
0-89791-993-9/97 $10.00 1997 IEEE

Transformational Partitioning for Co-Design

of Multiprocessor Systems

Gilberto Fernandes Marchioro
Jean-Marc Daveau

Ahmed Amine Jerraya

System-Level Synthesis Group
TIMA/INPG - Grenoble, France �

Abstract

This paper presents the underlying methodol-
ogy of Cosmos, an interactive approach for hard-
ware/software co-design capable of handling multipro-
cessor systems and distributed architectures. The ap-
proach covers the co-design process through a set of
user guided transformations allowing semi-automatic
partitioning. The transformations are based on a
powerful set of primitives for functional partitioning,
structural reorganization and communication transfor-
mation. It leads to a fast transformation of a system-
level speci�cation into an architecture with a short de-
sign time and fast exploration of design space. The
application of this approach is illustrated using a de-
sign example starting from a system-level speci�cation
given in SDL to a distributed hardware/software archi-
tecture described in C/VHDL. We show that the use
of transformational approach allows:

1. Application of the expertise of the designer during
partitioning;

2. the user to understand the results of the co-design
process;

3. the process to take into account partial existing
solutions;

4. large design space exploration;

5. the designer to start from a very high-level speci-
�cation language of the system to be designed.

1 Introduction
Partitioning is becoming a bottleneck in the process

of designing complex electronic systems under short
time-to-market and low cost constraints. In this paper
the word system means a multiprocessor distributed
real time system composed of programmable proces-
sors executing software and dedicated hardware pro-
cessors communicating through a complex network.
Such a system may be implemented as a single chip,
a board or a geographically distributed system.

In a traditional design methodology, designers make
the hardware/software partitioning at an early stage
during the development cycle. The di�erent parts of
the system are designed by di�erent groups. The in-
tegration of these di�erent parts leads generally to a
late detection of errors meaning higher cost and longer
delay needed for the integration step. Besides, this
early partitioning restrains the ability to investigate a
better partitioning trade-o� and the di�erent parts of
the system are generally oversized in order to reduce
last-minute risks.

1.1 Motivation and Objectives
A new generation of methods is emerging and ma-

turing, these methods are able to handle mixed hard-
ware/software systems at the behavioral-level. They
are called co-design tools ([4], [6], [11], [12], [24], [28]).
Co-design may provide a drastic increase in produc-
tivity by making easier concurrent design of di�erent
parts of a distributed system and by automating the
partitioning and the integration steps. However, co-
design issues several challenges ([25]):

1. The development of modern co-design methods
has created an exaggerated hope for having gen-
eral purpose automatic partitioning tools that
would start from a functional speci�cation and
produce an optimal solution reducing design time
and cost. Indeed, several successful automatic
partitioning approaches have been reported in the
literature ([3], [17], [19], [27]). However, most of
these works restrict the problem to a single ap-
plication domain or make use of simple estima-
tion methods. These restrictions limit the appli-
cability of these partitioning methods to complex

systems including several hardware and software
processors.

What makes automatic partitioning di�cult is
the non availability of a universal estimation
method that can be used during partitioning for
selecting the right solution.

The evaluation of a distributed architecture is a
complex process depending on a large number of
criteria such as: e�ciency, reliability, maintain-
ability, portability, usability. Some of these crite-
ria can entail a long list of sub-criteria. For ex-
ample, e�ciency may involve speed, cost, power
consumption, volume or area. For each criterion
a metric value has to be associated. In addition,
the weights of these criteria may be di�erent ac-
cording to the application domain as well as the
technology used. For instance, reliability will be
the major criterion when dealing with systems
concerning human life security. For other sys-
tems, such as portable multi-media systems, cost
and power consumption will be the major crite-
ria. It is then clear that it is quite hard to de�ne
a realistic evaluation procedure even for a speci�c
application domain.

A realistic issue, for dealing with the partitioning,
seems to be semi-automatic methods allowing the
designer to mix manual and automatic design.

2. The designer needs to understand the results of
automatic partitioning in order to be able to ana-
lyze it. This means that co-design tools should
provide facilities that show correspondence be-
tween the initial speci�cation and the resulting
architecture.

3. It is often the case that the designer has a good
solution in mind when he/she starts the co-design
process. This may be a partial solution like �x-
ing a communication model or �xing the number
of processors of the resulting architecture. This
means that co-design tools should take into ac-
count partial solutions and allow the designer to
control the co-design process.

4. The design of complex system is generally an it-
erative process where several solutions need to
be explored before �nding the 'right' one. This
means that co-design should allow easy design
space exploration based on the speci�c criteria
selected by the designer.

As long as these challenges are not solved, co-design
will remain restricted to specialists for speci�c appli-
cations.

1.2 Previous Work
Most current research in co-design fall in one of the

three categories:

1. ASIP (Application Speci�c Integrated Processor)
co-design: In this case, the designer starts with an
application, builds a speci�c programmable pro-
cessor and translates the application into software

code executable by the speci�c processor ([20],
[22]). In this scheme the hardware/software par-
titioning includes the instruction set design. The
cost function is generally related to area, execu-
tion speed and/or power.

2. Hardware / Software synchronous system co-
design: In this case, the target architecture of
co-design is a software processor acting as a mas-
ter controller, and a set of hardware accelerators
acting as co-processors. Within this scheme two
kinds of partitioning have been developed: soft-
ware oriented partitioning ([11]) and hardware
oriented partitioning ([14]). Most of the pub-
lished work in co-design falls in this scheme. They
generally use a simple cost function related to
area, to processor cost for software and to speed
for hardware. Vulcan ([14]), Codes ([5]), Tosca
([7]), and Cosyma ([11]) are typical co-design
tools for synchronous systems.

3. Hardware/Software for distributed systems: In
this case, co-design is the mapping of a set of
communicating processes (task graph) onto a set
of interconnected processors (processor graphs).
This co-design scheme includes behavioral decom-
position, processor allocation and communication
transformation ([12], [27]). Most of the existing
partitioning methods restrict the cost function to
parameters such as real time constraints ([8], [27])
or cost ([13]).

In this paper we will restrict our discussion to co-
design tools of the third category.

Coware ([10]) handles very well multiprocessor co-
design during the latest design phases. However, it
starts from a C/VHDL where partitioning is already
done. Specsyn ([12]) is a precursor for the co-design of
multiprocessors. It allows automatic partitioning and
design space exploration. However, SpecSyn doesn't
help the designer to understand the produced archi-
tecture and it doesn't allow a co-design with partial
solution. Siera ([24]) provides a powerful scheme for
co-design of multiprocessor systems based on the re-
use of components. It allows co-design with partial
solutions. However it doesn't provide automatic parti-
tioning. Ptolemy provides a powerful environment for
co-design of multiprocessors ([22]). However its par-
titioning ([17]) is restricted to DSP applications and
doesn't allow partial solutions.

1.3 Contribution
The main contribution of this paper is to present a

user guided transformational approach for co-design.
We present the underlying design methodology and
show the e�ciency of our re�nement based approach
for hardware/software co-design. The intention of this
approach is to solve the four challenges mentioned in
the section I.A. It covers the design process through
a set of user guided transformations that allows semi-
automatic partitioning synthesis with predictable re-
sults. The lack of realistic estimation methods is com-
pensated by the expertise of the designer. A large
design space exploration is available through multiple

trials and a fast feedback as an implementation of the
initial speci�cation can be quickly obtained.

Several aspects of the Cosmos approach have al-
ready been presented in the literature. This paper fo-
cuses on the methodological aspect from the designer's
point of view and not on the algorithms and techniques
used in Cosmos. Most of the details of the interme-
diate model Solar and the behavioral transformation
primitives are detailed in [4], the communication syn-
thesis methods are explained in [9] and the code gen-
eration (C/VHDL) techniques can be found in [26].
However for a improved clarity of the paper we will in-
troduce the models and techniques used when needed.

The rest of this paper details this partitioning
scheme and illustrates its e�ciency through an exam-
ple. Section II deals with transformational partition-
ing. The design representation models used during
the co-design are described in section III. Section IV
explains three types of re�nement actions: behavioral
transformation, structural decomposition and commu-
nication transformation primitives. Section V illus-
trates the user guided transformational partitioning
through an example. Finally sections VI and VII
present our conclusions and show the results and the
strength of our methodology.

2 User Guided Transformational Par-

titioning
The user guided transformational methodology as-

sumes that the designer starts with an initial speci�ca-
tion and an architectural solution in mind. System de-
sign from speci�cation to implementation is performed
through a set of primitives allowing the designer to
transform the system, following an incremental re�ne-
ment scheme, in a distributed model that matches the
architectural solution. All the re�nement transforma-
tions are performed automatically. The decisions are
made by the designer who uses his knowledge and ex-
perience to achieve the desired solution.

Each step reduces the gap between speci�cation
and realization by �xing some implementation de-
tails (communication protocol, generating software or
hardware code) or by preparing future implementation
steps (merging and scheduling several processes to ex-
ecute them in a single processor). The transforma-
tions must satisfy the designer's imposed constraints
without changing the functionality of the system.

In the case of Cosmos, the user guided transforma-
tional approach makes use of three speci�cation for-
mats as shown in Figure 1. The initial speci�cation is
given in the system-level speci�cation language SDL.
The user controls the re�nement process through a
set of transformation primitives. All the re�nement
process is based on an intermediate form called Solar.
The output is a virtual prototype of the architecture
given in a distributed C/VHDL model.

Within Cosmos, the partitioning steps are imple-
mented through a set of primitives that performs ba-
sic transformations such as split, merge, move, at
and map. The system provides three sets of primitives
working on the system structure, behavior and com-
munication. The designer guides the interaction pro-
cess and chooses the transformations needed in order

SOLAR

INTERMEDIATE MODEL

REFINEMENT

INCREMENTAL

ARCHITECTURE

SDL

INITIAL SPECIFICATION

C

VHDL

VIRTUAL PROTOTYPE

Figure 1: Speci�cation models.

to obtain the desired solution. A new implementation
can be obtained by changing the primitives sequence
activation.

The organization of partitioning into several small
steps reduces the complexity of the problem. The de-
signer controls the partitioning history within an in-
teractive environment, through �ne grain control of
the synthesis process. This methodology can be seen
as a human guided compilation where the designer
spends additional e�ort to produce an e�cient imple-
mentation ([18]). The designer has good design pro-
cess control. To facilitate the user's interaction for
incremental transformations, a graphical interface has
been developed.

3 Internal Design Representations
This section introduces a design model, called So-

lar, used for transformational partitioning ([16]). The
di�erent re�nement steps use Solar as an intermediate
representation. Each step makes transformations on a
Solar model.

Solar supports high-level communication concepts
including channels and global variables shared over
concurrent processes. It is possible to model most
system-level communication schemes such as mes-
sage passing, shared resources and other more com-
plex protocols. Solar models system-level construc-
tions in a synthesis-oriented manner. The underlying
model combines two powerful system-level concepts:
extended �nite state machine (EFSM) for behavioral
description and, remote procedure call (RPC) for the
speci�cation of high-level communication (Figure 2).

PROTOCOL PROTOCOL

Design Unit Design Unit

Channel UnitChannel Unit

Design Unit

SEND

GET

Table
State

Remote Procedure Call

RECE-
IVE

PUT

RESET
Table
State

Figure 2: EFSMs using RPC communication.
The basic concepts are: State Tables, Design Units

and Channel Units.

� The State Table is the basic constructor for be-

havior descriptions. A state table is an EFSM
composed of an unlimited combination of states
and state tables (behavioral hierarchy). All of
these states can be executed sequentially, con-
currently, or both. A state table has attributes
to handle exceptions, global variables, reset and
default states. Transitions between states are
not level restricted. In other words, transitions
may traverse hierarchical boundaries (global tran-
sitions).

� The Design Unit construct allows the structur-
ing of a system description into a set of inter-
acting subsystems (processes). These subsystems
interact with the environment using a well de�ned
boundary. A design unit can be speci�ed as a set
of communicating design units (structural hierar-
chy) or as a set of interacting state tables. The
communication between design units can be per-
formed in two di�erent ways, �rst by means of
classic port concept where single wires send data
in one or two directions or by means of commu-
nication channels with a well de�ned protocol.

� The Channel Unit performs the communication
between any number of design units. The model
mixes the principles of monitors and message
passing, also known as remote procedure call ([2]).
The use of a RPC to invoke channel services al-
lows a exible representation, with a clear seman-
tic. These communication schemes can be de-
scribed separately from the rest of the system, al-
lowing modular design and speci�cation. A chan-
nel unit consists of many individual connections
and it acts not only as a transport mechanism for
the communicated data, it also provides a hand-
shaking interface to ensure both the synchroniza-
tion and the avoidance of access conicts. The
channel is composed of a controller, a set of meth-
ods and a set of interconnected signals. The con-
troller stores the resource's current state. The
access to the channel is governed by a �xed set
of methods (services) that are the visible part of
the channel. The utilization of an extensible li-
brary of protocols permits the reuse of existing
components. If a communication unit that im-
plements the protocol, services and average rate
required is not found in the library, the designer
can adapt an existing communication unit (in-
crease the bus width or bu�er size for example)
rather than building from scratch.

4 Transformation Primitives
The partitioning process is composed of three types

of transformations, these are: functional decompo-
sition, structural reorganization and communication
transformation. Functional decomposition acts on the
state tables to allow re�ned behavioral descriptions.
Structural reorganization acts on design units to al-
low re�ned structure of the system. Communication
transformation acts on channel units to allow re�ned
communication protocols. All these re�nements make
use of a set of �ve primitives called split, merge, move,

at and map to decompose, compose and transform
Solar objects. Figure 3 summarizes these partitioning
primitives.

c e

a b

a

b

a

a b
[Sw]

b

Conttr.

s2

b

a

b
c

d e

e

s1

s2

a
c

d eb

st
d

a

[Hw]

s1

st

s12

st

s2

s1

s2

c

ba

ab

a b

st

b

a

a b

ba

s2s1

st
s1

a
st

a
a1 a2

s1 s2

st

st

s2

s1

idle idle

s1 s2
st

State Table Design Unit Channel Unit

Functional
Decomposition Reorganisation

Structural Communication
TransformationInteractive

Partitioning

Split

Merge

Map

Move

Flat

Figure 3: Decomposition, reorganization and commu-
nication primitives

For each transformation an applicability condition
is associated. It de�nes constraints on the application
of the transformations. Before the application of any
transformation requested by the designer, the system
checks the applicability conditions. The designer can
apply the primitives in any order as long as the appli-
cation conditions of these primitives are ful�lled.

5 Functional Decomposition
The functional decomposition primitives are used

to transform behaviors i.e. state tables. A brief de-
scription follows (the term machine is used to repre-
sent a state or a state table):

� Split: decompose a sequential machine into a set
of sub-machines. Each resulting machine can be
placed in a di�erent partition. Control signals
and wait states are added to each machine to rep-
resent the revised process control.

� Merge: groups a set sequential machines into a
unique machine to permit the sharing of resources
(registers and functional units).

� Move: transforms the hierarchy of a given ma-
chine. It can be used to move a code from a

software realization to a hardware realization and
vice-versa.

� Flat: atten a machine's hierarchy.

5.1 Structural Reorganization
The structural re�nement goal is to distribute the

behavior into a set of design units that correspond
to the �nal processors. In this case, the application
of these primitives transforms the structure hierar-
chy. Each primitive may be applied several times dur-
ing structural reorganization. These primitives realize
also an automatic reorganization of the interconnec-
tion between modules. Hereby follows a description of
the structural reorganization primitives:

� Split: works on the behavior of parallel processes
(state tables) in order to split then into a set of
independent modules (design units). Each mod-
ule will communicate with the others by means
of I/O signals and channels. The data shared
between the split machines (global variables) are
converted to abstract channels in the new rep-
resentation. These abstract channels are usually
mapped to a shared variable communication pro-
tocol. In each generated module, global variable
accesses are replaced by calls to remote services
o�ered by a channel. Basically a channel's read
and write services are used to access these vari-
ables.

� Merge: groups a set of modules into a new design
unit. This operation is generally used to cluster
the modules that will be assigned to the same
processor into a single design unit.

� Move: moves a design unit in the hierarchy. This
primitive is usually used to prepare a merge op-
eration.

� Map: permits the identi�cation of hardware and
software realization options for each process.

� Flat: performs a structural attening operation
on the hierarchy.

5.2 Communication Transformation
This step transforms a system composed of pro-

cesses that communicate via high-level primitives
(through abstract channels) into interconnected pro-
cesses that communicate via signals. Cosmos makes
use of a channel library composed of basic protocol
templates. Two primitives are available for the com-
munication transformation:

� Map: assign a physical communication unit to
each high-level communication channel and gen-
erate the interfaces between the interconnected
units.

� Merge: allows replacement of two or more ab-
stract channels by another abstract channel. In
several cases this leads to a cost reduction. The
application of this transformation is restricted,
the resulting channel needs to have an implemen-
tation in the library.

6 Applications
This section details the application of the transfor-

mational approach to a co-design example, a Robot
Arm Controller. In this example we will illustrate
the overall design ow of Cosmos, from a system-
level speci�cation given in SDL to a distributed hard-
ware/software architecture described in C/VHDL.
The use of SDL allows for �vefold reduction of the size
of system speci�cation when compared to distributed
C/VHDL models. All the transformations applied in
this section are fast enough to look instantaneous dur-
ing an interactive session. None of the primitives re-
quire more than 5 seconds CPU time on a Sparc 20
workstation.

6.1 Robot Arm Controller example
The Robot Arm Controller is a system that ad-

just the position and speed parameters of eighteen
motors belonging to a robot arm with three �ngers.
This computation is intended to avoid discontinuous
motor operation problems. The change in a motor's
speed should follow a smooth curve for acceleration
and deceleration for mechanical reasons. This appli-
cation requires that the system react in less than 6
ms.

The basic block diagrams of this system, in SDL,
is shown in Figure 4. Figure 4.a shows the overall
process and blocks hierarchy of the SDL description.
Figure 4.b shows a graphical representation of the top
level of hierarchy of the SDL model. The system
is made of three blocks that interacts through chan-
nels. Figure 4.c details the organization of the Adapta-
tiveSpeedControl block into three processes communi-
cating through \signalroute". These �gures are made
using a commercial SDL environment called Object-
Geode ([21]).

In a brief functional description, the Adapta-
tiveSpeedControl block receives positions from the
HostMachine block. The AdaptativeSpeedControl cal-
culates the speed required for each motor in order to
make all the motors reaching the desired position at
the same time. The motor with the longest distance
to go runs at the maximal speed and the speed of the
other motors are adapted to this one. The output
speed desired for each motor is send in the form of
speed control pulses to the MotorSender block. This
block converts the pulses into control signals to each
motor.

The main blocks of this speci�cation are:

� HostMachine process is the interface between the
user and the system, it takes care of segment stor-
age and motors' constants calculation.

� DistanceCalculation stores up to date information
about the distance to go for every motor accord-
ing to the current position.

� DistributionControl process identi�es the motor
that must run at maximal speed and sends scaled
commands to the other controllers.

� SpeedControl process converts the input steps into
a curve that respects the worst case maximum

(a) System structure

(b) ’Robot_Arm_Controller’ process structure

(c) ’AdaptativeSpeedControl’ block structure

Figure 4: Input SDL representation.

load acceleration and deceleration curves of the
motors.

� MotorSender is the interface to the stepper mo-
tors that converts the speed into frequency pulses.

The constraints for this design are: the time needed
to complete the total movement must be minimal, the
change in velocity must be as smooth as possible and
the overshoot at the end position must be minimal.

The SpeedControl block is responsible for comput-
ing the number of speed control pulses with a speci-
�ed �nal position and a current state of a motor. This
block contains a digital �lter based on a Fuzzy Logic
algorithm to generate the smooth acceleration curve.
During partitioning the SpeedControl and theMotorS-
ender blocks were assigned to hardware and the other
blocks to software. In this architecture implementa-
tion, the processes with extensive computation were
assigned to have a hardware implementation to respect
the system time constraints. Figure 5 shows the use
of re�nement primitives on the Solar representation.

The results of the re�nement steps is shown in So-
lar graphical representation. Figure 5.a-b shows the
structure of the initial SDL model when translated
into Solar. In this model, boxes represent design units,
lines represent wires and bold lines represent chan-
nels. Figure 5.c shows the result of a set of transfor-
mations, including at and merge operations on the
initial structure and, merge and map on the channels.
The abstract channels were mapped on protocols from
the library. In Figure 5.d-e we can see a graphical rep-
resentation of the �nite state machines resulting after
the application of the structural merge operations.

(c) Results of structural Flat, Merge and channel Map

(a) ‘Robot_Arm_Controller’ structure

(b) ‘AdaptativeSpeedControl’ structure

(d) Behavior of the software part

(e) Behavior of the hardware part

Figure 5: Re�nement steps.

In Solar, the behavior is represented by state tables
and shown as a hierarchy of nested boxes where each
box represent a state or a state table.

The SpeedControl andMotorSender blocks are allo-
cated eighteen times. An instance for each motor was
necessary to arrive at the desired throughput. In Fig-
ure 6 we can see the �nal system structure and parts
of the generated C/VHDL code.

In this example, the descriptions size in number of
lines were: 717 lines for the SDL initial input, 2848
lines for the resulting C �le resulted and, 853 lines in
VHDL for each motor instance.

7 Evaluation
This work is related to design methodology for

mixed hardware/software system. Our objective has
been to bridge the link between the system-level spec-

(a) ’Robot_Arm_Controller’ final structure

(b) Partial C-code of ’distancecalculation’ process

(c) Partial VHDL-code of ’speedcontrol’ process

Figure 6: Virtual prototype.

i�cation and hardware/software architecture design,
providing a short design time and fast exploration of
the design space. In order to achieve this goal we em-
ploy a user guided transformational approach.

The co-design methodology described for incremen-
tal re�nement satis�es the challenges outlined in Sec-
tion I.A, we have:

1. Semi-automatic approach to partition a func-
tional speci�cation: The designer's interaction is
though needed because realistic estimation meth-
ods are not available. It is possible to manipulate
complex systems in a wide range of application
domains.

2. Predictability of partitioning results: The user se-
lects the elements that will be transformed by
each operation. The result is immediately ob-
tained and a graphical viewer permits a quick de-

sign examination and control over the operation
ow.

3. Use of designer expertise: If the designer has a so-
lution in mind he/she can force it through the use
of the appropriate sequence of transformations.
The initial solutions obtained by the system can
be used by the designer in order to explore new
solutions.

4. Design exploration of implementation options:
The user guided transformational approach al-
lows the user to force the co-design process in
order to obtain a given solution. The Cosmos
system is fast enough to allow the exploration of
several solutions.

The main limitation of the present version is the
lack of good and reliable estimation functions. In
present version the user needs to produce a C/VHDL
model in order to have a realistic estimation of his
solution.

8 Conclusion
We presented a realistic semi-automatic method-

ology for co-design capable to handle multiprocessor
distributed systems. This methodology is based on a
powerful set of primitives for functional partitioning,
structural reorganization and communication trans-
formation. The co-design starts with a system-level
speci�cation given in SDL. This initial model is re�ned
through a user guided compilation process in order to
produce a distributed hardware/software architecture
described in C/VHDL.

The use of this approach was illustrated through an
example. In contrast with other co-design approaches,
the transformational approach provides an elegant so-
lution for the main challenges imposed by co-design of
distributed systems, i.e.

1. using the expertise of the designer for partition-
ing;

2. allowing the user to understand the details of the
co-design process;

3. taking into account partial solutions;

4. fast exploration of the co-design space.

Acknowledgments
This work was supported by: France Tele-

com/CNET under Grant 941B113; SGS-Thomson;
Esprit program under project COMITY (23015) and
project CODAC (OMI 24129) and; MEDEA program
under project SMT AT403.

References
[1] M. Abid, A. Changuel, A. A. Jerraya, Exploration

of Hardware/Software Design Space Through a
Codesign of Robot Arm Controller, In Proceedings
European Design Automation Conference with
EURO-VHDL'96, Geneva, Switzerland, pp. 42-47,
September 1996.

[2] Andrews, Concurrent Programming, Principles
and Practice, Benjamin/Cummings (eds), Red-
wood City, Calif., pp. 484-494, 1991.

[3] E. Barros, W. Rosentiel, X. Xiong, A Method for
Partitioning UNITY Language in Hardware and
Software, Proceedings of European Design Au-
tomation Conference (Euro-DAC), 1994.

[4] T. Ben-Ismail, K. O'Brien, A. A. Jerraya, PAR-
TIF: Interactive System-level Partitioning, VLSI
Design Vol. 3 no 3-4, pp. 333-345, 1995.

[5] K. Buchenrieder, A Prototyping Environment for
Control-Oriented HW/SW Systems using State-
Charts, Activity-Charts and FPGA's, Proceedings
of European Design Automation Conference with
Euro-VHDL, Grenoble, France, pp. 60-65, Septem-
ber 1994.

[6] J. Buck, S. Ha, E. Lee, Ptolemy: A framework
for simulating and prototyping heterogeneous sys-
tems, International Journal of Computer Simula-
tion, January 1994.

[7] P. Camurati, F. Corno, P. Prinetto, C. Bayol, B.
Soulas, System-Level Modeling and Veri�cation:
A Comprehensive Design Methodology, Proceed-
ings European Design & Test Conference (EDAC-
ETC-EuroASIC), Paris, France, February 1994.

[8] M. Chiodo, D. Engels, A. Vincentelli, A case Study
in Computer Aided Codesign of Embedded Con-
trollers, Design Automation for Embedded Sys-
tems, Vol. 1, No. 1-2, pp. 51-67, January 1996.

[9] J. M. Daveau, T. Ben-Ismail, G. F. Marchioro, A.
A. Jerraya, Protocol Selection and Interface Gen-
eration for HW-SW Codesign, IEEE Transactions
on VLSI Systems, Special issue on Design Au-
tomation of complex integrated systems, Septem-
ber 1996.

[10] DeMan, I. Bolsens, B. Lin, K. Van-Rompaey, S.
Vercauteren, D. Verkest, Co-design for DSP sys-
tems, NATO ASI Hardware/Software Codesign,
Tremezzo, June 1995.

[11] R. Ernst, J. Henkel, Th. Benner, M. Trawny, The
COSYMA Environment for Hardware/Software
Cosynthesis, Journal of Microprocessors and Mi-
crosystems, Butterworth-Heinemann, 1995.

[12] D. Gajski, F. Vahid, S. Narayan, J. Gong, Speci�-
cation and Design of Embedded Systems, Prentice-
Hall, Inc. Englewood Cli�s, New Jersey, 1994.

[13] J. Gong, D. Gajski, S. Narayan, Software Esti-
mation from Executable Speci�cations, Proceed-
ings European Design & Automation Conference
(EuroDAC), IEEE CS Press, Grenoble, France,
September 1994.

[14] R. Gupta, G. DeMicheli, Hardware-Software
Cosynthesis using Reprogrammable Components,
IEEE Design & Test of Computers, vol. 10, n. 3,
pp. 29-41, September 1993.

[15] D. Harel, Statecharts: a Visual Formalism for
Complex Systems, Science of Computer Program-
ming, n. 8, North-Holland, pp. 231-274, 1987.

[16] A. A. Jerraya, K. O'Brien, Solar: An Intermedi-
ate Format for System-Level Modeling and Syn-
thesis, in "Computer Aided Software/Hardware
Engineering", J. Rozenblit, K. Buchenrieder (eds),
IEEE Press, Piscataway, N. J. , pp. 147-175, 1994.

[17] A. Kalavade, E. A. Lee, The Extended Parti-
tioning Problem: Hardware/Software Mapping,
Scheduling, and Implementation-bin Selection,
Proceedings of Sixth Workshop on Rapid Systems
Prototyping, pp. 12-18, June 1995.

[18] C. W. Krueger, Software Reuse, ACM Comput-
ing Surveys, vol. 24, no. 2, pp. 131-183, June 1992.

[19] E. D. Lagnese, D. E. Thomas, Architectural par-
titioning of system-level synthesis of integrated cir-
cuits, IEEE Trans. CAD/ICAS, vol. 10, no. 7, pp.
847-860, July 1991.

[20] P. Marwedel, G. Goessens, Code Generation for
Embedded Processors (DSP), Kluwer Academic
Publishers, 1995.

[21] ObjectGeode,
http://www.verilogusa.com/og/og.html.

[22] P. Paulin, C. Liem, T. May, S. Sutarwala, DSP
Design Tool Requirements for Embedded Systems:
A Telecommunication Industrial Perspective, in
Journal of VLSI Signal Processing (special issue
on synthesis for real-time DSP), Kluwer Academic
Publishers, 1994.

[23] R. Saracco, P. A. Tilanus, CCITT SDL: an
Overview of the Language and its Applications'
Computer Networks and ISDN Systems, Special
issue on CCITT SDL, vol. 13 No 2, pp. 65-74, 1987.

[24] M. Srivastava, R. Brodersen, SIERA: A uni-
�ed framework for rapid-prototyping of system-
level hardware and software, IEEE Transactions
on Computer-Aided Design of Integrated Circuits
and Systems, pp. 676-693, June 1995.

[25] P. A. Subrahmanyam, W. Wolf, Hardware-
Software Codesign for Embedded Systems, in
ASP-DAC'95, Makuhari Messe, Chiba, Japan. pp.
1-72, 1995.

[26] C. A. Valderrama, A uni�ed model for co-
simulation and co-synthesis of mixed hard-
ware/software systems, ED&TC'95, Paris France,
6-9 March 1995.

[27] W. Wolf, Hardware-Software Co-Design of Em-
bedded Systems, PROCEEDINGS OF THE
IEEE, vol. 82, no. 7, pp. 967-989, July 1994.

[28] W. Wolf, Object-Oriented Co-Synthesis of Dis-
tributed Embedded Systems, in Proceedings
CHDL'95, IFIP, 1995.

	CD-ROM Home Page
	ICCAD97
	Front Matter
	Table of Contents
	Session Index
	Author Index

