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Abstract

A new statistical technique for average power estima-
tion in sequential circuits is presented. Due to the feed-
back mechanism, conventional statistical procedures cannot
be applied to infer the average power of sequential circuits.
As a remedy, we propose a sequential procedure to deter-
mine an independence interval which is used to generate
an independent and identically distributed (iid) power sam-
ple. A distribution-independent stopping criterion is applied
to choose an appropriate convergent sample size. The pro-
posed technique is applied to a set of sequential benchmark
circuits and demonstrates high accuracy and efficiency.

I. Introduction

Power estimation problem in sequential circuits is much
more complicated than in combinational circuits because of
feedback loops. Unlike those at primary inputs, switching
characteristics at latch inputs cannot be acquired without
analysis of the embedded finite-state machine (FSM). The
analysis of FSM poses a great impediment to accurate power
estimation due to its exponential complexity with the num-
ber of latches.

In this paper we propose a statistical approach, as out-
lined in Fig. 1, to overcome this difficulty. In general, sta-
tistical mean estimation procedures require an iid sample,
i.e., a random sample of mutually independent power data.
However, in sequential circuits power dissipations in con-
secutive clock cycles are temporally correlated. Thus, spe-
cial care has to be taken in collecting the sample power data
for mean analysis. We propose a sequential procedure to
dynamically determine a properindependence intervalsep-
arated by which two sample power data can be treated as
mutually independent. This procedure is based on three in-
dependence tests which examine with certainsignificance
the hypothesis that a power sequence is independent. Us-
ing the independence interval, an iid power sample can be
generated. Sample size is controlled by measuring the con-
vergence of the average power estimate by a distribution-
independent criterion developed previously [5]. Compared
with previous approaches [1, 2, 3, 4], our technique has the
advantage of improved accuracy and simulation efficiency.

The rest of the paper is organized as follows. In Section
II we propose a random process model for power dissipa-
tion in sequential circuits and explain its effect on the per-
formance of conventional statistical techniques. In Section
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Figure 1: Flowchart of the proposed power estimation

approach.

III we introduce a sequential procedure to select an inde-
pendence interval for generation of iid power sample. The
implementation of the proposed technique is described in
Section IV along with the experimental results of a set of
benchmark circuits, followed by concluding remarks in Sec-
tion V.

II. Statistical Power Dissipation Model

Ignoring the contribution due to leakage power, switch-
ing activity accounts for the major source of power dissipa-
tion in CMOS circuits which can be described by the fol-
lowing model:

P =
V 2
DD

2T

NgX
i=1

Cini(V k�1;Sk�1;V k;Sk); (1)

whereNg is the number of elements of the circuit,V j and
Sj (j = k�1; k) are the primary input pattern and state vec-
tor duringjth clock cycle, respectively.Ci is the effective
loading capacitance which takes into account short circuit
power and internal capacitances.ni is the transition count
at nodei. T is the clock cycle time andVDD is the power
supply voltage. BecauseV andS are random quantities, so
doesP . In addition, the feedback of latch signals introduce



temporal correlations among power dissipations in neigh-
boring clock cycles. Thus, the power dissipation behavior
of sequential circuits needs to be modeled as arandom pro-
cess. For average power estimation, unfortunately, due to
temporal correlations conventional statistical techniques can
no longer apply. For a correlated power sequence, while it
remains true that sample mean is an unbiased estimator of
�, sample variances2n is not an unbiased estimator of�2.
If the sample data are positively correlated, as is very often
the case in practice, the sample variance will have a negative
bias, i.e.,E[s2n] < �2. In statistical power estimation,s2n is
used to construct a confidence interval of the mean which
directly determines the sample size that meets the conver-
gence criterion. With negative bias ins2n, the confidence
interval will be overly narrow. This causes premature termi-
nation of power simulation and less-than-specified estima-
tion accuracy.

III. Generation of IID Power Sample

The above problem justifies the need to develop a tech-
nique to generate a random power sample from a sequential
circuit. Unlike previous approaches which resort to explicit
or implicit FSM analysis, our approach “extracts” a random
sample directly from the correlated power sequence. This
task is equivalent to extracting an iid sequence from the
original time series since a random sample can be viewed
as generated from an iid random process. To proceed, we
assume thatfP jg is �-mixing [8] and stationary with finite
variance. In essence,�-mixing refers to the property that the
behavior offP jg at two time instants become increasingly
independent of each other as they get further apart. This is a
mild assumption and is mostly true in practice. Given an ob-
servation sequenceP1; P2; : : : ; Pn of fP jg, by stationarity
all Pk ’s have identical distribution functionsF (p). If there
is an interval ofm clock cycles such thatPk andPk+m are
independent, thenP1; P1+m; P1+2m; : : : is an iid sequence,
again by stationarity. The existence ofm is guaranteed by
that fP jg is �-mixing. If we can manage to find anin-
dependence intervalm, a random sample can be obtained
simply by recording the power dissipation once for every
m clock cycles. To do this, first we usehypothesis teststo
quantify the independence of a data sequence. Based on the
test results, we develop a sequential procedure to dynami-
cally choose the independence interval.

III-A Hypothesis Tests for Independence

In an independence test, we test the validity of the fol-
lowing hypothesis and its alternative

H : Sequence is independent
A : Sequence is not independent (2)

In the following, we apply three such tests to determine the
likelihood of the hypothesis for a power sequence. These
tests examine various aspects offP jg, therefore minimize
the probability of erroneous test outcome due to statistical
fluctuations in the observation sequence.

Lag-One Autocorrelation Coefficient Test

For a power sequenceP1; P2; : : : ; Pn, the maximum
likelihood estimatorbRk of its lag-k autocovariance is

bRk =
1

n� k � 1

n�kX
j=1

(Pj�Pn)(Pj+k�Pn); k 2 0; : : : ; n�1:

(3)

Using (3), the lag-k autocorrelation coefficientb�k can be
estimated bybRk= bR0. If P1; P2; : : : ; Pn is an iid sequence,
then the following test statistic

Dn =
p
nb�1 (4)

has an asymptotic standard normal distributionN(Dn) as
n ! 1. Intuitively, for an iid sequenceb�1 is most
likely close to zero due to lack of correlation. Thus, for
P1; : : : ; Pn, a small value ofjDnj confirms the hypothe-
sis while the alternative tends to be accepted ifjDnj is
large. Between the two opposite outcomes, acritical value
c is chosen such that the hypothesis is accepted only when
jDnj � c. Choice ofc is determined by thesignificance
level� of the test, where� is probability of type I error in
which the hypothesis is erroneously rejected:

� = Pr(RejectH jH is true)
= Pr(Dn > cjH is true) + Pr(Dn < �cjH is true)
= 2(1�N(Dn)): (5)

With � specified, the correspondingc can be found by

c = N�1(1� �

2
): (6)

An alternative but related test concerns the following
statistic:

en = 1�
Pn�1

k=1 (Pk � Pk+1)
2

2
Pn

k=1(Pk � Pn)2
: (7)

If P1; : : : ; Pn is an iid sequence, the test statistic

Cn =

s
(n2 � 1)

(n� 2)
en (8)

also converges to the standard normal distribution asn in-
creases [6]. This result can be understood by expressingCn
in terms ofDn

Cn =

r
n2 � 1

n(n� 2)

�
(n� 2)Dn

(n� 1)
�

(P1 � Pn)
2
+ (Pn � Pn)

2

2(n� 1)cR0

�
:

(9)

As n increases,Cn andDn become asymptotically equiv-
alent and thus have identical limiting distributions. Never-
theless, whenn is finite,Cn andDn distribute differently.
In practice the values ofCn andDn may even be different
enough to lead to opposite test outcomes. Therefore, both
tests are adopted to minimize the effect of finite sample size
on test results,

Spectral Test



The independent hypothesis can also be examined from
the spectral perspective of a power sequence. The spectrum
of fP jg is defined as

g(�) =
1

2�

1X
k=�1

Rke
�j�k; �� � � � �; (10)

whereRk is the lag-k autocovariance offP jg. If fP jg is
an iid process, (10) reduces to

g(�) =
R0

2�
; (11)

becauseRk = 0 for all k but k = 0. Thus the spectrum
of an iid process is constant over all frequency. For a power
sequence of finite lengthn, we use theperiodogrammethod
to estimate its spectrum. In this method,2�g(�) is approxi-
mated by the sum of its componentsTj at frequency2�j=n,
wherej = 1; : : : ; n=2:

Tj = bR0 + 2

n�1X
k=1

bRk cos�jk (12)

�j =
�j

K
; j = 1; : : : ;K =

n

2
:

(12) uses the symmetric property ofRk, i.e., R�k =
Rk. UsingTj , we define thenormalized cumulative peri-
odogramSk as

Sk =

Pk

j=1 TjPK

j=1 Tj
; k = 1; : : : ;K; (13)

as an estimate of thecumulative spectral distribution func-
tion:

F (�k)�F (��k) =
R �k
��k

g(�)d�R �
��

g(�)d�
=

R �k
��k

g(�)d�

R0

: (14)

Because of its flat spectrum, the cumulative spectral distri-
bution function of an iid process is

F (�k)� F (��k) =
R0

2�
(2�k)

1

R0

=
k

K
; (15)

a uniform distribution. Using this result, the independence
of a power sequence can be tested by comparing its spec-
tral distribution function with (15) using the Kolmogorov-
Smirnov test [7], whose test statistic is

En = max
k

�����Sk � k

K

����� : (16)

The critical value ofEn can be found in the same manner
as the lag-one autocorrelation test.

III-B Selection of Independence Interval

Based on the independence tests, a sequential proce-
dure is depicted in Fig. 2 for selection of a proper inde-
pendence interval. Initially the trial independence interval
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Figure 2: Iteration procedure of independence interval

selection.

is set to zero and a power sequence is collected by simu-
lating the target circuit forn consecutive clock cycles. The
sequence lengthn is determined by the trade-off between
simulation cost and stability of test outcome. The sequence
is then tested by all three independence tests for the user-
specified significance level. If the hypothesis is accepted
unanimously, the iteration stops and and a zero indepen-
dence interval is returned. Otherwise the trial interval is
incremented by one clock cycle to reduce the temporal cor-
relation and a new power sequence of the same length is
generated and tested again. The iteration continues until the
desired significance level is achieved. The trial interval at
the end of iteration is an appropriate independence interval
at which an iid power sample can be generated for conver-
gence analysis.

VI. Average Power Estimation and Experimental
Results

With the selected independence interval, a two-phase
simulation approach is adopted to generate an iid power
sample for the sake of efficiency. A zero-delay simulator
is invoked to simulate the circuit over the independence in-
terval and power is monitored by a general-delay simulator
during the sampling clock cycle. To determine convergence
of the average power estimate, we use a nonparametric cri-
terion based on the order statistics [5].

The proposed procedure has been implemented on top of
our distribution-independent power estimation tool (DIPE)
[5]. The default significance level of the independence tests
is 0.10 to minimize the probability that a power sequence
is erroneously taken as independent when it is autocorre-
lated. The power sequence lengthn used in the tests needs
to be carefully chosen as well. For simulation efficiency,
a smalln is desirable; however, the sequence needs to be
of appropriate length since the stability of test outcome im-
proves with increasingn. In the following experiments, we



Circuit SIM I:I: �
p

Sam. CPU
Name (mW) (mW) Size Time(s)
s208 0.276 1 0.276 4896 138.3
s298 0.430 4 0.430 2624 93.4
s344 0.751 2 0.750 864 19.0
s349 0.785 5 0.785 992 67.9
s382 0.433 3 0.433 2272 83.9
s386 0.519 2 0.520 1856 40.8
s400 0.418 5 0.419 2336 116.9
s420 0.353 2 0.354 4576 184.5
s444 0.427 3 0.428 2400 85.5
s510 1.175 5 1.175 3072 212.0
s526 0.443 2 0.433 2368 77.3
s641 0.786 2 0.787 1152 39.9
s713 0.804 2 0.804 1088 41.1
s820 0.957 3 0.957 1920 91.6
s832 0.941 3 0.941 2016 96.3
s838 0.443 4 0.443 2880 182.7
s1196 3.080 3 3.083 672 104.6
s1238 3.009 3 3.143 672 114.5
s1423 2.773 3 2.774 2528 604.5
s1488 1.844 4 1.843 4032 492.9
s1494 1.735 4 1.731 3904 433.2
s5378 6.667 4 6.659 672 336.0
s9234 2.008 6 2.005 928 746.0

Table 1: Power estimation results.

choosen = 640 as a good trade-off between stability and
efficiency.

We test our implementation with a set of ISCAS89
benchmark circuits on a SPARC 20 workstation with 244
MB memory. Circuits operate at 20 MHz of clock frequency
and 5V power supply. The maximum allowable error is 5%
with 0.99 confidence level. Primary input signals are as-
sumed to be mutually independent and have probabilities of
0.5. Table 1 shows the power estimation results of the test
circuits. In Table 1, SIM is a very accurate estimate of the
real average power.I:I: is the independence interval deter-
mined by the procedure in III-B.�p is the average power
estimate from a sample of size listed under column Sample
Size which achieves the accuracy specification. The last col-
umn reports the CPU time usage. It is shown that our tech-
nique can produce accurate average power estimates with
reasonable amount of time. With random input patterns, an
independence interval of a few clock cycles usually suffices
to generate an iid power sample. The capability of dynamic
independence interval selection offered by this technique
preserves the simulation efficiency of DIPE.

To evaluate the average performance of the technique, we
conducted 1,000 simulation runs for every circuit and sum-
marized the results in Table 2. In this table,IImin, IImax
andIIavg are the minimum, maximum, and average length
of the independence interval, respectively.Savg is the av-
erage sample size andDavg is the average percentage de-
viation of the estimation results from the reference value.
Err is the percentage of the total runs violating the accuracy
specification. Table 2 shows that the estimation results pro-
duced by the proposed technique indeed meet the accuracy
specification and are in general very accurate.

V. Conclusion

We have proposed a new statistical technique for average
power estimation in sequential circuits. Due to the feed-
back mechanism, power dissipations of a sequential circuit

Circuit IImin IImax IIavg Savg Davg Err(%)
s208 1 8 2.69 5001 0.78 0.0
s298 3 8 3.76 2659 1.07 0.0
s344 2 10 2.93 954 0.98 0.0
s349 2 9 3.19 961 1.00 0.0
s382 2 8 3.35 2249 0.99 0.0
s386 2 7 2.44 1791 1.04 0.0
s400 3 9 3.50 2291 1.05 0.0
s420 1 8 1.53 4287 1.22 0.9
s510 1 6 1.43 3138 1.04 0.0
s526 2 8 3.06 2231 1.06 0.0
s641 1 8 2.42 1075 0.99 0.0
s713 1 10 2.44 1094 0.94 0.0
s820 2 8 3.23 1946 0.97 0.0
s832 2 8 3.32 2049 0.92 0.0
s838 1 28 10.65 2718 1.84 1.5
s1196 1 7 2.41 672 0.84 0.0
s1238 1 8 2.33 672 0.82 0.0
s1423 2 8 3.30 2415 1.09 0.1
s1488 2 7 3.63 4010 1.17 0.1
s1494 2 10 3.67 4015 1.19 0.0
s5378 2 19 6.01 672 0.87 0.0
s9234 3 9 4.76 884 0.81 0.0

Table 2: Performance summary from 1000 simulation

runs.

in consecutive clock cycles are temporally correlated. On
the other hand, statistical average power estimation requires
an iid sample. We have developed a sequential procedure
to select a proper independence interval using which an iid
sample can be generated. The sample is then analyzed by
a distribution-independent stopping criterion to determine
an appropriate convergent sample size. The accuracy and
robustness of this technique have been successfully demon-
strated.
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