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We describe a method of polynomial simulation to calculate
switching activitiesin a gener al-delay combinational logic cir cuit.
This method is a generalization of the exact signal probability
evaluation method due to Parker and McCluskey, which as been
extended to handle temporal correlation and arbitrary transport
delays.

Our method is parameterized by a single parameter I, which
determines the speed-accuracy tradeoff. [ indicates the depth
in terms of logic levels over which spatial signal correlation is
taken into account. This is done by only taking into account
reconver gent pathswhoselength isat most I. Therationaleisthat
ignoring spatial correlation for signalsthat reconvergeafter many
levels of logic introduces negligible error.

We present results that show that the error in the switching
activity and power estimates is very small even for small values
of 1. In fact, for most of the examples we tried, power estimates
with { = 1 arewithin 5% of the exact. However, this error can be
higher than 20% for some examples. More robust estimates are
obtained with I = 2, providing a good compromise between speed
and accur acy.

|. INTRODUCTION

Theestimation of average switching activity and power dissipation
in digital logic circuits is recognized as an important problem. Aver-
age switching activity estimation is computationally difficult, because
the input space of the circuit, over which the averaging needsto be
done, is very large. Further complications arise due to correlation
between internal signalsin the logic circuit and logic gatedelays. As
a result, exact methods are viable only for relatively small circuits,
and approximate methods are required for most circuits.

Approximation schemes proposed for power estimation thus far
lack some desirable properties. Most schemes are not based on an
exact strategy, but based on heuristic rules that model correlation
betweeninternal signalsin the circuit. Whiletheir runtimeistypically
polynomial, they arerarely parameterizableto improve accuracy at the
expense of runtime, and are not calibrated against an exact strategy.

Wedescribeamethod of polynomial simulation to calculate switch-
ing activities in a general-delay combinational logic circuit. This
method is a generalization of the exact signal probability evaluation
method dueto Parker and McCluskey [10], which as been extended to
handle temporal correlation and arbitrary transport delays.

Our method is parameterized by asingle parameter I, which deter-
mines the speed-accuracy tradeoff. ! indicates the depth in terms of
logic levelsover which signal correlationistakeninto account. Thisis
doneby only taking into account reconvergent pathswhoselengthis at
most . Whenl = L, where L isthe total number of levels of logic in

the circuit, the method will producethe exact switching activity under
azero delay model, taking into account all internal signal correlation.
Under a generic delay model, the method although very close, is still
not exact due to temporal correlation issues.

Therationale behind our approximation schemeis that spatial cor-
relation between internal signals is more important when reconver-
gence paths meet within afew logic levels. This observation implies
that only small errors are introduced when signal independenceis as-
sumed for two or more signals, which share input variables and meet
after somelong path.

We present results that show that the error in the switching activity
and power estimates is very small even for small values of . In fact,
for most of the examples we tried, power estimates with I = 1 are
within 5% error of the exact. However, this error can be higher than
20% for other examples. More robust estimates are obtained with
[ = 2, providing a good compromise between speed and accuracy.

In Section |1, we survey previous work on probabilistic switching
activity estimation and discusshow it relates to our own. We describe
the polynomial simulation method in Section I1l. We introduce in
Section |1V the concept of dominators and super-gates, concepts used
in our approximation scheme. The approximation algorithm based on
limited circuit depth signal correlation is presented in Section V. In
Section V1, weprovide aset of experimental resultsthat show that with
this approximation method very accurate power and node switching
estimates can be achieved even for small values of 1. We present some
conclusionsin Section V1.

II. PREVIOUSWORK ON LOGIC LEVEL POWER ESTIMATION

There hasbeen a great deal of work in the area of power estimation
in the past few years. We describe some representative approachesin
this section.

A. Zero-Delay Sgnal Probability Evaluation

Signal probability evaluation methods computethe probability that
aBooleanfunctionwill evaluateto al onarandomly applied input vec-
tor. They model Boolean functionality and disregard circuit delays.
The earliest method of signal probability evaluation is the Parker-
McCluskey method [10] upon which our method is based. Various
other methods to approximate signal probability for testability appli-
cations have been proposed.

The use of probabilities to estimate power was first proposed by
Cirit [3]. Inthiswork, both signal spatial and temporal correlation are
ignored. Thetransition density work of Najm [8] introducestemporal
correlation, but still ignores correlation between internal signals. Im-
provements to the basic strategy [4] model some internal correlation,
but do not serve as abasisfor an exact method. In [6], signal probabil-
ity evaluation and power estimation is based on pairwise correlations
between signals. This results in efficient estimation schemes, how-
ever, correlation between triplets of signalsis ignored. Our method
takes into account correlation between two or more signals; our ap-
proximations are based on the depth of reconvergence between these
multiple signals. The Boolean Approximation Method [13] usesthe
first term in the Taylor series expansion to efficiently compute signal



probabilities taking into account some internal correlation.

Recent work by Cheng generalizesthe Parker-McCluskey method
to handletransition probabilities by using four-valued variablesrather
than Boolean variables [2]. The proposed method can be used to
obtain exact switching activities for the zero delay model, but no
generalization to handle gate delays was made. Methods to improve
the efficiency of zero delay switching activity estimation based on the
notion of super-gateswere described by Cheng. We use the notion of
super-gates to improve the efficiency of our method aswell.

B. General-Delay Switching Activity Estimation

Methods limited to zero-delay models do not account for spurious
transitions(glitching) at the output of agate. Dueto differentinput path
delays, gatesmay switch morethan onceduringaclock cycle. Inorder
to model general-delay transport delays, Najm proposesin [9] propa-
gating probability waveforms through the circuit. These represent the
time instants where nodes can toggle, together with information about
static signal probability between these instants. Still, correlation be-
tweeninternal signalsisignored. Tsui [12] extendsNajm’s method by
including some correlation coefficients in the probability waveforms.

In [7], Boolean functions representing all possible logical values
at each time point for each gate are computed, and the probability of
switching activity is evaluated by XOR’ing consecutive time instants.
The method relies on the creation of a symbolic network which can
become quite large. To perform exact switching activity estimation,
BDDs[1] haveto be created for each output of the symbolic network,
which can be very time-consuming. To handletransition probabilities
at primary inputsthe method requires constraintsonthe BDD ordering,
which further reduces efficiency. However, the symbolic simulation
method is useful in calibrating approximation strategies sinceit is an
exact method, for a given gate delay and capacitance models.

I11. POLYNOMIAL SIMULATION

We base the computation of the switching activity at each node
in the circuit on the Parker-McCluskey method [10]. A desirable
feature of this method is that spatial correlation of internal signalsis
accurately taken into account. In this section we describe this method
and its extension to handle temporal correlation and generic delays.

A. The Parker-McCluskey Method

Consider a Boolean function f with inputs z1, ..., zn. The
Parker-McCluskey method generates a polynomial that representsthe
probability that the gate output is a 1, for each gate in the circuit. It
follows basic rules for propagating polynomials through logic gates.

Definition 1: Given a polynomial P(z1, ..., z~), the function
supexp(P) is defined as the polynomial resulting from replacing each
z;® € Pwithe; foral k > 1.

For example, if P = z1% + 21 - ¢2, SUpexp(P) =1 + 21 - z2.

Given apolynomial P, for gateg, if g isaninput to aninverter, the
polynomial for the output of theinverteris1— P,. Given polynomials
P, and Py, at the inputs of an AND gate &, the polynomial for the
output of the AND gate will be Py, = supexp(Py, - Py,). For an OR gate,
P = 1'wpa(p((l_P91)'(l_sz)) =Py +SUp8Xp((1—Pgl)-sz).

We begin with the primary input polynomials z; through z -, and
traverse the circuit from inputsto outputsto obtain P¢(z1, ..., ).
Given a probability value for each z;, namely pr(z;), pr(f) =
Ps(pr(z1), .., pr(znN)).

B. Transition Probabilities

The Parker-McCluskey algorithm can be generalized to work with
transition probabilities [2].

[AND [050]051]150[151] [ INVERTER |
0—-01| 0-0|0-0|0—-0]| 0-0 0—0 | 1-1
0—-11|0-0{0-1|0—-0]|0->1 0—1 ]| 1-0
1-0 0-0|0—-0|1—-0|1-0 1-0 || 0—1
1-1|0-0|0—-1|1—-0| 1->1 1-1 | 0—0

TABLEI

SIMULATION CALCULUS FOR AN AND GATE AND INVERTER.

a
b |

c

Fig. 1. Unit-delay example circuit.

Each input z; has four probability variables corresponding to the
input staying low, making a rising transition, making a falling transi-
tion, and staying high. Theseare 2, %%, 2X°, and z1*, respectively.
For each gate g, we now have four polynomias P, P, PX°, and
P}, corresponding to the probability that the gate stays low, makes
arising transition, makes a falling transition, and stays high, respec-
tively. Wewill refer to thesefour polynomialsasthepolynomial group
for agate.

Table | gives the simulation tables of an AND gate and an inverter.
These tables can be used to obtain the basic rules for computing the
polynomial group for the output of each gate. The polynomial group
for the output of an inverter A with input g is simply a re-ordered
version of the input polynomial group.

P}(,,X) _ P 11 P;?l _ P 10
- - g
pPPY = P} Pt = PP

For an AND gate k with inputs g1 and g2 we will compute:

P = supexp(Pg, + (P, + Py + Pg,)- Py, +
Py - Py + Py - Py))

Pyl = supexp(Pg, - Pg, + Py - Py + Py - Py)

Py’ = supexp(Py, - Pg, + Py - Pgy + Py - Py))

P = supexp(P,; - P)

C. Gate Delay Effects and Polynomial Waveforms

We propose an important generalization of the Parker-McCluskey
method to handle gate delays in this section. This will directly lead
to an exact power estimation algorithm, since we just have to sum up
the values of appropriate polynomialsto obtain the average switching
activity at any gatein the circuit.

We will always be manipulating polynomia groups hence-
forth, and for clarity, we will represent the polynomia group
{PP, P, PP, P!} as P, At each gate output we will have
a waveform of polynomial groups, termed a polynomial waveform,
where each group represents the conditions at the gate output at a
particular time instant. We denote the polynomial group for gate g at
time instant t as P,t].

For example, in the simple circuit of Figure 1, with unit gate
delayswe will have, for the various signals, the following polynomial



Polynomial _Simulation ( Network )

1. Initialize_Polynomial Waveforms ( Pls ( Network ) ) ;

2. Gates = Topological Sort( Network ) ;

3. foreachg; inGates {

4. A =delay of g; ;

5. TimePts = NIL(LIST);

6. for eachinput g; of gi (gt1, -+, gim ) {

7. for each time point (k, Py, [k]) of g; {

8. TimePts = InsertinOrder ( TimePts, (k,Pg;[k]));
9. }

10. }

11. for eachnew time point k in TimePts {

12, Pylk+ Al = Gi(Pyi,[k], -, Pyin k)
3.}

14. }

Fig. 2. Pseudo-codefor the polynomial simulation algorithm.

waveforms,
a: P[0
b Pb[O]
c: PO
g P,0], P[1]
o P[0, Ps[1], P+[2]

representing the different time instants that each input/gate can make
transitions.

We need a polynomial simulation algorithm that can simulate a
gate-level network with arbitrary gate delays. Given primary in-
put polynomial waveforms the algorithm should generate polynomial
waveforms for each gate output. Such an algorithm is described in
pseudo-codein Figure 2.

The simulator processes one gate at a time, moving from the pri-
mary inputs to the primary outputs of the circuit. For each gate g;,
an ordered list of the possible transition times of its inputsis first ob-
tained. Then, possibletransitions at the output of the gate are derived,
taking into account transport delaysfrom each input to the gate output.

It is possible that the polynomial for some input gi; has not been
computed for a given time point . This simply meansthat node gi;
does not make a transition at this particular instant. In this case, the
polynomial groupfor gi; atinstant k isobtained fromthelatest existing
polynomial group for g¢; prior to k. If the instant corresponding to
this polynomial is m, then

Py k] = ngj [m] + Py, [m]
Pkl = Pglkl = 0
Py [k] Pg;,[m] + Pgi,[m]

The polynomial group for instant & can equally be computed from
the polynomial immediately after instant &.

1V. GRAPH DOMINATORS AND SUPER-GATES

The Parker-McCluskey algorithm cannot be used on large circuits,
sinceit involves “collapsing” the circuit into two levels. Super-gates
have been proposed[11], [2] to reducethe size of the polynomialsand
still obtain an exact solution. We review this concept together with
the more generic concept of graph dominatorsin this section.

A. Zero-Delay Model

In propagating signal probabilities through a logic circuit, spatial
correlation measures how the probabilities of the inputs to a gate are
related. In alogic circuit, thisis determined by what primary inputs

R = supexp(P.P} , B=05*05
=P , =0.25

@ (b)
Fig. 3. Handling spatial correlation.

are common to the support! of the inputs to the gate. If the supports
are disjoint, then the probabilities of the inputs are independent.

In the Parker-McCluskey method, spatial correlation is handled by
the supexp operator (cf. Definition 1). All polynomials are afunction
of the primary inputs. When some gate depends on logic signals that
share some primary inputs, the method is able to detect the common
variables and the exponent is suppressed, as depicted in Figure 3(a).

The complexity of the polynomials can be reduced by substituting
some variables by their probability values. This procedure reduces
the number of variables in some terms of the polynomial, creating a
constant factor for that term. For example, if we substitute the proba-
bility of z1 in polynomial z1 - z3 + z - z3, we obtain the polynomial
pr(z1) - z3 + =2 - z3. If additionally we do the same for z,, the
polynomial becomespr(z1) - 3 + pr(z2) - 23 =k - z3.

However, in this process we have lost information about the poly-
nomial depending on the substituted variables. If these variables are
present in any reconvergent path in the transitive fanout of the current
gate, some error is introduced since the probability of the same vari-
able will be multiplied, as in Figure 3(b). On the other hand, if we
determine that some variable will not be present in any reconverging
signal, then under a zero-delay model the method is still exact (this
may not be true for a general delay model, which we analyzein the
next section).

It is useful to introduce the concept of graph dominator [5].

Definition 2: A vertex » dominates another vertex w # v ina
directed graph G if every path from the root vertex to w contains .

Thus, if we determine that a given gate g is the dominator of some
primary input < as seen from a primary output, then we can substitute
the probabilities corresponding to this input < in the polynomials at
gateg. Under azero-delay model no error isintroduced sinceweknow
that no reconvergent signal in the transitive fanout of g will dependon
2.

Super-gateshave previously been proposed[11],[2] to reduce poly-
nomial complexity. Super-gates are significantly more constrained in
that they require the gate to be a dominator for all the primary inputs
in its support. However, when found, super-gates have the important
property that the polynomials are reduced to the independent term
(i.e., constants) and thus can be treated as primary inputs.

B. General-Delay Model

Under a general-delay model, substituting variables at dominator
nodes is no longer an exact procedure. For every node in the circuit
there will be a polynomial corresponding to each time point where
the node can make a transition. These polynomials will necessarily
be a function of some common variables. It is possible that in the
transitive fanout of a node, polynomials corresponding to different
time points are operated together. |f avariable has been substituted by
its probability value, an error will be introduced because correlation
dueto this variable has been ignored.

Toillustratethispoint, in the somewhat contrived circuit of Figure4
node d is adominator for node a. For simplicity assume a unit-delay

1The support of alogic functionisthe set of primary inputsthat the function
dependson.



Fig. 4. Variable substitution under a general-delay model.

model, although the following observations apply equally well to the
general-delay model. At node d we have polynomials corresponding
to instants 1 and 2, both a function of P,[0] and P,[0], respectively
P4[1)(P,[0], P,[0Q]) and P4[2]( Pa[0], P,[0]). If the variable P,[0]
is replaced by its numerical value, thus obtaining P;[1](P5[0]) and
P}[2](Ps[0]), the temporal correlation between Pj[1] and Pj[2] due
to a islost. In this circuit, error will be introduced at node g where,
because of the reconvergent path starting at node e, P;[1](P,[0]) and
P;[2](P5[0]) will be operated with each other due to the different
delaysfrome to g.

Also evident in the above exampleisthe error introduced by super-
gates. Gates P, @ and R in Figure 4 form a super-gate. However,
node e cannot be treated exactly like a primary input since there are
three time instants at which e can make a transition. Further, if all
variables are substituted, welose all information about the correlation
between these three instants.

V. APPROXIMATION BASED ON LIMITED DEPTH SPATIAL
CORRELATION

It has been our experiencethat dominators (and consequently super-
gates) are not very common in ageneral logic circuit. In most circuits,
due to a high degree of reconvergent paths, dominators of primary
inputs exist only closeto the primary outputs. This severely restricts
their usefulnessin the switching activity estimation process.

We describe a parameterizable approximation scheme, based on
approximate dominators, that is able to handle large circuits and still
obtain accurate estimates for power and switching activity.

A. Basisfor the Approximation

One important observation behind our approachis that spatial cor-
relationis moreimportantif the reconvergenceof pathshappenswithin
afew logic levels. Consider two paths starting at some primary input
a that reconverge at somenodeb. The polynomialsat theinputs b1, b2
of b will in general have some terms dependent on the polynomials at
a and other terms independent of them,

Py, = a+pP, Py, = v+ 6P,

where o, 3, v and § are functions of other primary inputs.

When node b is close to a in terms of logic levels, most terms in
Py, and Py, will contain P,, thusa <  andy < é. Onthe other
hand, if b isat ahigh logic level, the fraction of terms that depend on
P, issmaller. Therefore, o > 8 andy > 6.

Substituting the probability value of a will awaysintroduce some
error because in generating the polynomial at b, the probability of
a is squared when multiplying one term of b1 with a term of b, both
containing P,. With no variable substitution (exact case) we compute,

Py X Py, = ay+ (ab+ By + B8P,
When we substitute the value of P, we obtain the polynomials,
Pél = a+ Bpr(Fa)

Péz = v+ §pr(Ps)

Switching-Activity_Estimation ( Network, 1)

1. foreachgateg in ( Network) {

2. Path =NIL(Table) ;

3. for eachfanout f; of g {

4, Gates = limited_depth_search ( f;,1) ;
5. for eachnodeh in Gates {

6. Insert( Path, k, j, fanin(h));

7. }

8. }

9. for each duplicate node k in Path with different indexes j {
10. while fanin(h) # g {

11. Insert(fanin(h).Active_Nodes, g) ;
12. k= fanin(h);

13.

14. }

15. }

16. Polynomial_Sim_with_Variable_Substitution ( Network ) ;

Fig.5. Pseudo-codefor thelimited depth spatial correlation algorithm.

and thus
Py x Py, = ay+ (ab + By)pr(Pa) + ﬂ&(p'rob(Pa))2

Therefore, the error is only present in the last term (86). For alow
logic level of b (¢« < B and v < §) the relative weight of this term
may belarge, leading to a high relative error. For ahighlogic level of
b (a > B andy > §), we have asmaller relative error.

B. Description of the Approximation Algorithm

In our approximation scheme the user specifies one parameter 1.
This parameter determinesthe depth in terms of logic levelsfrom each
node a that will be searched in order to determineif two paths starting
at a will reconverge. Spatial correlation corresponding to two paths
starting at a that reconvergencewithin I logic levelswill be accurately
taken into account. If reconvergent paths meet after [ logic levels
then they are assumed to be independent, thus the polynomialswill be
simplified by variable substitution and some error will be introduced.

The approximation algorithm is divided in two parts. We first
determine the active nodes for each nodein the circuit. Active nodes
are nodes where two (or more) reconvergent paths begin and these
nodesneedto beactive until the pathsmeet. Thesewill bethevariables
in the polynomials at each node. In the second part of the algorithm, a
polynomial simulation routine similar to the one described in Figure 2
isused. Thedifferenceis that the information about active nodeswill
be used to simplify the polynomials.

The pseudo-codefor the algorithm that determinesthe active nodes
is described in Figure 5. The algorithm works by taking each node g
and doing alimited depth first search (DFS) of I levelsfor each fanout
of g. While doing the DFS, we build a table that stores information
about the 2 node found, a number 5 that identifies for which fanout
the DFS is being done and the fanin of 2. This fanin information
will allow usto backtrack the path without doing another DFS, for the
case when reconvergenceis found. After all the fanouts are done, we
go through the table to check which nodes in the table have two or
more different numbers of DFS, indicating that this is a node where
reconvergent paths meet. We can now use the fanin information to go
back in the path and in doing so inserting in the table of active nodes
of each node in the path the node which is being processed.

After the active nodes for all nodesin the circuit have been com-
puted, the modified polynomial simulation where variable substitution



=2 =3 =00

Circuit Act. Nodes | CPU Act. Nodes | CPU Act. Nodes CPU

Name || Avg | Max (9 Avg | Max (9 Avg | Max (9

c1355 1.05 2 0.1 || 1.08 2 0.2 553 33 15

c499 1.05 2 01 || 1.08 2 0.1 5.63 33 14

add16 1.10 2 0.1 1.50 4 0.1 1.93 3 0.5

aud 1.30 8 0.2 3.82 14 0.5 7.05 14 2.7

cht 1.08 4 0.1 1.09 4 0.1 111 4 0.1

cml63 112 2 0.0 112 2 0.0 112 2 0.0

comp 1.45 9 0.0 248 10 0.1 3.75 28 0.1

cordic 111 2 0.0 1.28 4 0.0 1.37 5 0.0

count 2.61 26 0.1 2.61 26 0.1 2.61 26 0.2

frgl 1.10 3 0.0 1.67 7 0.1 3.94 22 0.1

i3 1.00 1 0.0 || 1.00 1 0.0 1.00 1 0.0

i6 1.00 2 0.2 1.32 3 0.2 1.65 4 0.3

mult 1.23 9 0.2 9.59 96 04 10.54 16 54

mux 1.20 2 0.0 147 3 0.0 147 3 0.0

x4 1.46 6 0.1 1.55 6 0.2 1.76 6 04

z4ml 1.07 2 0.0 1.70 5 0.0 157 3 0.0

TABLEII
STATISTICS OF ACTIVE NODES FOUND PER CIRCUIT NODE.

Circuit Symbolic =1 =2 1=3 =00
Name P [CPU P % [ CPU P | % || CPU P [ % || CRU P [ % | CAU
c1355 N/A 2559 05 3910 27.3 || 3926 29.9 N/A
c499 N/A 2247 0.3 3146 17.8 3160 20.9 N/A
add16 960 | 533 965 053 0.3 997 | 3.81 145 943 | 1.74 26.0 958 [ 021 | 364
aud N/A 4131 44 4387 24304 N/A N/A
cht 930 | 181 938 0.85 0.1 941 | 111 48 930 | 0.00 3.8 931 | 0.00 39
cml63 256 6.1 242 5.65 0.0 256 | 0.14 11 256 | 0.14 11 256 | 0.14 1.1
comp 568 | 36.1 580 2.27 0.1 577 | 1.74 40 573 | 1.04 | 4001.2 N/A
cordic 341 8.9 325 4.63 0.0 340 | 0.08 0.9 340 | 0.07 13 341 | 0.01 2.4
count 608 | 29.3 602 0.94 0.3 607 | 0.09 274 607 | 0.09 27.9 607 | 0.09 30.3
frgl 816 | 765 837 253 0.1 824 | 0.88 84 820 | 041 97.8 N/A
i3 887 | 11.1 887 0.00 0.0 887 | 0.00 1.0 887 | 0.00 0.9 887 | 0.00 1.0
i6 2726 | 675 2688 1.37 0.3 2691 | 1.28 10.8 2719 | 0.25 13.6 2726 | 0.00 15.1
mult N/A 17536 12.9 18024 3374.2 N/A N/A
mux 354 5.7 332 6.26 0.0 346 | 2.29 29 353 | 0.36 6.0 353 | 0.36 53
x4 2089 | 75.2 1990 473 05 2083 | 0.29 39.6 || 2095 | 0.28 88.3 || 2087 | 0.10 | 1800.4
z4ml 319 6.0 286 | 10.27 0.0 317 | 0.73 1.6 317 | 057 6.2 319 | 0.03 34

maz = 10.3,avg = 3.3 maz = 3.8,avg = 1.0 maz = 1.7,avg = 0.4 || maz = 0.4,avg = 0.1

TABLEIII

POWER ESTIMATION RESULTS.

13. for eachvariable k in Py, [k + A] notin g;. Active_Nodes {
14.  substitute b withpr(h) in Py [k + A];

15. }

16. simplify ( Py, [k + A]);

Fig. 6. Pseudo-code for the polynomia simulation algorithm with
variable substitution.

isdoneis called. The only difference from the algorithm of Figure 2
is that between lines 12 and 13 we insert the code where variable
substitution is done (Figure 6).

VI. EXPERIMENTAL RESULTS

In this section we present power and switching activity estimation
results obtained with the approximation algorithm based on limited
depth reconvergent path analysis described in the previous sections.
We present results for different values of I and compare them with the
exact value obtained with symbolic simulation [7].

The first part of the approximation algorithm involves computing

for each nodein the circuit the set of active nodes, i.e., the variablesthe
polynomialsat each nodewill beafunction of. We present statistics on
the number of active nodesfor our benchmark circuitsin Tablell. For
different values of I, we give the average (Avg) and maximum (Max)
number of active nodesover all nodesin each circuit. co corresponds
to the maximum number of logic levelsin the circuit, thusdetecting all
reconvergent paths. As expected, as! increases, both the average and
maximum values increase. An interesting observation is that, even
for large values of 1, the average number of active nodesis relatively
small. Yet, the maximum number can be large. We do not show
statistics for I = 1 because for the examples we have, there is only
oneactive nodefor al nodes, though thisis not necessarily true for all
circuits.

The CPU time we present in this table corresponds only to the
algorithm that computes the active nodes (cf. Figure 5). All reported
CPU timesare in secondsand were obtained on Sun 5/85 with 64M of
main memory. As it can be seen from the table, for i = 2and ! = 3,
the time spent in doing the depth search for reconvergent pathsis very
small, typicaly lessthan 1s. Even for I = co we can still execute this
operation using small amounts of CPU time.



the number of nodeswith high error clearly small. Also note that the
maximum error can be large even for I = oo, indicating that most of
the error is caused by ignoring temporal correlation.

VII. CONCLUSIONS

We have described an approximation scheme to estimate the
switching activity in alogic circuit described at gatelevel. Our method
is parameterized by a single valuel which indicatesthe depthin terms
of logic levels over which reconvergent paths (i.e., spatial correlation)
is considered. We have presented results that show that in many cases
we can ignore spatial correlation and still obtain reasonably accurate
switching activity estimates. However, thisis not true for all circuits.
We showed that for the benchmark circuits we used, with ! = 2 an av-
erage switching activity error below 0.05 (absolute value) and a power

Circuit =1 =2 =3 =00
Name || max | avg || max | avg || max [ avg || max | avg
c1355 N/A N/A N/A N/A
c499 N/A N/A N/A N/A
add16 032 ] 006 || 0.22 ] 0.05 || 030 [ 005 [| 0.12 | 0.01
alu4 N/A N/A N/A N/A
cht 0.09 | 0.01 || 0.09 | 0.00 || 0.01 | 0.00 || 0.00 | 0.00
cml163 || 0.29 | 0.04 || 0.02 | 0.00 || 0.02 | 0.00 || 0.02 | 0.00
comp 030 | 001 || 017 | 001 || 015 | 0.01 N/A
cordic || 0.67 | 0.04 || 0.05 | 0.00 || 0.09 | 0.00 || 0.00 [ 0.00
count 011 | 0.01 || 0.03 | 0.00 || 0.03 | 0.00 || 0.03 | 0.00
frgl 032 | 0.02 || 013 | 001 || 0.07 | 0.00 N/A
i3 0.00 | 0.00 || 0.00 | 0.00 || 0.00 | 0.00 || 0.00 | 0.00
i6 0.17 | 0.03 || 017 | 002 || 0.07 | 0.01 || 0.00 | 0.00
mult N/A N/A N/A N/A
mux 0.47 | 0.04 || 011 | 001 || 0.05 | 0.00 || 0.05 | 0.00
x4 031 | 0.04 || 015 | 001 || 014 | 0.01 || 0.07 | 0.00
zAml 0.43 | 0.07 || 039 | 002 || 0.04 | 0.01 || 0.03 | 0.00
Avg 029 | 0.03 || 013 | 001 || 008 | 0.01 || 0.03 | 0.00
Max 0.67 | 0.07 || 039 | 005 || 030 | 0.05 || 0.12 | 0.01
TABLEIV

SWITCHING ACTIVITY ERRORS.

Table Il presents the power estimation results obtained with the
approximation algorithm using I equal to 1, 2, 3 and co. A genera
delay model was used for all the examples and a supply voltage of 5V
and clock frequency of 20 MHz was assumed. A probability of 0.25
was used for all primary input events.

Thetwo columnsunder “ Symbalic” show the power (in p/) com-
puted using the symbolic simulation method of [7] and the CPU time
(in seconds) taken by this computation. For some of the circuits, this
method run out of memory and thisisindicated with a“N/A” inthe ta-
ble. Inthecolumnsunder “I = 1" aretheresultsfor the approximation
algorithm using ! = 1. Again we show the power dissipation results
and the CPU time for this method. Under “ %" is the percentage error
of the power estimation relative to the symbolic method. Similarly for
the columnsunder “I = 2",“l = 3" and“l = 0"

At the bottom of the table, we give the maximum and average error
over all thecircuits, for eachvalue of I. We can observethat both these
values decrease very rapidly with I. Also interesting to note is that
the average error is very low even for I = 1. However, the maximum
error is not as low. I = 2 brings both values to an acceptable level.
For some circuits, we cannot compute estimateswith I = 3. Asit can
be seenfrom Tablell, these correspond to situations where the circuits
have alarge number of active nodes, thus making the polynomialstoo
large.

Note that the error for I = oo is not zero. This is due to the
temporal correlation effects describedin Section IV-B. If azero-delay
model isused, I = oo gives exactly the same results as the symbolic
simulation method.

For many applications, a more relevant measure of accuracy isthe
error in the switching activities of individual signals. In Table IV we
present the maximum and average error for the switching activity esti-
mation over al the signals of each circuit. The average was computed
by summing the absolute value of the switching probability error rel-
ative to the symbolic simulation method for all signals and dividing
by the total number of signals. At the bottom of the table we have the
average and maximum of the valuesfor each column.

We can see that the average switching activity error is again very
low evenfor low valuesof ! and that it reducesas! increases. However,
for low values of I, switching activity values for some of the nodes
may present significant errors. Yet, since the average error is low,

estimation error below 5% is obtained, within acceptable CPU time.

(1]

(2]

[4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]
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