynomial for the
output of the AND gate will bePh = supexp(Pg1 �Pg2). For an OR gate,
Ph = 1 - supexp((1�Pg1)�(1�Pg2)) =Pg1 + supexp((1�Pg1)�Pg2).

We begin with the primary input polynomials x1 through xN , and
traverse the circuit from inputs to outputs to obtain Pf(x1; : : : ; xN).
Given a probability value for each xi, namely pr(xi), pr(f) =

Pf(pr(x1); : : : ; pr(xN)).

B. Transition Probabilities

The Parker-McCluskey algorithm can be generalized to work with
transition probabilities [2].

AND 0!0 0!1 1 ! 0 1!1

0!0 0!0 0!0 0 ! 0 0!0
0!1 0!0 0!1 0 ! 0 0!1
1!0 0!0 0!0 1 ! 0 1!0
1!1 0!0 0!1 1 ! 0 1!1

INVERTER

0!0 1!1
0!1 1!0
1!0 0!1
1!1 0!0

TABLE I
SIMULATION CALCULUS FOR AN AND GATE AND INVERTER.

a

b

c

g

f

Fig. 1. Unit-delay example circuit.

Each input xi has four probability variables corresponding to the
input staying low, making a rising transition, making a falling transi-
tion, and staying high. These are x00

i , x01
i , x10

i , and x11
i , respectively.

For each gate g, we now have four polynomials P 00
g , P 01

g , P 10
g , and

P 11
g , corresponding to the probability that the gate stays low, makes

a rising transition, makes a falling transition, and stays high, respec-
tively. We will refer to these four polynomials as the polynomial group
for a gate.

Table I gives the simulation tables of an AND gate and an inverter.
These tables can be used to obtain the basic rules for computing the
polynomial group for the output of each gate. The polynomial group
for the output of an inverter h with input g is simply a re-ordered
version of the input polynomial group.

P 00
h = P 11

g P 01
h = P 10

g

P 10
h = P 01

g P 11
h = P 00

g

For an AND gate h with inputs g1 and g2 we will compute:

P
00
h = supexp(P 00

g1 + (P 01
g1 + P

10
g1 + P

11
g1) � P

00
g2 +

P
01
g1 � P

10
g2 + P

10
g1 � P

01
g2)

P
01
h = supexp(P 01

g1
� P

01
g2
+ P

01
g1
� P

11
g2
+ P

11
g1
� P

01
g2
)

P
10
h = supexp(P 10

g1
� P

10
g2
+ P

10
g1
� P

11
g2
+ P

11
g1
� P

10
g2
)

P
11
h = supexp(P 11

g1 � P
11
g2)

C. Gate Delay Effects and Polynomial Waveforms

We propose an important generalization of the Parker-McCluskey
method to handle gate delays in this section. This will directly lead
to an exact power estimation algorithm, since we just have to sum up
the values of appropriate polynomials to obtain the average switching
activity at any gate in the circuit.

We will always be manipulating polynomial groups hence-
forth, and for clarity, we will represent the polynomial group
fP 00

g ; P 01
g ; P 10

g ; P 11
g g as Pg . At each gate output we will have

a waveform of polynomial groups, termed a polynomial waveform,
where each group represents the conditions at the gate output at a
particular time instant. We denote the polynomial group for gate g at
time instant t as Pg[t].

For example, in the simple circuit of Figure 1, with unit gate
delays we will have, for the various signals, the following polynomial

Polynomial Simulation (Network)
1. Initialize Polynomial Waveforms (PIs (Network)) ;
2. Gates = Topological Sort(Network) ;
3. for each gi in Gates f
4. � = delay of gi ;
5. TimePts = NIL(LIST) ;
6. for each input gj of gi (gi1 ; � � � ; gim) f
7. for each time point (k, Pgj [k]) of gj f
8. TimePts = InsertInOrder (TimePts, (k,Pgj [k])) ;
9. g

10. g

11. for each new time point k in TimePts f

12. Pgi [k+�] = Gi(Pgi1 [k]; � � � ; Pgim [k]) ;
13. g

14. g

Fig. 2. Pseudo-code for the polynomial simulation algorithm.

waveforms,
a : Pa[0]
b : Pb[0]
c : Pc[0]
g : Pg[0];Pg[1]
f : Pf [0];Pf [1];Pf [2]

representing the different time instants that each input/gate can make
transitions.

We need a polynomial simulation algorithm that can simulate a
gate-level network with arbitrary gate delays. Given primary in-
put polynomial waveforms the algorithm should generate polynomial
waveforms for each gate output. Such an algorithm is described in
pseudo-code in Figure 2.

The simulator processes one gate at a time, moving from the pri-
mary inputs to the primary outputs of the circuit. For each gate gi ,
an ordered list of the possible transition times of its inputs is first ob-
tained. Then, possible transitions at the output of the gate are derived,
taking into account transport delays from each input to the gate output.

It is possible that the polynomial for some input gij has not been
computed for a given time point k. This simply means that node gij
does not make a transition at this particular instant. In this case, the
polynomial group forgij at instantk is obtained from the latest existing
polynomial group for gij prior to k. If the instant corresponding to
this polynomial is m, then

P 00
gij

[k] = P 00
gij

[m] + P 10
gij

[m]

P 01
gij

[k] = P 10
gij

[k] = 0
P 11
gij

[k] = P 11
gij

[m] + P 01
gij

[m]

The polynomial group for instant k can equally be computed from
the polynomial immediately after instant k.

IV. GRAPH DOMINATORS AND SUPER-GATES

The Parker-McCluskey algorithm cannot be used on large circuits,
since it involves “collapsing” the circuit into two levels. Super-gates
have been proposed [11], [2] to reduce the size of the polynomials and
still obtain an exact solution. We review this concept together with
the more generic concept of graph dominators in this section.

A. Zero-Delay Model

In propagating signal probabilities through a logic circuit, spatial
correlation measures how the probabilities of the inputs to a gate are
related. In a logic circuit, this is determined by what primary inputs

aP

f

a

aaP = supexp(P.P)
 = P

(a)

f

0.5
P = 0.5 * 0.5
 = 0.25

(b)

Fig. 3. Handling spatial correlation.

are common to the support1 of the inputs to the gate. If the supports
are disjoint, then the probabilities of the inputs are independent.

In the Parker-McCluskey method, spatial correlation is handled by
the supexp operator (cf. Definition 1). All polynomials are a function
of the primary inputs. When some gate depends on logic signals that
share some primary inputs, the method is able to detect the common
variables and the exponent is suppressed, as depicted in Figure 3(a).

The complexity of the polynomials can be reduced by substituting
some variables by their probability values. This procedure reduces
the number of variables in some terms of the polynomial, creating a
constant factor for that term. For example, if we substitute the proba-
bility of x1 in polynomial x1 � x3 + x2 � x3, we obtain the polynomial
pr(x1) � x3 + x2 � x3. If additionally we do the same for x2, the
polynomial becomes pr(x1) � x3 + pr(x2) � x3 = k � x3.

However, in this process we have lost information about the poly-
nomial depending on the substituted variables. If these variables are
present in any reconvergent path in the transitive fanout of the current
gate, some error is introduced since the probability of the same vari-
able will be multiplied, as in Figure 3(b). On the other hand, if we
determine that some variable will not be present in any reconverging
signal, then under a zero-delay model the method is still exact (this
may not be true for a general delay model, which we analyze in the
next section).

It is useful to introduce the concept of graph dominator [5].
Definition 2: A vertex v dominates another vertex w 6= v in a

directed graph G if every path from the root vertex to w contains v.
Thus, if we determine that a given gate g is the dominator of some

primary input i as seen from a primary output, then we can substitute
the probabilities corresponding to this input i in the polynomials at
gate g. Under a zero-delay model no error is introduced since we know
that no reconvergent signal in the transitive fanout of g will depend on
i.

Super-gates have previously been proposed [11],[2] to reduce poly-
nomial complexity. Super-gates are significantly more constrained in
that they require the gate to be a dominator for all the primary inputs
in its support. However, when found, super-gates have the important
property that the polynomials are reduced to the independent term
(i.e., constants) and thus can be treated as primary inputs.

B. General-Delay Model

Under a general-delay model, substituting variables at dominator
nodes is no longer an exact procedure. For every node in the circuit
there will be a polynomial corresponding to each time point where
the node can make a transition. These polynomials will necessarily
be a function of some common variables. It is possible that in the
transitive fanout of a node, polynomials corresponding to different
time points are operated together. If a variable has been substituted by
its probability value, an error will be introduced because correlation
due to this variable has been ignored.

To illustrate this point, in the somewhat contrived circuit of Figure 4
node d is a dominator for node a. For simplicity assume a unit-delay

1The support of a logic function is the set of primary inputs that the function
depends on.

f
d

e

a

b

c

g
P

Q

R

S
T

Fig. 4. Variable substitution under a general-delay model.

model, although the following observations apply equally well to the
general-delay model. At node d we have polynomials corresponding
to instants 1 and 2, both a function of Pa[0] and Pb[0], respectively
Pd[1](Pa[0];Pb[0]) and Pd[2](Pa[0];Pb[0]). If the variable Pa[0]
is replaced by its numerical value, thus obtaining P 0

d[1](Pb[0]) and
P 0

d[2](Pb[0]), the temporal correlation between P 0

d[1] and P 0

d[2] due
to a is lost. In this circuit, error will be introduced at node g where,
because of the reconvergent path starting at node e, P 0

d[1](Pb[0]) and
P 0

d[2](Pb[0]) will be operated with each other due to the different
delays from e to g.

Also evident in the above example is the error introduced by super-
gates. Gates P , Q and R in Figure 4 form a super-gate. However,
node e cannot be treated exactly like a primary input since there are
three time instants at which e can make a transition. Further, if all
variables are substituted, we lose all information about the correlation
between these three instants.

V. APPROXIMATION BASED ON LIMITED DEPTH SPATIAL

CORRELATION

It has been our experience that dominators (and consequently super-
gates) are not very common in a general logic circuit. In most circuits,
due to a high degree of reconvergent paths, dominators of primary
inputs exist only close to the primary outputs. This severely restricts
their usefulness in the switching activity estimation process.

We describe a parameterizable approximation scheme, based on
approximate dominators, that is able to handle large circuits and still
obtain accurate estimates for power and switching activity.

A. Basis for the Approximation

One important observation behind our approach is that spatial cor-
relation is more important if the reconvergenceof paths happenswithin
a few logic levels. Consider two paths starting at some primary input
a that reconverge at some node b. The polynomials at the inputs b1; b2

of b will in general have some terms dependent on the polynomials at
a and other terms independent of them,

Pb1 = �+ �Pa Pb2 = + �Pa

where �;�; and � are functions of other primary inputs.
When node b is close to a in terms of logic levels, most terms in

Pb1 and Pb2 will contain Pa, thus � � � and � �. On the other
hand, if b is at a high logic level, the fraction of terms that depend on
Pa is smaller. Therefore, �� � and � �.

Substituting the probability value of a will always introduce some
error because in generating the polynomial at b, the probability of
a is squared when multiplying one term of b1 with a term of b2 both
containingPa. With no variable substitution (exact case) we compute,

Pb1 � Pb2 = � + (�� + � + ��)Pa

When we substitute the value of Pa we obtain the polynomials,

P
0

b1 = �+ �pr(Pa)

P
0

b2
= + �pr(Pa)

Switching Activity Estimation (Network, l)
1. for each gate g in (Network) f
2. Path = NIL(Table) ;
3. for each fanout fj of g f
4. Gates = limited depth search (fj , l) ;
5. for each node h in Gates f
6. Insert(Path, h, j, fanin(h)) ;
7. g

8. g

9. for each duplicate node h in Path with different indexes j f
10. while fanin(h) 6= g f

11. Insert(fanin(h):Active Nodes, g) ;
12. h = fanin(h) ;
13. g

14. g

15. g
16. Polynomial Sim with Variable Substitution (Network) ;

Fig. 5. Pseudo-code for the limited depth spatial correlation algorithm.

and thus

P
0

b1 � P
0

b2 = � + (��+ �)pr(Pa) + ��(prob(Pa))
2

Therefore, the error is only present in the last term (��). For a low
logic level of b (� � � and � �) the relative weight of this term
may be large, leading to a high relative error. For a high logic level of
b (�� � and � �), we have a smaller relative error.

B. Description of the Approximation Algorithm

In our approximation scheme the user specifies one parameter l.
This parameter determines the depth in terms of logic levels from each
node a that will be searched in order to determine if two paths starting
at a will reconverge. Spatial correlation corresponding to two paths
starting at a that reconvergence within l logic levels will be accurately
taken into account. If reconvergent paths meet after l logic levels
then they are assumed to be independent, thus the polynomials will be
simplified by variable substitution and some error will be introduced.

The approximation algorithm is divided in two parts. We first
determine the active nodes for each node in the circuit. Active nodes
are nodes where two (or more) reconvergent paths begin and these
nodesneed to be active until the paths meet. Thesewill be the variables
in the polynomials at each node. In the second part of the algorithm, a
polynomial simulation routine similar to the one described in Figure 2
is used. The difference is that the information about active nodes will
be used to simplify the polynomials.

The pseudo-codefor the algorithm that determines the active nodes
is described in Figure 5. The algorithm works by taking each node g
and doing a limited depth first search (DFS) of l levels for each fanout
of g. While doing the DFS, we build a table that stores information
about the h node found, a number j that identifies for which fanout
the DFS is being done and the fanin of h. This fanin information
will allow us to backtrack the path without doing another DFS, for the
case when reconvergence is found. After all the fanouts are done, we
go through the table to check which nodes in the table have two or
more different numbers of DFS, indicating that this is a node where
reconvergent paths meet. We can now use the fanin information to go
back in the path and in doing so inserting in the table of active nodes
of each node in the path the node which is being processed.

After the active nodes for all nodes in the circuit have been com-
puted, the modified polynomial simulation where variable substitution

l = 2 l = 3 l =1
Circuit Act. Nodes CPU Act. Nodes CPU Act. Nodes CPU
Name Avg Max (s) Avg Max (s) Avg Max (s)

c1355 1.05 2 0.1 1.08 2 0.2 5.53 33 1.5
c499 1.05 2 0.1 1.08 2 0.1 5.63 33 1.4
add16 1.10 2 0.1 1.50 4 0.1 1.93 3 0.5
alu4 1.30 8 0.2 3.82 14 0.5 7.05 14 2.7
cht 1.08 4 0.1 1.09 4 0.1 1.11 4 0.1
cm163 1.12 2 0.0 1.12 2 0.0 1.12 2 0.0
comp 1.45 9 0.0 2.48 10 0.1 3.75 28 0.1
cordic 1.11 2 0.0 1.28 4 0.0 1.37 5 0.0
count 2.61 26 0.1 2.61 26 0.1 2.61 26 0.2
frg1 1.10 3 0.0 1.67 7 0.1 3.94 22 0.1
i3 1.00 1 0.0 1.00 1 0.0 1.00 1 0.0
i6 1.00 2 0.2 1.32 3 0.2 1.65 4 0.3
mult 1.23 9 0.2 9.59 96 0.4 10.54 16 5.4
mux 1.20 2 0.0 1.47 3 0.0 1.47 3 0.0
x4 1.46 6 0.1 1.55 6 0.2 1.76 6 0.4
z4ml 1.07 2 0.0 1.70 5 0.0 1.57 3 0.0

TABLE II
STATISTICS OF ACTIVE NODES FOUND PER CIRCUIT NODE.

Circuit Symbolic l = 1 l = 2 l = 3 l =1
Name P CPU P % CPU P % CPU P % CPU P % CPU

c1355 N/A 2559 0.5 3910 27.3 3926 29.9 N/A
c499 N/A 2247 0.3 3146 17.8 3160 20.9 N/A
add16 960 53.3 965 0.53 0.3 997 3.81 14.5 943 1.74 26.0 958 0.21 36.4
alu4 N/A 4131 4.4 4387 2430.4 N/A N/A
cht 930 18.1 938 0.85 0.1 941 1.11 4.8 930 0.00 3.8 931 0.00 3.9
cm163 256 6.1 242 5.65 0.0 256 0.14 1.1 256 0.14 1.1 256 0.14 1.1
comp 568 36.1 580 2.27 0.1 577 1.74 4.0 573 1.04 4001.2 N/A
cordic 341 8.9 325 4.63 0.0 340 0.08 0.9 340 0.07 1.3 341 0.01 2.4
count 608 29.3 602 0.94 0.3 607 0.09 27.4 607 0.09 27.9 607 0.09 30.3
frg1 816 76.5 837 2.53 0.1 824 0.88 8.4 820 0.41 97.8 N/A
i3 887 11.1 887 0.00 0.0 887 0.00 1.0 887 0.00 0.9 887 0.00 1.0
i6 2726 67.5 2688 1.37 0.3 2691 1.28 10.8 2719 0.25 13.6 2726 0.00 15.1
mult N/A 17536 12.9 18024 3374.2 N/A N/A
mux 354 5.7 332 6.26 0.0 346 2.29 2.9 353 0.36 6.0 353 0.36 5.3
x4 2089 75.2 1990 4.73 0.5 2083 0.29 39.6 2095 0.28 88.3 2087 0.10 1800.4
z4ml 319 6.0 286 10.27 0.0 317 0.73 1.6 317 0.57 6.2 319 0.03 3.4

max = 10:3;avg = 3:3 max = 3:8; avg = 1:0 max = 1:7;avg = 0:4 max = 0:4; avg = 0:1

TABLE III
POWER ESTIMATION RESULTS.

13. for each variable h in Pgi[k +�] not in gi:Active Nodes f

14. substitute h with pr(h) in Pgi [k+�] ;
15. g
16. simplify (Pgi [k+�]) ;

Fig. 6. Pseudo-code for the polynomial simulation algorithm with
variable substitution.

is done is called. The only difference from the algorithm of Figure 2
is that between lines 12 and 13 we insert the code where variable
substitution is done (Figure 6).

VI. EXPERIMENTAL RESULTS

In this section we present power and switching activity estimation
results obtained with the approximation algorithm based on limited
depth reconvergent path analysis described in the previous sections.
We present results for different values of l and compare them with the
exact value obtained with symbolic simulation [7].

The first part of the approximation algorithm involves computing

for each node in the circuit the set of active nodes, i.e., the variables the
polynomials at each node will be a function of. We present statistics on
the number of active nodes for our benchmark circuits in Table II. For
different values of l, we give the average (Avg) and maximum (Max)
number of active nodes over all nodes in each circuit. 1 corresponds
to the maximum number of logic levels in the circuit, thus detecting all
reconvergent paths. As expected, as l increases, both the average and
maximum values increase. An interesting observation is that, even
for large values of l, the average number of active nodes is relatively
small. Yet, the maximum number can be large. We do not show
statistics for l = 1 because for the examples we have, there is only
one active node for all nodes, though this is not necessarily true for all
circuits.

The CPU time we present in this table corresponds only to the
algorithm that computes the active nodes (cf. Figure 5). All reported
CPU times are in seconds and were obtained on Sun 5/85 with 64M of
main memory. As it can be seen from the table, for l = 2 and l = 3,
the time spent in doing the depth search for reconvergent paths is very
small, typically less than 1s. Even for l =1 we can still execute this
operation using small amounts of CPU time.

Circuit l = 1 l = 2 l = 3 l =1
Name max avg max avg max avg max avg

c1355 N/A N/A N/A N/A
c499 N/A N/A N/A N/A
add16 0.32 0.06 0.22 0.05 0.30 0.05 0.12 0.01
alu4 N/A N/A N/A N/A
cht 0.09 0.01 0.09 0.00 0.01 0.00 0.00 0.00
cm163 0.29 0.04 0.02 0.00 0.02 0.00 0.02 0.00
comp 0.30 0.01 0.17 0.01 0.15 0.01 N/A
cordic 0.67 0.04 0.05 0.00 0.09 0.00 0.00 0.00
count 0.11 0.01 0.03 0.00 0.03 0.00 0.03 0.00
frg1 0.32 0.02 0.13 0.01 0.07 0.00 N/A
i3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
i6 0.17 0.03 0.17 0.02 0.07 0.01 0.00 0.00
mult N/A N/A N/A N/A
mux 0.47 0.04 0.11 0.01 0.05 0.00 0.05 0.00
x4 0.31 0.04 0.15 0.01 0.14 0.01 0.07 0.00
z4ml 0.43 0.07 0.39 0.02 0.04 0.01 0.03 0.00

Avg 0.29 0.03 0.13 0.01 0.08 0.01 0.03 0.00
Max 0.67 0.07 0.39 0.05 0.30 0.05 0.12 0.01

TABLE IV
SWITCHING ACTIVITY ERRORS.

Table III presents the power estimation results obtained with the
approximation algorithm using l equal to 1, 2, 3 and 1. A general
delay model was used for all the examples and a supply voltage of 5V
and clock frequency of 20 MHz was assumed. A probability of 0:25
was used for all primary input events.

The two columns under “Symbolic” show the power (in �W) com-
puted using the symbolic simulation method of [7] and the CPU time
(in seconds) taken by this computation. For some of the circuits, this
method run out of memory and this is indicated with a “N/A” in the ta-
ble. In the columns under “l = 1” are the results for the approximation
algorithm using l = 1. Again we show the power dissipation results
and the CPU time for this method. Under “%” is the percentage error
of the power estimation relative to the symbolic method. Similarly for
the columns under “l = 2”, “l = 3” and “l =1”.

At the bottom of the table, we give the maximum and average error
over all the circuits, for each value of l. We can observe that both these
values decrease very rapidly with l. Also interesting to note is that
the average error is very low even for l = 1. However, the maximum
error is not as low. l = 2 brings both values to an acceptable level.
For some circuits, we cannot compute estimates with l = 3. As it can
be seen from Table II, these correspond to situations where the circuits
have a large number of active nodes, thus making the polynomials too
large.

Note that the error for l = 1 is not zero. This is due to the
temporal correlation effects described in Section IV-B. If a zero-delay
model is used, l = 1 gives exactly the same results as the symbolic
simulation method.

For many applications, a more relevant measure of accuracy is the
error in the switching activities of individual signals. In Table IV we
present the maximum and average error for the switching activity esti-
mation over all the signals of each circuit. The average was computed
by summing the absolute value of the switching probability error rel-
ative to the symbolic simulation method for all signals and dividing
by the total number of signals. At the bottom of the table we have the
average and maximum of the values for each column.

We can see that the average switching activity error is again very
low even for low values of l and that it reduces as l increases. However,
for low values of l, switching activity values for some of the nodes
may present significant errors. Yet, since the average error is low,

the number of nodes with high error clearly small. Also note that the
maximum error can be large even for l = 1, indicating that most of
the error is caused by ignoring temporal correlation.

VII. CONCLUSIONS

We have described an approximation scheme to estimate the
switching activity in a logic circuit described at gate level. Our method
is parameterized by a single value l which indicates the depth in terms
of logic levels over which reconvergent paths (i.e., spatial correlation)
is considered. We have presented results that show that in many cases
we can ignore spatial correlation and still obtain reasonably accurate
switching activity estimates. However, this is not true for all circuits.
We showed that for the benchmark circuits we used, with l = 2 an av-
erage switching activity error below 0.05 (absolute value) and a power
estimation error below 5% is obtained, within acceptable CPU time.

REFERENCES

[1] R. Bryant. Graph-Based Algorithms for Boolean Function Ma-
nipulation. IEEE Transactions on Computers, 35(8):677–691,
August 1986.

[2] D. Cheng. Power Estimation of Digital CMOS Circuits and
the Application to Logic Synthesis for Low Power. PhD thesis,
University of California at Santa Barbara, December 1995.

[3] M. Cirit. Estimating Dynamic Power Consumption of CMOS
Circuits. In Proceedings of the International Conference on
Computer-Aided Design, pages 534–537, November 1987.

[4] B. Kapoor. Improving the Accuracy of Circuit Activity Mea-
surement. In Proceedings of the International Workshop on Low
Power Design, pages 111–116, April 1994.

[5] T. Lengauer and R. Tarjan. A Fast Algorithm for Finding Dom-
inators in a Flowgraph. ACM Transactions on Programming
Languages and Systems, 1(1):121–141, July 1979.

[6] R. Marculescu,D. Marculescu, and M. Pedram.Switching Activ-
ity Analysis Considering Spatiotemporal Correlations. In Pro-
ceedings of the International Conference on Computer-Aided
Design, pages 294–299, November 1994.

[7] J. Monteiro, S. Devadas,A. Ghosh, K. Keutzer, and J. White. Es-
timation of Average Switching Activity in Combinational Logic
Circuits Using Symbolic Simulation. IEEE Transactions on
Computer-Aided Design, 16(1):121–127, January 1997.

[8] F. Najm. Transition Density, A Stochastic Measure of Activity in
Digital Circuits. In Proceedings of the 28th Design Automation
Conference, pages 644–649, June 1991.

[9] F. Najm, R. Burch, P. Yang, and I. Hajj. Probabilistic Simulation
for Reliability Analysis of CMOS VLSI Circuits. IEEE Trans.
on Computer-Aided Design, 9(4):439–450, April 1990.

[10] K. Parker and E. McCluskey. Probabilistic Treatment of Gen-
eral Combinational Networks. IEEE Transactions on Electronic
Computers, C-24(6):668–670, 1975.

[11] S. C. Seth, L. Pan, and V. D. Agrawal. PREDICT: Probabilis-
tic Estimation of Digital Circuit Testability. In Proceedings of
the Fault Tolerant Computing Symposium, pages 220–225, June
1985.

[12] C-Y. Tsui, M. Pedram, and A. Despain. Efficient Estimation
of Dynamic Power Dissipation under a Real Delay Model. In
Proceedingsof the International Conferenceon Computer-Aided
Design, pages 224–228, November 1993.

[13] T. Uchino, F. Minami, T. Mitsuhashi, and N. Goto. Switching
Activity Analysis using Boolean Approximation Method. In
Proceedingsof the International Conferenceon Computer-Aided
Design, pages 20–25, November 1995.

	CD-ROM Home Page
	ISLPED97
	Front Matter
	Table of Contents
	Session Index
	Author Index

