
Formalized methodology for data reuse exploration
in hierarchical memory mappings

J.Ph. Diguet�, S. Wuytack, F. Catthoor and H. De Man
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium, name@imec.be

ABSTRACT

Efficient use of an optimized memory hierarchy to exploit
temporal locality in the memory accesses on array signals
can have a very large impact on the power consumption in
data dominated applications. In the past, this task has been
identified as crucial in a complete low-power memory man-
agement methodology. But effective formalized techniques
to deal with this specific task haven’t been addressed yet. In
this paper the design freedom available for the basic problem
is explored in-depth and the outline of a systematic solution
methodology is proposed. The efficiency of the methodology
is illustrated on a real-life motion estimation application.

1 Introduction

The idea of using memory hierarchy (MH) to minimize the
power consumption, is based on the fact that memory power
consumption depends primarily on the access frequency and
the size of the memory. So, by exploiting hierarchy Data-
Reuse (DR), power savings can be obtained by accessing
heavily used data from smaller memories instead of from
large background memories. Such an optimization requires
architectural transformations that consist of adding layers
of smaller and smaller memories to which frequently used
data will be copied [1]. So, MH optimization will intro-
duce copies of data from larger to smaller memories in the
Data Flow Graph (DFG). This means that there is a trade-
off involved here: on the one hand, power consumption is
decreased because data is now read mostly from smaller
memories, while on the other hand, power consumption is
increased because extra memory transfers are introduced.
Moreover, adding another layer of hierarchy can also have
a negative effect on the area and interconnect cost, and as a
consequence also on the power. The aim of the MH design
task, identified as an important step of the whole methodol-
ogy, is to find the best solution for this trade-off at an early
stage of the design strategy. Note also that the problem is
basically different from caching for performance [2, 3, 4, 5]
where the question is to find how to fill the cache such that
the data needed have been loaded from main memory before.
This question doesn’t address the number of transfers that
can even grow.

The main related work to this problem lies in the paral-
lel compiler area, especially related to the cache hierarchy.

�Supported by a French Government Fellowship - LAVOISIER

Here, several papers have analyzed memory organization is-
sues in processors [6, 7]. This, however, has not resulted yet
in any formalizable method to guide the memory organiza-
tion issues and is mostly oriented to stream data organization
(not to array signals). In most work on parallel MIMD pro-
cessors, the emphasis in terms of storage hierarchy has been
on hardware mechanisms based on cache coherence proto-
cols [8, 9, 10, 11, 12]. The relation with the compiler opti-
mization is sometimes incorporated [13], but even then it re-
mains run-time oriented. In this context, also work has been
going on optimal policies for page fetching and replacement
[14]. Some approaches address the hierarchical data organi-
zation in processors for programs with loop nests [15]. Par-
titioning or blocking strategies for loops to optimize the use
of caches have been studied in several flavours and contexts
[2, 3, 4]. Recently, also multi-level caches have been inves-
tigated [5]. The main focus is on performance improvement
though and not on memory cost. Recently, also in a sys-
tem synthesis context, this issue of transformations to im-
prove the cache usage has been addressed [16, 17]. None
of these approaches determine the best MH/DR organization
for a given (set of) applications and only few address the
power cost. Only an analysis of MH choices based on sta-
tistical information to reach a given throughput expectation
has been discussed recently [18]. In the hardware realiza-
tion context, much less work has been performed, mainly ori-
ented to memory allocation [19, 20, 21]. Only few papers
with a detailed analysis on MH experiments in real-life ap-
plications have been published. The impact of this step turns
out to be very large in the entire methodology for power re-
duction. This has been demonstrated by us for a H.263 video
decoder [22] and a motion estimation application [17]. What
is not yet solved, however, is how to decide on the optimal
use of the MH in a systematic way, i.e. how to solve the DR
issue.

In this paper we present a formalized methodology for
this particular task. At IMEC this task is embedded in the
global methodology of ATOMIUM, but the DR subtask as
such can also be viewed as a preprocessing step of other
memory organisation approaches, and we give an indication
of how large the search space really is. A full description
of our complete script may be retrieved from our web site1.
More details about the DR methodology and the question of
its positioning in the global script may be found in [23].

This search space is much larger than conventionally ex-
1http://www.imec.be/vsdm/domains/designtechno/index.html
ftp://ftp.imec.be/pub/vsdm/reports

ploited in state-of-the-art designs. Given the very large com-
plexity of the entire problem, it is impossible to discuss all
the issues in one paper. In this initial paper we discuss a sim-
plified version of the problem. We want especially to mo-
tivate the importance of the DR issue and to formalize the
main subtasks needed to solve it. The ordering of the array
accesses is assumed to be fully fixed here. The search space
becomes much larger still when also the available freedom in
loop reorganization is incorporated but this issue will be dealt
with in another paper. The question of data-reuse based on
splitting memories and the CAD techniques, still under de-
velopment by us, will also not be discussed here. The rest of
the paper is organized as follows. Section 2 defines the DR
problem. Section 3 explores the problem and points out im-
portant issues towards a solution. In Section 4 we present a
real-life example, namely a motion estimation kernel, that we
use to illustrate the methodology detailed in Section 5. We
comment the global results of this interesting experiment in
Section 6. Section 7 concludes the paper.

2 Data Reuse Problem Formulation

2.1 Exploiting temporal locality

Memory hierarchy design exploits data reuse local in time to
save power. This happens by copying data that is reused of-
ten in a short amount of cycles to a smaller memory, from
which the data can then be accessed. This is shown in Fig. 1
for a simple example for all read operations to a given ar-
ray. Note that loops have here been represented as groups
of dots. Every dot represents a memory read operation ac-
cessing a given array element. In general, image and video
processing algorithms contain too many loops with too large
loop bounds to represent them in this “unrolled” way so in
practice, polyhedral techniques [24, 25] will be used further
on to model and manipulate the array accesses.

for i = 0 to n {
 for j = 0 to 2 {
 for k = 1 to 6 {
 ... = A[i*4 + k];
 }
 }
 }

Mk

6

array
index

time frame 1 time frame 2 time frame 3 time frame 4

timecopy 1 copy 2 copy 3 copy 4

intra-copy
reuse

inter-copy
reuse

max(Reuse) = 9/2

3

1-1/3
1

Figure 1: Exploiting data reuse local in time to save power

The horizontal axis is the time axis. It shows how the data
accesses are ordered relatively to each other in time. This
is not necessarily an absolute time assignment. The vertical
axis shows the index of the data element (scalar) that is ac-
cessed from the array. It can be seen that, in this example,
most values are read multiple times. Over a very large time
frame all data values of the array are read from memory, and
therefore they have to be stored in a large background mem-
ory. However, when we look at smaller time frames (verti-
cal dashed lines), we see that only part of the data is needed
several times in each time frame, so it would fit in a smaller,
less power consuming memory. If there is sufficient reuse of
the data in that time frame, it can be advantageous to copy
the data that is used frequently in this time frame to a smaller
memory, such that for the following usages, a data element

can be read from the smaller memory instead of the larger
memory.

Taking full advantage of temporal locality for power, usu-
ally requires architectural transformations that correspond to
adding several layers of memories (each corresponding to its
own time frame level) between the main background memo-
ries and the small foreground memories (registers in the data-
path). If the original loop ordering is not optimally suited to
exploit this locality, algorithmic transformations should be
applied to increase it. In our general approach, these mod-
ifications are integrated in the methodology but in this paper,
we will assume that loop ordering is fully fixed to simplify
the discussion. Every layer in the MH contains smaller mem-
ories than the ones used in the layer above it. A generic MH
for all read accesses operating on one array signal is shown
in Fig. 2. The relevant parameters for every layer Mi are the
size Si and the number of transfers Ni. In an optimal MH
Si < Si�1 for every i.

M0 M1

Mi

N N

N iN i-1

M2 MN

Si = Size(Mi)

Figure 2: Multi-layer MH for a given signal.

2.2 Data Reuse and In-Place Mapping

Data-reuse factor The usefulness of hierarchy is
strongly related to the signal reusability, because this is what
determines the ratio between the number of read operations
from a copy of a signal in a smaller memory, and the number
of read operations from the signal in the larger memory on
the next hierarchical level. The reuse factor of a group of
data D stored in a memory on layer i relative to layer i � 1
is defined as:

FR(i � 1; i; D) =
NR(Mi; D)

NR(Mi�1; D)
(1)

Here NR(Mi; D) is the total number of times an element
from D is read from a memory at layer i. A reuse factor
larger than 1 is the result of intra-copy reuse and inter-copy
reuse (cfr. Fig. 1). Intra-Copy reuse means that each data
element is read several times from memory during one time
frame. Inter-Copy reuse means that advantage is taken of
the fact that part of the data needed in the next time frame
could already be available in the memory from the previous
time frame, and therefore doesn’t have to be copied again. If
FR(0; 1; D) = 1, MH is useless and would even lead to an
increase of area and power, because the number of read oper-
ations fromM0 would remain unchanged while the data also
has to be stored and read from M1. Let’s consider the sim-
ple example in Fig. 1 showing a sub-memory Mk with a size
equal to 6 words. In this case, we see that each data in a copy
is read three times, so the intra-reuse factor equals 3. We also
note that 1=3 of the data in a given copy will be reused in the
subsequent copy, so the inter-reuse factor is 1

1�1=3
. Finally

we obtain9=2 as the maximal value for the reuse factor. Prac-
tically, the computation of these features is much more com-
plex but can be handled by polyhedral techniques.

In-place mapping assumption We assume that at the
end of a time frame, the data copied to the intermediate layer
corresponding to that time frame level is not needed any-
more and can therefore be overwritten by the data needed in
the next time frame. Therefore, the size of the memory on
a given layer is determined by the amount of data that has
to be copied to this memory within one time frame2. To ex-
ploit inter-copy reuse, data that is already in a memory and
would be copied again to that memory has to be kept alive,
which means that this memory space cannot be used to store
other data for the next time frame. But at the same time, less
data has to be copied and therefore also stored. In the end,
the memory size requirements are equal whether or not inter-
copy reuse is taken into account. Only the number of trans-
fers is affected.

3 Formalized Problem Exploration

In this section we will explore the DR problem more for-
mally, and point out some elements that can be used to define
a systematic methodology for DR exploration.

3.1 Read vs write operations

DR has to focus on read operations only. The reason is
that repeated reading of the same data value makes sense,
whereas writing the same data value usually doesn’t make
sense. So there is no need for creating a MH for repeatedly
written data. The only thing that has to be decided for write
operations is which signals will be written in (temporary)
buffer. That important but independent decision is taken ear-
lier in the global ATOMIUM script during the Loop Transfor-
mation step [17] and won’t be further discussed in this paper.

3.2 Divide and conquer

The hierarchy design problem can best be tackled for each ar-
ray signal separately for three main reasons, discussed here-
after in a kind of growing impact order. The first one is that
even then it is already complex enough. Secondly, the differ-
ent signals usually have distinct sizes and reuse rates, so they
need various kind of ad hoc hierarchies. Thirdly, in order to
be efficient, hierarchy decisions have to be handled at a high
level of abstraction. They must be taken early in the design
script1, before cycle budget distribution [26] when no accu-
rate information is yet available about Inter-signal In-Place.
This means that every signal has its own DR scheme that will
be combined later on into a common physical MH.

3.3 Classification of MH opportunities

In this subsection we present a classification of three cases in
which memory hierarchy for array signals may be useful (cfr.
Fig. 3).

Read once a signal in a (nested) loop This is the ba-
sic case (Fig. 3-a) on which our methodology is based. Both
intra-copy and inter-copy reuse are possible here, when the
loop nesting (i.e., the order of the different nested loops, and

2or the maximum over all time frames in case this is not constant.

(a)

For ...
 For ...
 <- F1(A[][])
 End
End

(c)

...
For ...
 For ...
 <- F1(A[][])
 End
End
...
For ...
 For ...
 <- F2(A[][])
 End
End
...(b)

...
For ...
 For ...
 <- F1(A[][])
 ...
 <- F2(A[][])
 End
End
...

Figure 3: Classification of data reuse and loop schemes

the direction in which the loops are traversed) is fixed. In-
deed in this case, the ordering of the different copies is known
and every two consecutive copies can be examined for over-
lap (i.e., inter-copy reuse).

Read repeatly a signal in a (nested) loop Here (Fig.
3-b) it is assumed that each of the read operations has a differ-
ent index expression, because otherwise they can be reduced
to the previous case by reading once from background mem-
ory and storing the result in a temporary foreground regis-
ter. When the different read operations are accessing differ-
ent parts of the signal, a different MH can be constructed for
each of them. However, in practice, these memory hierar-
chies will contain partly the same data, and are therefore best
combined. Determining which part of the MH can be shared,
can be done with a kind of polyhedral basic set analysis [23].

Read a signal from distinct loop nests In this case
(Fig. 3-c), a MH can be derived for each of the loop nests
separately. Because they are in different loop nests, these DR
schemes can be very different from each other. So, heuristics
aiming at the best-fitting common hierarchy, reducing the fi-
nal MH complexity must be used. This more complex case
requires a distinct detailed development and will not be fur-
ther discussed in this paper.

3.4 Conclusions from the classification

A number of conclusions can be drawn from this classifica-
tion:

1. For every read operation in a perfectly nested loop, we
can determine a chain of possible memory candidates inde-
pendently from other read operations. This is called a log-
ical DR chain. Two simple rules can be applied to prune
memory candidates from logical DR chains, because they
will never be used in an optimal physical MH: the size of the
memory candidates must decrease from one layer to the next
(Si < Si�1), and the reuse ratioFR(i�1; i; D) of each level
must be larger than 1.

2. A read operation on an indexed signal that is not sur-
rounded by loops can be considered as a degenerate case of
a read operation inside a loop with only one iteration. In the
area of data-dominated applications, these cases provide neg-
ligible gains and can be ignored, otherwise some more tradi-
tional register allocation techniques can be used.

3. Logical DR chains of different read operations to the
same signal, must be examined for sharing opportunities.

This is needed to reduce both the search space and the num-
ber of proposed sub-memories, as explained above. The re-
sult is a shared logical DR tree. Remark that the root node
is always common to all read operations accessing the same
signal. Therefore this combination into a tree is always pos-
sible (see Section 5.2). However, it has to be assumed that
temporal locality is feasible in order to exploit in-place sav-
ings on the size (Si < Si�1). Therefore, the loop nests order-
ing will be guided, during the DFG balancing task, as much
as possible by previous DR decisions.

4 Test vehicle: Motion Estimation Algorithm

In this section we introduce a motion estimation algorithm
which will be used as a test-vehicle to illustrate the method-
ology proposed in the next section.

Previous frame Current frame

y

x

y

x

Reference window Current block

Best matching region Motion vector for current block

W

H

n

n

2m+n-1

2m+n-1

for (g=0; g<H/n; g++) /* vert. CB counter */
for (h=0; h<W/n; h++) f /* horz. CB counter */
�opt [g][h] = +1;
for (i=-m; i<m; i++) /* horz. searching of RW */

for (j=-m; j<m; j++) f /* vert. searching of RW */
� = 0;
for (k=0; k<n; k++) /* horz. traversal of CB */

for (l=0; l<n; l++) f /* vert. traversal of CB */
� += abs(New[g:n+ k][h:n + l]

�Old[g:n+ i+ k][h:n+ j + l];)
g

�opt [g][h] = min(�, �opt[g][h]);
g

g

Figure 4: The motion estimation algo. and its parameters

The motion estimation algorithm [27] is used in mov-
ing image compression algorithms. It allows to estimate the
motion vector of small blocks of successive image frames.
The version we consider here is the kernel of what is com-
monly referred to as the “full-search full-pixel” implemen-
tation [28]. The algorithm and its parameters are shown in
Fig. 4. The basic operation at the inner loop consists of an
accumulation of pixel differences, while the basic operation
two levels higher in the loop hierarchy consists of the calcu-
lation of the new minimum and its location.

5 Proposed Methodology

In this section we propose a methodology based on a num-
ber of assumptions to make it feasible for real-life applica-
tions. However, regarding to large power savings, the prin-
ciple of the global methodology suits to much more complex

schemes than the ideal one thanks to heuristics that we can’t
detail here.

5.1 Assumptions

� Currently we assume single assignment code, where
every array value can only be written once but read several
times. This makes the analysis much easier.

� We assume that the order and direction of loop iterators
of nested loops is fixed. This is compatible with the position
of the DR decision in our complete ATOMIUM memory man-
agement methodology [17].

� Finding an optimal time-frame hierarchy (see Fig. 1) is
a very complex problem. However, we believe that the op-
timal time-frame boundaries are likely to coincide with the
loop boundaries of loop nests. This idea is reinforced by the
position of the abstract DR decisions that are far before the
final implementation. Therefore, as heuristics we use firstly
the loop boundaries as time-frame boundaries, instead of try-
ing to find optimal time-frame boundaries. Secondly, we take
the operand spaces associated to the different time-frames to
obtain memory sizes. For normal writing styles of the de-
signer this leads to (very) good results.

5.2 Hierarchy tree building

Logical DR chains & trees From Section 3 we can con-
clude that for every signal in a loop nest, a logical DR chain
can be determined. Each node in the chain represents a mem-
ory candidate3 based on the loop nest structure. A memory
candidate can be characterized by its required memory size
that is directly related to the operand space defined by the as-
sociated loops.

Regarding the motion estimation application, only the
frame signalsOld (O) andNew (N) will be considered here,
because the other signals can easily be stored in a foreground
register. Therefore, they can be pruned from the problem.
For the signal N there is only one read operation. This read
operation is contained in a nested loop. Therefore we can
construct a logical DR chain for it, made of nodesNF ,NF1
and NF2 in Fig. 5 with sizes respectively equal to SN : size
of a frame, SN1: size of a row of blocks and SN2: size of a
block. Thus, every nested loop corresponds a memory candi-
date and a time-frame level. The size of memory candidates
can be computed by means of a basic set analysis. Because
there is only one read operation toNew, the logical DR chain
can’t be merged with another chain. The logical DR tree of
New is thus a chain in this case. This procedure is repeated,
in the same way, for signal Old.

Logical DR graphs From the chains other valid DR
schemes can be derived because it is allowed to copy data
from any ancestor node in the tree, not only the parent node.
Therefore, we propose to extend the logical DR tree to a logi-
cal DR graph in the followingway: for every node in the tree,
we add edges starting from all its ancestor nodes towards the
node itself.

The edges between the tree nodes are weighted by the
number of write operations to copy data from one node to

3This is not an accurate name, because memory allocation doesn’t necessarily have
to select one of those candidates.

the other, and the total number of read operations to mem-
ories on lower layers in the MH. The data-transfers strongly
depend on the way data-reuse is exploited. In our method-
ology, we assume a maximal data-reuse. The main reason is
that we will maximize data reuse by improving data locality
and reducing data transfers in the following steps. This will
be achieved with DFG transformations as Loop folding and
loop merging. Moreover, at this stage, not enough informa-
tion is available to do a more accurate estimation.

Let’s come back to the application. The logical DR trees
of signals N and O are now extended to logical DR graphs
as described in Fig. 5 where some memory candidates have
been pruned (see Section 3.4). The arrows represent the
number of transfers that are needed to copy data from a larger
to a smaller memory in the hierarchy.

N 01N N 12N N 23N

N 02N

SN SN1 SN2

NF 1
NF

2
NF

N 01O N 12O N 23O N 34O N 45O

N 13O

N 14O

N 24O

N 02O

N 03O
N 04O

SO1SO SO2 SO4SO3

OF 2
OF

3
OF

4
OF

1
OF

Figure 5: Logical DR graphs

Optimal DR trees Within each logical DR graph, all
possible trees that can be derived by selecting a single path
from the root node to every leave node, represent a valid log-
ical DR tree. The optimal logical DR tree is the tree obtained
this way with lowest cost.

All the valid search trees for finding the optimal logical
DR tree for both the Old and New frames are shown in Fig. 6
where Mi represents the level of hierarchy. The grey trees
indicate the lowest-cost solutions. The crossed leaves rep-
resent the largest pruned candidates that don’t provide data-
reuse factors greater than one.

5.3 Cost function

Let P r=w(Nbits; Nwords; Faccess) be the power function for
read and write operations. It depends on the estimated size
and bit-width of the final memory, as well as on the real ac-
cess frequencyFaccess of the array signals, which is obtained
by multiplyingthe number of memory accesses per frame for
a given signal with the frame rate of the application (this is
not the clock frequency). The cost function we are using is
defined as :

Fc(Mi) =

iX

j=1

� [P r(Mj) + P
w(Mj)]+�:A(j)+:Nmem(j) (2)

Here � and � are weighting factors for Area/Power trade-
offs, and is a weighting factor to take into account the in-
crease of interconnections due to a growing number of mem-
ories.

6 Results on power and area impact

The motion estimation example has been analyzed with pa-
rameters from the QCIF format (W=176, H=144, m=n=8)
with a frame rate of 30 frames/s. We are using an accurate
but proprietary model for estimating the power and area of
the memory modules from a specific library for which we
are not allowed to publish absolute values on area and power.
Therefore only relative values are provided.

The search trees for the two relevant signals (Old and
New) with area and power figures are shown in Fig. 6. The
dashed lines divide the search trees in a number of layers.
Each layer corresponds to a memory candidate (or time-
frame level). The solutions can either include this memory
candidate (memory is shown in search tree) or skip it (mem-
ory is not shown). Every node in the tree represents a solu-
tion: the memory candidate on that node is the lowest layer
in the hierarchy, and all memory candidates on the path be-
tween the root node and the node itself are intermediate lay-
ers in the hierarchy. For each solution the area (A) and power
(P) of the complete MH for that solution relative to the solu-
tion without hierarchy (root node) are indicated.

A surprising result is that the total memory area can
decrease by adding extra memory layers. The reason for
this is that the maximum access frequency of the memo-
ries is taken into account in our estimations. If a certain
memory would be accessed above its maximum access fre-
quency, this memory will be split into two memories of half
the size to increase the memory bandwidth. This splitting
introduces overhead. By adding extra memory layers with
small memories, the bandwidth requirements of the large
background memories can be reduced, and therefore splitting
can be avoided. This area gain can be larger than the area lost
by adding a few small memories.

The optimal MH for power (without interconnect) is :

� for the Old frame, a 3 level hierarchy that leads to a
power saving of 83% compared to the solution without
memory hierarchy;

� for the New frame, a 2 level hierarchy that leads to a
power saving of 87% compared to the solution without
memory hierarchy.

If we compare this result with the one we proposed in an ad
hoc way, in an earlier paper [17], we note that a different MH
with only two levels was selected wich results in a higher
power consumption. This clearly shows that by using a more
systematic design space exploration methodology which ex-
ploits the full search space available, as proposed in this pa-
per, better results can be obtained.

The power savings that can be achieved through DR are
relevant enough to justify placing the DR design task early
in the memory management script.

7 Conclusion

This paper has pointed out the relevance of data-reuse deci-
sions in hierarchically organized memories for power opti-
mization of data-dominated applications. A new approach
has been proposed to tackle the hierarchy decision problem
in an applicative context though the discussion in this paper

has mostly focussed on the simpler sequential context where
is it also useful. The feasibility and the large impact of the
proposed techniques has been shown on a real-life video ap-
plication.

Applying the methodology without care to complex
loop schemes, containing distributed read operations, would
rapidly lead to an intractable amount of DR opportunities.
Moreover the DR decisions must be done very early in the
design flow. Hence, it would be inefficient when they im-
pose too strong and accurate constraints on the following
steps. Consequently, a preprocessing step has to be added to
simplify the general hierarchy trees in order to obtain sub-
optimal but yet powerful hierarchy-schemes like those pre-
sented in Section 3. Finally, the proposed principle remains
valid for more irregular and complex applications.

n

n

n

n

M1

M2

M3

P=0.13
A=0.94

P=0.14
A=1.02

W

n

P=0.29
A=1.01P=1.01

A=1.001

n

1

New Frame

W

P=1
A=1

H

2m
+

n-1

2m+n-1

W

2m+n-1

n

n

2m
+

n-1

2m+n-1

n2m
+

n-1

n

n

n

Old Frame

P=0.453
A=1.14

P=0.213
A=0.974

P=0.176
A=0.938

P=0.341
A=0.949

P=0.217
A=1.156

P=0.178
A=1.139

P=0.273
A=1.126

n

n

P=0.211
A=0.95

P=1.01
A=1.001

n

H

W

P=1
A=1

1
X

A=0.98
P=0.185

2m
+

n-1

2m
+

n-1

n

M1

M2

M3

n n

P=0.165
A =0.989

P=0.172
A=1.177

2m
+

n-1

n

n

n

n

n

n

n

P=0.130
A=1.16

P=0.198
A=1.14

P=0.208
A=1.17

n

n

P=0.186
A=0.997

M4

M5

Figure 6: Search trees for the optimal logical DR graphs

REFERENCES
[1] S.Wuytack, F.Catthoor, L.Nachtergaele, and H.De Man, “Global communication

and memory optimizing transformations for low power systems,” in IEEE/ACM
Int. Work. on Low Power Design, Napa Valley, CA, Apr. 1994, pp. 203–208.

[2] J.Z.Fang and M.Lu, “An iteration partition approach for cache or local memory
thrashing on parallel processing,” IEEE Trans. on Computers, vol. C-42, no. 5,
pp. 529–546, May 1993.

[3] D.Kulkarni and M.Stumm, “Linear loop transformationsin optimizing compilers
for parallel machines,” Tech. Rep., Comp. Systems Res. Inst. Univ. of Toronto,
Oct. 1994.

[4] N.Manjiakian and T.Abdelrahman, “Reduction of cache conflicts in loop nests,”
Tech. Rep., CSRI-318, Comp. Systems Res. Inst. Univ. of Toronto, Cananda,
Mar. 1995.

[5] M.Jimenez, J.Llaberia, A.Fernandez, and E.Morancho, “A unified transforma-
tion technique for multi-level blocking,” in Proc. EuroPar Conf. ”Lecture notes
in computer science” series, SpringerVerlag, Lyon, France, Aug. 1996, pp. 402–
405.

[6] S-M.Moon and K.Ebcioglu, “A study on the numberof memoryports in multiple
instruction issue machines,” Micro’26, pp. 49–58, Nov. 1993.

[7] A.Faruque and D.Fong, “Performance analysis through memory of a proposed
parallel architecture for the efficient use of memory in image processing applica-
tions,” in SPIE’91, Visual communications and image processing, Boston MA,
Oct. 1991, pp. 865–877.

[8] M.Dubois and J-C.Wang, “Analytical modeling of data sharing in cache based
multiprocessors,” Tech. Rep., CENG 89-18, U.S.C, June 1989.

[9] K.Gharachorloo, A.Gupta, and J.Hennessy, “Performanceevaluation of memory
consistency models for shared-memory multiprocessors,” in 4th Int. Conf. on
Arch. Support for Progr. Lang. and Oper. Systems, Apr. 1991, pp. 245–257.

[10] L.Liu, “Issues in multi-level cache design,” in IEEE Int. Conf. on Computer
Design, Cambridge MA, Oct. 1994, pp. 46–52.

[11] P.Stenström, “A survey of cache coherence schemes for multiprocessors,” Com-
puter, vol. 23, no. 6, pp. 12–24, June 1990.

[12] J.Gee and A.Smith, “Analysis of multiprocessormemory reference behavior,” in
IEEE Int. Conf. on Computer Design, Port Chester NY, Oct. 1994, pp. 53–59.

[13] L.Choi and P-C.Yew, “A compiler-directed cache coherence scheme with im-
proved intertask locality,” in Supercomputing, Washington DC, Nov. 1994.

[14] A.Choi and M.Ruschitzka, “Managing locality sets: the model and fixed-size
buffers,” IEEE Trans. on Computers, vol. 42, no. 2, pp. 190–204, Feb. 1993.

[15] F.Bodin, W.Jalby, D.Windheiser, and C.Eisenbeis, “A quantitative algorithm for
data locality optimization,” Tech. Rep., IRISA (INRIA/CNRS), Rennes, France,
1992.

[16] D.Kolson, A.Nicolau, and N.Dutt, “Elimination of redundant memory traffic in
high-level synthesis,” IEEE Trans. on Computer-Aided Design, vol. 15, no. 11,
pp. 1354–1363, Nov. 1996.

[17] S.Wuytack, F.Catthoor, L.Nachtergaele, and H.De Man, “Power exploration for
data dominatedvideo applications,” in IEEE/ACM Int. Symp. on Low Power De-
sign, Monterey, USA, Aug. 1996, pp. 359–364.

[18] B.Jacob, P.chen, S.Silverman, and T.Mudge, “An analytical model for designing
memory hierarchies,” IEEE Trans. on Computers, vol. C-45, no. 10, pp. 1180–
1193, Oct. 1996.

[19] P.Lippens, J.van Meerbergen, W.Verhaegh, and A.van der Werf, “Allocation of
multiport memories for hierarchical data streams,” in ICCAD, Santa Clara, CA,
Nov 1993.

[20] L.Ramachandrana, D.Gajski, and V.Chaiyakul, “An algorithm for array variable
clustering,” in 5th ACM/IEEE Europ. Design and Test Conf., Paris, France, Feb
1994, pp. 262–266.

[21] F.Balasa, F.Catthoor, and H.De Man, “Dataflow-driven memory allocation for
multi-dimensional,” in ICCAD, Santa Jose, CA, Nov 1994.

[22] L.Nachtergaele, F.Catthoor, B.Kapoor, S.Janssens, and D.Moolenaar, “Low
power storage for H.263 video decoder,” in IEEE Work. on VLSI Signal Pro-
cessing, Monterey, CA, Oct. 1996, pp. 115–124.

[23] J.Ph. Diguet, S.Wuytack, and F.Catthoor, “Hierarchy exploration in high level
memory management,” Tech. Rep., IMEC, Leuven, Belgium, June 1997.

[24] F.P.Preparata and M.I.Shamos, Computational geometry, an introduction,
Springer-Verlag, New York, 1985.

[25] D.K.Wilde, “A library for doing polyhedral operations,” Tech. Rep. 785, IRISA
(INRIA/CNRS), Rennes, France, dec 1993.

[26] S.Wuytack, F.Catthoor, G.De Jong, B.Lin, and H.De Man, “Flow graph balanc-
ing for minimizing the required memory bandwidth,” in 9

th IEEE/ACM Int.
Symp. on System Synthesis, La Jolla, CA, Nov. 1996, pp. 127–132.

[27] C.Lin and S.Kwatra, “An adaptive algorithm for motion compensated colour im-
age coding,” in Proc. IEEE Globecom, 1984, pp. 47.1.1–4.

[28] T.Komarek and P.Pirsch, “Array architectures for block matching algorithms,”
IEEE Trans. on Circuits and Systems, vol. 36, Oct. 1989.

	CD-ROM Home Page
	ISLPED97
	Front Matter
	Table of Contents
	Session Index
	Author Index

