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Abstract

Traditional synthesis techniques optimize CMOS cir-
cuits in two phases i) logic minimization and ii) library mapping
phase. Typically, the structures and the sizes of the gates in the
library are chosen to yield a good synthesis results over many
blocks or even for an entire chip. Consequently, this approach
precludes an optimal design of individual blocks which may
need custom structures. In this paper we present a new transis-
tor level technique that optimizes CMOS circuits both structur-
ally and size-wise. Our technique is independent of a library
and hence can explore a design space much larger than that
possible due to gate level optimization. Results demonstrate a
significant improvement in circuit performance of our resynthe-
sized circuits.

1.   Introduction
CMOS circuit optimization can be performed at

various levels of design description [1]. At the lower end
of the design process, synthesis tools typically perform
optimization at the gate level and operate in two phases.
The technology-independent phase performs manipula-
tion of boolean functions, which can be represented by
logic equations or BDD networks of simple logic gates [2-
5]. The technology-dependent phase subsequently maps
the boolean functions into a target library—typically con-
sisting of a few hundred logic gates [4, 6] designed and
fixed apriori, to yield desirable area-performance trade-
offs across multiple blocks and sometimes across multiple
chips. Consequently, the circuit structures are forced to
stay within the predetermined library precluding an opti-
mal solution that effectively utilizes the total design space
of transistor structures. Custom design circuits to some
extent alleviate this problem, however, there are no
known techniques for automatic synthesis of custom log-
ic.

It is apparent that the finer the granularity of the
logic structures available for optimization, the greater is
the quality of solution obtained in terms of area, power,
and performance. In this regard, optimization of logic cir-
cuits at the transistor level, as opposed to gate level yields
a better solution, since a much larger design space is ex-
plored. In addition, a transistor level approach would per-
mit the use of significantly more accurate models for
power, area, and delay, thereby increasing the scope of
agreement with simulation results. However, state-of-the-
art transistor level optimization techniques are limited to
simple reordering of the transistor chains [6] and to tran-
sistor sizing.

In this paper, we propose a new approach which

operates on a synthesized circuit and performs a transis-
tor level logic optimization by transistor level restructur-
ing. Consequently, we extend the design space beyond
the traditional limits set by cell libraries. In addition, we
also consider sizing of the individual transistors during
structural optimization This ensures that the performance
of a given structure is optimal at the given area of interest.
We refer to our technique as transistor level resynthesis or
simply resynthesis. The output of resynthesis is an area-
delay trade-off curve shown in Figure 1. Each point on
this curve represents a solution which is structurally as
well size-wise optimized for circuit delay. While the
smooth continuous parts represent transistor level circuit
sizing with a fixed topology, the discontinuities result
due to the timing improvements from restructuring.

2.   Overview of Resynthesis
As one can observe, the number of transistors is

extremely large if the whole circuit must be considered
for sizing and restructuring simultaneously. Therefore,
resynthesis breaks the circuit into smaller segments of
logic which we refer to as windows. Typically, each win-
dow contains up to 50 transistors or approximately 10-20
gates. For each window, a large number of functionally
equivalent, transistor level structures are generated using
a simulated annealing method. These windows differ
both in how the overall logic is implemented in terms of
individual gates as well as the structure of the gate. Each
window is also sized with a fast approximate sizing algo-
rithm to match the size of the original window. We refer
to this process as local resynthesis and it is described in
more detail in section 4.2. Internally, local resynthesis
evaluates all new windows relative to the original timing
constraints of the window. The best window is inserted
back in the circuit at minimum size. The overall circuit is
then evaluated for relative merit after sizing the circuit
back to the original area. (the dotted curves in Figure 1
show the resizing with new window). The best window
in terms of timing is preserved after every iteration while
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the rest are discarded. For efficiency only the critical path
in the circuit is covered with windows and each window
is evaluated for improvement in timing. This step is re-
peated till no further improvement is possible at this size.
Subsequently the whole circuit is sized to a predetermined
percentage, and the above procedure is repeated. Figure 2
shows the basic steps involved in resynthesis.

As one can observe, to operate on an equivalent
design space, a library based synthesis approach will need
an enormously large number of cells in the library, in or-
der to cover the functionality, power, and delay character-
istics provided by the transistor level design space. The
layout for the resynthesized windows is generated using
a proprietary layout tool [12].

The local resynthesis step indicated in Figure 2
forms the core of the structural optimization technique
and is discussed in Section 4. Section 3 briefly describes
circuit and logic models used in the remainder of the pa-
per. In section 5 we analyze the design space covered by
local resynthesis and demonstrate that this is much larger
compared to a typical cell-based synthesis. Section 6
shows some experimental results.

3.   CMOS Logic and Circuit Models

  3.1  Logic Representation

The SP-BDD [8] representation is an efficient
means of capturing the logic functionality and the struc-
ture of static CMOS gates whose pull-up and pull-down
structures are complementary series-parallel networks. In
the remainder of this paper, we limit our focus to series-
parallel CMOS structures. Figure 3 shows an example of
CMOS gate and its gate-BDD. Each vertex of the gate-BDD
corresponds to a gate input and a pair of transistors (one
in pull-up and one in pull-down). A combinational circuit
composed of CMOS gates may be represented as an or-
dered network of gate-BDDs.

  3.2  Power and delay model

Since the SP-BDD captures the structural infor-
mation of the gate, the delay and the power can be calcu-
lated directly from the SP-BDD representation. The SP-
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BDD representation allows the use of accurate transistor
level models at gate level efficiency. The transistor level
power model used in resynthesis is described in [9]. The
delay of the gate is estimated using a proprietary semi-an-
alytical piece-wise quadratic approximation of the MOS
characteristics [11] for circuit timing during global resyn-
thesis. During the local resynthesis however, since we need
to evaluate only the relative merit of the windows, we use
the well known Elmore delay model to evaluate the gate
delay.

4.   Resynthesis

  4.1  Global Resynthesis

The overall global resynthesis flow is shown in
Figure 2. As described inSection 2, global resynthesis is
based on covering the entire circuit with a sequence of win-
dows and performing detailed local resynthesis on each
window. When comparing the costs of different structures
for the same window, we consider timing, area and power
appropriately depending upon the optimization objective.
Timing is performed using static timing analysis tech-
niques.Windows are sequentially selected to minimize
timing recalculations. The circuit is covered in topological
order from primary inputs to primary outputs. Conse-
quently, to calculate old and new time slack correctly, we
need to recalculate arrival/required times before and after
every local resynthesis only for those gates that fall in the
cone of influence of the window.

  4.2  Local Resynthesis

Local resynthesis is an optimization procedure
that minimizes the cost which is a function of area, delay,
power, or any convex combination of these variables for a
given window. In addition, user specified constraints such
as a limit on the maximum stack depth, maximum number
of transistors per stage or maximum fan out can all be con-
sidered during local resynthesis by assigning appropriate
penalties when a violation of these constraints occurs. Lo-
cal resynthesis is a sequence of the following basic steps:

• A. DeMorgan transform changes a gate to a complementary
one and adds or deletes inverters on its inputs and output.

• B. Reordering changes places of two SP-networks connected
in series in either pull-up or pull-down network of a gate.

• C. Decomposition step decomposes a complex gate into two
subsequent gates with an inverter between them.
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Figure 3. CMOS gate and corresponding gate-BDD.
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• D. Merging converts two subsequent gates with an inverter
between them into one complex gate. If there is no inverter,
then preliminary DeMorgan transform may be done for one of
the two gates. The result of merging may be a gate with redun-
dant structure. Therefore merging is followed by gate-BDD
minimization.

Step A allows us to explore every possible structure of a
window that can be reached by DeMorgan transforms on
the given structure. This set of window structures obtained
by closure under DeMorgan is referred to as a superstate. In
addition, there are also some auxiliary steps:

• deleting double gates: deletes one of two identical gates with
pairwise common inputs, this step is performed whenever pos-
sible;

• splitting a gate: inverse of deleting double gate, this step pre-
cedes merging when necessary;

• deleting buffers: deletes two subsequent inverters, this step is
performed every time when possible for reducing power;

• inserting buffer: inverse of deleting buffer, this step is per-
formed when it is necessary to reduce delay.

To investigate each superstate for optimality, we
use a simulated annealing procedure with an oscillating
schedule [10] consisting of several iterations interposed
with fully random steps and greedy steps. Every annealing
step contains randomly (with proper weights) selected basic
resynthesis steps (reordering, decomposition or merging)
followed by a full superstate investigation and a fast sizing
of the optimal structure. The best visited state during resyn-
thesis is taken as the result of local resynthesis. The local re-
synthesis algorithm can be described by the following
pseudo-code. The variables Dim, N_INF, and N_ZERO are
calculated specifically for each window as explained in Sec-
tion 5.

calculate Dim;
estimate N_INF and N_ZERO;
for (iter=0; iter<MAX_ITER; iter++) {

for (i=0; i<N_INF+N_ZERO; i++) {
select basic step type;
select basic step object;
make basic step;
investigate superstate;
fast sizing;
if (i>=N_INF) {

calculate cost;
if (cost is increased)

decline step result;
}

}
}

take best solution;

An example of the result of local resynthesis is shown in Fig-
ure 6.

5.   Design space for local resynthesis
In this section, we provide an overview of the de-

sign space explored during local resynthesis. The design
space is much larger than that obtainable using library
based synthesis. First we define several useful notions.

Definition 1. A window is a connected subcircuit under local
resynthesis, that is cut out from some larger circuit.
Definition 2. A Superstate is the set of window states that can be
obtained from a single state by all possible DeMorgan transforms
(combined with inserting/deleting buffers).

Definition 3. A Merged gate-BDD is a gate-BDD resulting from
merging all structures in a window. (For an arbitrary window
we have a merged gate-BDD for every window output.) Fig-
ure 5 shows an example of a window state and the merged
gate-BDD for this window. The gate-BDD is a single SP-BDD
that represents the function performed by the entire window
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Figure 4. Examples of BDD transformations: (a) Merging and De-
composition–forward arrow indicates decomposition and the re-
verse arrow indicates merging. (b) DeMorgan transforms. (c) Re-
ordering. Note that the re-ordering shown in (c) cannot be achieved
by simple input swapping.
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Figure 5. (a) Window state and (b). merged gate-BDD.
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Figure 6. Initial circuit (c17) with 24 transistors and result of local
resynthesis with 22 transistors.
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and can represent all possible circuits that are obtainable
from this circuit using DeMorgan transforms.

Definition 4. An SP-fragment is either a single gate-BDD ver-
tex, or a maximal series connection of two or more SP-fragments, or
a maximal parallel connection of two or more SP-fragments.For
example in Figure 5b, the single vertices (a), (b), (c) are SP-
fragments and the entire gate-BDD is also an SP-fragment.
The series connection of vertices (a,b) is not an SP-fragment
because this series structure is not maximal.

Definition 5. A SP-chain is a series or parallel connection of two
or more SP-fragments. A gate-BDD with more than one vertex
consists of a hierarchy of SP-chains. For example, the gate-
BDD in Figure 5 contains two SP-chains–((a,b,c),(d),(e)) - 1st
(top) level of hierarchy, and ((a),(b),(c)) - 2nd level of hierar-
chy.

Statement 1. The number of SP-chains in a gate-BDD is equal
to the number of SP-fragments with length more than one,
where the length of an SP-chain is the number of vertices on
the chain.

Definition 6. An SP-interval of a SP-chain is one or more
neighboring SP-fragments of the same SP-chain (but not the
whole chain). For example in Figure 5b, (a), (a,b), (a,b,c,d),
(d,e) are SP-intervals, while (c,d) is not a SP-interval.

Definition 7. A Marking of a SP-chain is an assignment of a
mark to each SP-interval (containing at least one vertex), satisfying
the condition:

- if A, B are SP-intervals with the same mark, then either A
contains B, or B contains A, or A and B are non-intersecting.

Definition 8. A Marking on gate-BDD is a set of markings of
all its SP-chains.

Statement 2. There is a bi-jection between all possible mark-
ings on a merged gate-BDD and all possible window super-
states that can be obtained from the merged gate-BDD by
decomposition steps.

The decomposition step of a gate-BDD discussed in
section 4.2 is performed by replacing any SP-interval of the
gate-BDD by a single new vertex. This removed SP-interval
is a separate gate-BDD and connects the two gate-BDD’s
through an inverter. Thus the original gate-BDD is decom-
posed into three gate-BDD’s (an inverter and two other gate-
BDD’s). This decomposition process can be repeated to ob-
tain other structures from the original gate-BDD. For exam-
ple, the circuit in the window state shown in Figure 5a can
be obtained by first decomposing the SP-intervals (a,b,c)
and (d,e) from the gate-BDD, and then further decomposing
the sub SP-interval (a,b) from (a,b,c).

Statement 2 above indicates that the number of
structures reachable from a window state structure is equal
to the number of ways of marking a merged gate-BDD.
Clearly, the number of markings is exponential resulting in
an exponential solution space.

Again, we can shown that the reordering step in
section 4.2 yields an exponential solution space. For a
merged gate-BDD, for every SP-chain we can take all possi-
ble permutations of its SP-fragments. It is easy to show that
permutations in any two SP-chains commute. It is also easy
to show that for arbitrary window superstate there is an in-
jection from the set of possible reordering to the set of reor-

dering on a merged gate-BDD. Thus, a large number of new
structures are also explored through reordering.

The design space for local resynthesis in terms of
superstates can be represented by a Cartesian product of
Dim=m+n one-dimensional subspaces, where m is the num-
ber of reordering subspaces and n is the number of merg-
ing/decomposition subspaces. For the example of Figure 5
we have Dim=2+2=4. Finally, it should be noted that we use
the following simple motivation for the simulated annealing
procedure under use. Supposing that the design space con-
sists of identical Dim-dimensional cubes with local mini-
mum of cost function inside each cube. By maximizing the
expected number of cubes of finite length visited during an-
nealing, we get the oscillating schedule as the optimal tem-
perature schedule, with the following parameters for the
local resynthesis algorithm:

N_INF = Kinf * sqrt(Dim), N_ZERO = Kzero * Dim, where

Kinf, Kzero are empirical constants (nearly equal to 1–2).

6.   Results
A prototype version of the resynthesis algorithm

described above was implemented on a UNIX workstation.
In this version the timing control and also some additional
constraints (maximal gate size, maximal pull-up/pull-down
path length, maximal fanout, etc.) can be switched on/off.

Figure 7 shows the area delay trade-off curve gen-
erated by resynthesis on a logic circuit consisting of about
120 gates (~ 500 transistors). The graph shows the point that
corresponds to a solution generated by a commercial syn-
thesis tool with settings to yield the maximum performance
using a well designed fine grain library. The library consist-
ed of a total of 150 cells with 4-5 strengths for each type of
logic gate. Curve 1 in the graph is the area vs. delay trade-off
of the same circuit generated using an optimal sensitivity
based sizing algorithm with very accurate delay models.
Typically on a critical path our delay model incurs no more
5% error on a gate-by-gate basis. Note that this sizing meth-
od produced solutions with about 15% improvement in tim-
ing for the same area or a 25% improvement in area for the
same timing over the cell-based solution. This is not surpris-
ing since the sensitivity based method has the freedom to
vary the sizes of every transistor in the circuit.

In the same graph, curve 2 demonstrates the gains
due to resynthesis. Resynthesis is run on the same cell-based
solution as before. Note that there is a significant improve-

Synthesis solution

Curve 1 (Transistor sizing)

Curve 2 (Resynthesis)

25% improvement in area

15% improvement in timing

Figure 7. Results of resynthesis on a proprietary high performance
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ment in area/performance of the resynthesized solutions
even over the custom sized circuit. A 15% improvement is
observed in timing at the same area while a 25% improve-
ment is achieved in area at the same timing over transistor
level sizing. Overall our technique improved the timing by
20% at the same transistor area and the area by about 37%
for the same timing. We must also mention that there was
about 20% reduction in the total number of transistors at the
minimum area point. As we would expect once the circuit
was sized up the original area point, total gain in transistor
count fell to 5% due to addition of buffers for drive strength
and implementation using smaller gates. The run time for
this example was approximately 1hr for generating the en-
tire curve on a Sparc–station 20 with 64 Mb of RAM.

Figure 8 shows the same results for a decoder cir-
cuit. This circuit has about 600 gates (2500 transistors) orig-
inal synthesis was performed with a 400 cell library of
which include a combination of nand gates, nor gates, and
an extensive set of aoi’s (and-or-invert) and oai’s. Resynthe-
sis yielded about 20% improvement in timing at the same
area point and a 35% improvement in area at the same time
point for this example over a cell-based design.This exam-
ple took about 8hrs for the complete curve on the same ma-
chine.

Table 1 demonstrates the trade-off of performance
and power obtained on 6 circuits. In this experiment we
compare the inherent power–delay trade-off between a cir-
cuit obtained by library based synthesis and the corre-
sponding circuit resynthesized for power. We select one
solution from the area–delay trade-off space, and resize it to
obtain the power–delay trade-off information for several
delay constraints. Each of the sub columns show the differ-
ent delay and power trade-offs for that circuit. In addition
the rows 5 and 6 show the reduction in the number of tran-
sistors for each circuit. Observe that for the same delay, the
resynthesized circuit consumes much less power than the
original circuit from logic synthesis. Runtimes shown in the

Figure 8. Resynthesis: Second example.
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last column for generating the local curves were also rea-
sonable as shown in the last row.

7.   Conclusion
We have presented a new method to synthesize

custom logic circuits. This technique could successfully im-
prove the area-delay characteristics of the synthesized cir-
cuits. An analysis of the structural design space explored by
this method is presented. Results show that transistor level
resynthesis can yield performance improvements up to
20% with smaller transistor count and better power charac-
teristics. In addition, results indicate that the overall delay-
area characteristics of the circuits synthesized at transistor
level are superior compared to circuits synthesized at gate
level.
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Table 1: Results of Resynthesis
Ckt c1355 c1908 cla cla1 cnt_0 cnt_1

Constraint(ns) 27.46 21.99 17.77  32.34 24.86 23.13 22.97 14.70 10.21 24.57 15.73 10.7 24.01 15.37 11.86 23.76 15.15 11.49

P(nW) Before 592 629 698 640 654 717 367 378 471 358 370 494 85 93 138 81 88 137

P(nW) After 438 463 502 437 455 526 349 362 446 343 355 486 80 88 125 73 83 117

# trans (before) 2308 3482 1008 956 352 372

# trans (after) 1904 1690 820 838 298 294

Run Time (s) 500 639 181 198 95 71
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