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Abstract

To solve the problem of fast thermal and electrostatic
simulation of microsystem elements two different field
solver tools have been developed at TUB. The µS-
THERMANAL program is capable for the fast steady
state and dynamic simulation of suspended multi-
layered microsystem structures, while the 2D-SUNRED
program is the first version of a general field solver
program, based on an original method, the Successive
Network Reduction. This program offers a very fast
and accurate substitute of FEM programs for the
solution of the Poisson equation, e.g. solving a 32000
grid problem in about 6 minutes on a  586 PC.
Application examples show the usability of the tools.

1. Introduction
Thermal effects play fundamental role in the operation
of many microsystem elements, as infrared sensors, rms
meters, etc. Even if the thermal effect is not the base of
the operation like in the previous examples, exact
calculation of the always present thermal effects is
required in many cases during the design of
microsystem elements. Electrostatic fields have to be
calculated during microsystem design e.g. in the case of
capacitive displacement sensors and during the analysis
of actuators based on the electrostatic force. All these
problems require fast and reliable field solver programs
capable to solve the Laplace or Poisson equations.

FEM methods can always be used for this purpose, but
the drawbacks are well known, the huge amount of time
required to define the problem and for the calculation,
and the difficulty of modifying the once already
analyzed structure.

There exist well established methods and tools for the
thermal simulation of integrated circuits and other
layer-structured systems, but the integrated
microsystems raise new problems in the thermal
simulation, since the frequently used suspended
structures, such as cantilevers, membranes, bridges etc.
have different boundary conditions from those of the
simple silicon cubes of conventional  integrated
circuits. The µS-THERMANAL program has been
developed for the  thermal simulation of suspended
microsystem elements, based on the THERMANAL
program, which has been used for the steady state and

frequency domain thermal simulation of multi-layered
semiconductor structures for more than 18 years. In this
paper after a short presentation of the THERMANAL
program we present those features of the µS-
THERMANAL program that were developed
especially for the simulation of dedicated microsystem
elements.

During our work in the thermal simulation of 3D SOI
structures we encountered the problem, that the
accuracy of the applied FEM simulation tool  had to be
limited down to an unacceptable value if we wanted to
have the simulation results in a reasonable time (in
days, in this case). To overcome this problem we have
developed a new dedicated field solver program, which
works currently in two dimensions, but it is expandable
to 3D, it is very fast, accurate and very easy to use. The
applied method is a finite difference method, the
algorithm is successive node reduction, leading finally
to the thermal impedance matrix of the boundary nodes.
The temporary name of the program is 2D-SUNRED,
coming from SUccessive Node REDuction. In the
second part of our paper we present this program with
application examples.

2. The µS-THERMANAL program

Overview of the features

The ancestor of this program, the THERMANAL
program was an early realization of the well known
algorithm of Kokkas [1], with the extension for
unlimited number of layers [2]. In the model of Kokkas
the structure consists of equally shaped rectangular
layers stacked on an ideal heat sink. The dissipating
elements are on the surface of the uppermost layer only,
and the heat is removed  via the bottom surface, the
side walls are adiabatic. Heat transfer is assumed only
by conduction. The differential equation of the heat
flow (the Laplace equation) is written up for each layer,
and the solutions are matched on the layer interfaces.

In the algorithm of [1] the solution of the differential
equation is constructed in the form of two-dimensional
Fourier-cosine series. In our program this series is
calculated by Fast Fourier Transformation (FFT)
method − resulting in a quick solution method in most
cases.
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We have extended this model by the consideration of
free convection cooling, the detailed description can be
found in [4]. This extension is very important in the
case of microsystems, where the presence and cooling
effect of the surrounding air can not be neglected in
most of the cases.

The assumption that the dissipation occurs only on the
surface is rather rough, even in the case of  ICs. This is
why we modified the original algorithm also towards
considering dissipators in several different layers. The
mathematical description of the algorithm can be found
in [5].

Simulation of membranes

The above discussed algorithm relatively easily can be
extended to calculate the temperature distribution on
multi-layer structured membranes as well, where the
dissipation pattern and the  structure of the membrane
are given. In this case the boundary conditions are
different from the usual IC structure: the top and the
bottom surface of a membrane are adiabatic, while the
side walls are isothermal, considering the bulk silicon
nearly ideal heat sink.

Fig.1. Steady-state temperature distribution on a
membrane surface. The rectangular shapes are the

dissipating elements.

These boundary conditions are fulfilled by using
Fourier-sine expansion instead of Fourier-cosine [4].
Simulation results of a membrane structure are
presented in Fig.1.

Simulation of bridge structures

On the top and bottom surface of the bridges the
boundary condition for the temperature is adiabatic,
like in the case of membranes. The side wall conditions
are different now for the neighbor sides, the two
isothermal sides (the fixings of the bridge) are between
the two adiabatic sides. These boundary conditions are
fulfilled using Fourier-sine expansion in x1 direction
and Fourier-cosine expansion in x2 direction [4]. µS-

THERMANAL simulation results of a multi-layer
bridge structure are presented in Fig.2. Fulfilling of the
side wall conditions are easily observable, the effect of
the presence of air under the surface is considered
appropriately. The structure and the dissipation pattern
is the same as in Fig.1, but the difference in the
temperature distribution because of the different side
wall conditions is considerable.

Fig.2. Steady-state temperature distribution on the
surface of a multi-layer bridge structure. The left and

right sides are the fixings of the bridge.

Simulation of cantilevers

A cantilever is fixed only by one side wall,
consequently it can be always considered as a half
bridge with special symmetry conditions. This is how
cantilever problems are solved in the µS-
THERMANAL. The cantilever is mirrored to form a
symmetric bridge, and the bridge problem is solved
with the previously discussed boundary conditions.
This way the symmetry axis of the bridge, which is the
free end of the cantilever, automatically fulfills  also the
adiabatic boundary condition.

Extension for heat transfer via beam leads

From heat transfer point of view a special class of
microsystem elements are the parts suspended on thin
and narrow strips. H shaped membranes and cantilevers
with a narrow neck belong to this class, just like the
ball grid array attachment of conventional IC chips. In
these structures the leads act as heat sinking elements.
In the µS-THERMANAL program we consider them as
dissipating elements with negative dissipation. [3].

The analysis of a membrane structure suspended at two
opposite sides by two narrow necks is shown in Fig.3.
This example is also appropriate for the comparison of
the µS-THERMANAL simulations with FEM
simulations. The good agreement in the simulation
results of the two programs is clearly visible in Fig.3,
but the µS-THERMANAL program needed 500 times



less CPU time for the calculation than the SYSTHERM
[6] program. About 9 minute was required to prepare
the µS-THERMANAL task in contrast with the 1 hour
preparation time required for the SYSTHERM task
preparation for someone who uses SYSTHERM every
day.

      

Fig.3. Comparison of narrow-neck suspended
membrane simulations.  Top: SYSTHERM simulation,

bottom: µS-THERMANAL simulation

3. SUNRED: a 2D thermal and electrostatic
simulator
This tool is designed especially for the fast calculation
of the thermal behavior of arbitrary shape integrated
microstructures. A special requirement was to calculate
on a grid that is fine enough to obtain not only the
temperature distribution but the accurate streamlines of
the heat-flow as well.

An interesting feature of this simulator is that
characteristic methods of three disjunct disciplines are
combined in it. These fields are

• the electromagnetic field theory,

• the linear network theory and

• image processing.

Combination of these methods resulted in a very useful
tool.

The model

The current 2D version of the program treats the linear
heat conduction problems in two dimensions.

Anisotropy can be taken into account. The equation
being solved is

∂i λij  ∂jT(xi) = p(xi)         i,j=1...2 (1)

where λij is the heat conductivity, T(xi) is the thermal
field and p(xi) is the incoming heat flux density. This is
the well-known Poisson equation, the mathematical
description of many physical phenomenon. Electrical
current-stream fields and electrostatic potential fields
can be described by the same equation, which means
that the program is capable to solve such problems as
well.

The investigated area is a rectangle. A dense
equidistant grid is spawned to this area defining a cell
matrix. The suggested grid size is either 128×128 or
256×256 (for a PC, higher resolution can be used on
workstations). A material type is assigned to each cell.
This assignment is performed by constructing an image
− in the sense of the digital image handling methods.
Each pixel of this digital image corresponds to a grid-
cell whereas the material type constituting the cell is
coded by the color of the pixel. Thus, in order to enter a
problem two files have to prepared:

• the “problem-image” which can be in any usual
image format (the suggested format is the BMP),

• the “material-table” assigning different material
parameters to each color.

This method of problem definition provides a very easy
and fast input of arbitrary shaped complex geometrical
arrangements (using any general picture editing tools).
Limitation is coming only from the finite resolution of
the digital image. Real images, e.g. a microscopic
image of some IC structure may also be used as
geometry input.

On the edges of the investigated  area either forced
temperature or zero heat-flow can be prescribed −
individually, for any grid points of the boundary.
Excitations can be defined inside the area as well,
forcing a given temperature or a given heat-flux to any
cell, only a new “color” should be introduced for each
excitation value in the problem image.

The solution of Eq.(1) is accomplished using the
method of finite differences .  The cells of the field are
squares (or rectangles) described by an electrical
model, with a node in their center (Fig.4a.). Heat flux
can be forced into them − this corresponds to the
current flowing into this node. Forced temperature
means the forced voltage value of the cell node.

Fig.4. Cell, center node and terminal nodes



The boundary between different materials is lying
always on the cell edges. In other words: each cell is
“filled” by a single material. Each cell has four
terminals in the direction of its four neighbors
(Fig.4b.). On the terminals each cell can be described
by a 4×4 matrix. This way the center node is hidden,
but knowing the terminal temperatures the temperature
of the center node can be back-calculated. Fig.4c.
presents that the cell shows four terminals to the
outside and the inner node is hidden.

The model of the cell is shown in Fig.5. In the present
steady state version it contains four thermal
conductances. The value of these   depend on the
thermal conductivity of the material filling the cell and
on the geometry.  This basic cell can be described by an
admittance matrix of 4×4 size.

Fig.5. Circuit model of a single cell

The solution algorithm

The solution of the problem is done by the electrical
solution of the whole model network. This raises
serious problems because of the size of this network.
Using a grid of 128×128 lines the model network
consists of 32768 nodes. For a 256×256 grid
arrangement this number is 131072. Although the
corresponding circuit matrix is extremely sparse the
solution of such a big network is a hard problem.

 We have not considered iterative solutions − only
direct methods have been investigated. A successive
procedure has been developed for the network
reduction − the essential features of which are briefly
presented in the following.

Four basic cells can be assembled to form a block or
macrocell as shown in Fig.6a. In other words: a 1st
order cell has been built from four zero-order cells.
The four inner connecting terminals of the cells can be
eliminated; they should not appear in the outside-
directed description (Fig.6b.). The size of the Y matrix
of the 1st level cell is 8x8 containing 64 values (which
is equal to the 4x16 elements of the four zero-level
cells).

Fig.6. Four basic cells will constitute a 1st level cell

Using four 1st level cells we can assemble a 2nd level
cell as shown in Fig.7. The inner terminals can be
eliminated again.

 

Fig.7.  Building a 2nd level cell

Continuing this successive building of higher and
higher level cells we obtain finally the matrix of a
single cell − the terminals of which are lying on the
four edges of the investigated rectangular field.
Matching with the boundary conditions means the
solution of this matrix for the U or I constraints, given
individually for the terminals lying on the boundaries of
the investigated field. The voltages of all the inside
nodes can then be calculated by a successive back-
substitution.

The advantage of the presented solution algorithm lies
in the fact that most of the grid nodes are eliminated
before the final solution of the system equation.
Supposing e.g. a problem field of 128×128 grid points
we have 32768 inner nodes but we should solve an
equation of only 4×128=512 unknowns.

The hierarchical network reduction requires
log2(128)=7 successive steps for the 128×128 grid, 8
steps for the grid-size of 256 and so on. The detailed
analysis of the T total computing time gives

T = 63.5 N3/2 (T*+) (2)

where N is the node number for the whole model
network and (T*+) is the time of one multiplication and
one addition. This time should be compared to the
Ordo(N3) time requirement of a “brutal force” Gauss
elimination. For a 32768 node problem the solution
time is only 6 minutes on a 586 PC, thanks to the
efficiency of the successive network reduction
algorithm.

It should be emphasized that the network reduction step
has to be executed only once for a structure. Changes in
the excitations or in the boundary conditions require to
repeat the back-substitution only − which requires
much less time than the reduction itself.

In the present phase of the development the algorithm
handles the steady-state case only. The implementation
of the frequency and time-domain solutions does not
hold any difficulties however, we are currently
working on   these extensions.

Presentation of the results
The results of the simulation are treated as images
again. The temperature (or potential) fields which are



essentially 2D scalar functions can be considered as
black-and-white images. The brightness of the image
points is proportional to the temperature (or potential)
of each point. The program provides the results in form
of digital images, in the standard BMP image format.
Such a potential image is shown in Fig.8.

Fig.8. Grayscale image of a potential field (a horizontal
electrode in a conducting corner)

Although this image gives a good qualitative view of
the potential field, the potential values can not be read
from this picture. A basic procedure of image
processing can help to overcome this problem. This
procedure is the intensity transformation: an arbitrary
btr=f(b) function is used to map the original b pixel
intensities into the btr brightness values. A set of
appropriately chosen functions offer a rich variety of
presentations for the same temperature (potential) field,
and provides the good quantitative evaluation at the
same time. Fig.9a. is an example for the intensity
mapping functions, the corresponding image is shown

                
a.) b.)

Fig.9. Brightness mapping functions

Fig.10. The stepped brightness mapping function and
the resulting image

in Fig.10. The stepped character of the f(b) function
results in abrupt intensity changes in the image, and the
boundary between the different intensities traces an
equipotential line. The telegraph-signal-like intensity
mapping of Fig.9b. produces an even more explicit
drawing of the equipotential lines (see Fig.11.) Using
color displays intensity-color mappings are possible as
well providing  striking, rainbow-like pictures.

Fig.11. Potential or temperature field using the
telegraph signal like intensity mapping.

The temperature field or potential image is usually not
enough to visualize thermal, electrostatic or streaming
fields. Tracing of the heat-stream lines (or electrical
field lines) is an often encountered requirement.
Especially in the case of temperature fields the
streamlines provide an easy way to “discover” how and
where the heat flux is streaming.

To obtain streamline pictures further image processing
steps are required. The simulator provides the Jx, Jy

components of the J current density vector in form of
two intensity images. These vectors have to be turned
by 90o. This can be made simply by interchanging the
two images and negating one of them:

Gx = Jy      (3)

Gy = - Jx

It can be easily proven that the P(x,y) potential function
of this G field is suitable to trace the streamlines. The
equipotential lines of this P pseudo potential are the
streamlines of the original field. Visualization of these
lines can be proceeded in the same way as in case of
the real potential field.

For the sake of the mathematical correctness it should
be mentioned that this pseudo potential can be
constructed if and only if there is no divergence in the
J(x,y) vector-field. This means that the procedure can
be applied only on the divergence-free regions of the
field.

Examples

In the first example the thermal field of a
micromachined bridge is calculated. In order to
demonstrate the capability of the program an irregularly
shaped bridge has been analyzed.  A single dissipating



shape is defined on the bridge. The calculated
temperature distribution of the structure is shown in
Fig.12. It is not so easy to see from this plot where the
most important part of the heat stream is flowing. The
streamline calculation helps us to have an image. In
Fig.13. the streamlines are plotted. These streamlines
are suitable to examine the division of the heat flux
between the two possible paths.

Fig.12. Isothermal lines on the bridge

Fig. 13. Streamlines of the heat-flow

In the second example a 3D stacked submicron CMOS
SOI structure [8] is investigated. The heat is generated
in the upper transistor. The results of the simulation are
shown in Fig.14. The highly different thermal
conductivity of the silicon and the SiO2 leads to the
surprising fact that the heat stream makes a detour (see
the white arrows) around the SiO2 region.

Fig.14. Heat-flow in a stacked SOI structure

4. Conclusions
Two new, fast and easy-to-use  simulation tools have
been developed for the accurate thermal and
electrostatic simulation of dedicated microsystem
elements and special 3D structures.

With the help of the novel 2D-SUNRED program
arbitrarily shaped structures can be   analyzed  with
very high accuracy in minutes in a PC – enabling also
the visualization of the accurate heat flow paths  in the
material, that we could not obtain with usual FEM
programs.  The program calculates currently in two
dimensions. The development of the dynamic and the
3D version of the program is in progress, they can be
hopefully presented already at the conference.

Using the µS-THERMANAL simulator as the field
solver of electro-thermal simulators, like the SISSI
program [7], even the accurate dynamic electro-thermal
simulation of electronic circuits realized on
microsystem elements becomes possible.
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