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Abstract
An algorithm that remains in use at the core of many

partitioning systems is the Kernighan-Lin algorithm and a
variant the Fidducia-Matheysses (FM) algorithm. To un-
derstand the FM algorithm we applied principles of data
engineering where visualization and statistical analysis
are used to analyze the run-time behavior. We identified
two improvements to the algorithm which, without clus-
tering or an improved heuristic function, bring the perfor-
mance of the algorithm near that of more sophisticated al-
gorithms. One improvement is based on the observation,
explored empirically, that the full passes in the FM algo-
rithm appear comparable to a stochastic local restart in the
search. We motivate this observation with a discussion of
recent improvements in Monte Carlo Markov Chain meth-
ods in statistics. The other improvement is based on the ob-
servation that when an FM-like algorithm is run 20 times
and the best run chosen, the performance trace of the al-
gorithm on earlier runs is useful data for learning when to
abort a later run. These improvements, implemented with a
simple adaptive scheme, are orthogonal to techniques used
in state-of-the-art implementations, and therefore should
be applicable to other VLSI optimization algorithms.

1 Introduction
In discrete optimization, there are several broad classes

of techniques for developing an algorithm. Inlocal search
[1] a neighborhood space is created and algorithms up-
date a current solution by local moves around that space.
Some variations of this are gradient descent which makes
the most locally promising move at each step, simulated
annealing [16] which makes a move in a stochastic direc-
tion based on the theory of Gibbs sampling [8], and tabu
search which enforces restrictions on the ordering in which
variables can be updated [10]. Another approach,problem
decompositionbreaks the problem down into smaller com-
ponents, which are then solved separately, and their solu-
tions spliced back together to offer a solution to the original
problem.

Netlist partitioning [3] is one approach to the general
idea of problem decomposition. In the two-way min-cut
netlist partition problem, one is given a hypergraph whose

nodes are referred to as cells, and whose hyper-edges are
referred to as nets. The cells are to be split into two par-
titions such that the minimum number of nets have cells
in both partitions. These cut nets are referred to as the
cut-set. This is the hypergraph version of the graph par-
titioning problem. Typically, a balance constraint is also
enforced whereby the area of each partition must lie in a
given interval.

Hypergraph partitioning is generally useful in constraint
satisfaction problems for the following reason. For an ar-
bitrary constraint satisfaction problem,(V;C), where there
are variablesV and constraintsC, suppose the variables
are split into two partitionsV1 andV2 and constraintsC1

andC2 are wholly contained within the partitionsV1 andV2

respectively, and constraintsC1+2 are cut (soV1[V2 = V
andC1[C2[C1+2 = C). Then under reasonable condi-
tions on the nature of the constraints, one can first solve
the problem of(V1;C1), express the solutions forV1 as
partial evaluations of the cut constraintsC1+2 taking val-
uesV1+2, and finally solve the remaining induced problem�
V2+V1+2;C2+C0

1+2

�
. If the cutset sizejC1+2j is small

then one solves two smaller problems instead of one large
problem. While we restrict ourselves here to a two-way
partitioning, in general a good k-way partitioning can be
similarly invaluable for simplifying a problem. Related
graphical constructions are used to decompose probabil-
ity distributions, linear equations, and constraints in design
[15].

Common local search techniques for netlist partitioning
are the Kernighan-Lin (KL) algorithm and the Fidducia-
Matheysses (FM) algorithm [3]. While these have some
similarities with their cousin, the Lin-Kernighan (LK) al-
gorithm for the traveling salesman problem [12], the algo-
rithms are in fact very different. The LK algorithm is fre-
quently within 2% of optimal on large problems, whereas
the FM must be run repeatedly, perhaps 50 times, before a
solution would be found that is near optimal, and on large
problems (10,000 or more nodes), many times more might
be needed. Of course, by current theory and algorithms
one rarely knows what is truly optimal. One run of the FM
algorithm really corresponds to the inner loop of the LK al-
gorithm. Recent state of the art algorithms for partitioning
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such as PROP [5], PANZA [13], and STRAWMAN [11]
apply more clever heuristics for choosing the next node,
techniques for finding an initial partition, or they prepro-
cess the problem via clustering. However, two out of three
of these algorithms still retain the FM or KL algorithm at
their core, and usually run it repeatedly.

We apply principles ofdata engineeringwhere visu-
alization and statistical analysis are used to analyze data
gathered from a process, in this case the run-time perfor-
mance of the algorithm. Whereas Hauck and Borriello
[11] systematically explored a number of variations around
the standard FM algorithm, in this research, we sought
to understand and thereby improve specific details of the
existing algorithms. We have identified two statistically
motivated improvements to the algorithm. Interestingly
enough, these two improvements lead us to develop a new
algorithm which is comparable to PROP in performance on
some standard test problems. We see the general maxim
“speed over smarts” apply because our approach merely
places an adaptive wrapper around the simple “local search
with tabu list” core of FM without requiring sophisticated
approximation techniques or clustering.

For background on the netlist partitioning problem the
KL and FM algorithms, and many other algorithms of in-
terest, we refer the reader to the excellent review article by
Alpert and Kahng [3]. In our Section 3, experiment details
and protocol are discussed. Comparison of algorithms is
fraught with difficulty, so we take some care in this section
to outline the precautions we took. In the following sec-
tions we introduce the analyses we did that motivated our
work. We gathered some data on the runs, and performed
a number of basic statistical tests, from which we formu-
lated two hypotheses about how the algorithms were really
operating. These are also explained in Section 4 and later
in Section 6. From the understanding we gleaned from the
experiments, we devised a modified control for a FM-style
algorithm which is introduced in Section 7.

2 Basic Algorithm
The basic KL algorithm is outlined below, and for more

detail we refer the reader to [3] or many of the textbooks
in VLSI design. Some initial partition is used, in our case
a random partition. The algorithm uses a data structure
(usually buckets, linked lists or heaps) that gives for each
cell the immediate “gain” (measured in terms of reduc-
tion of cutset size) obtained if that cell were to be moved
to the other partition. The data structure handles opera-
tions such as “fetch the cell with the best gain,” “remove
the cell from the available list,” “update the cell’s gain,”
etc. The choice of this structure and its method for tie-
breaking (LIFO, FIFO) can impact the performance signif-
icantly. More advanced algorithms might have more ad-
vanced move heuristics such as 2-step look-ahead. The al-

gorithm proceeds inpasses. In each pass, all cells are ini-
tially unlockedand available to be moved. The unlocked
cell with the highest gain is drawn from the data structure,
moved to the other partition, and all other cell’s gains are
updated (in the simplest case this just involves looking at
the neighbors). Then this drawn cell is locked (or placed
on a tabu list) until the end of the pass. This proceeds until
all cells are locked, and no more moves are possible. So
all cells are swapped, and we now have a mirror of the par-
tition we started with (in the binary case). The algorithm
has just finished one pass through all the cells, and the least
cutset-size partition in the pass is taken as the starting par-
tition for the next pass. The KL algorithm typically has 5-
10 passes for the smaller circuits, and 10-30 for the larger
circuits. The algorithm terminates when no improvement
in cutset size is obtained for a pass. A good summary of
modifications to the basic algorithm, and further pointers
to literature can be found at [11, 3].

In our implementation in C, netlist partitions are con-
strained to contain between 45% and 55% of the area (the
45-55% balance criteria), and each cell and pin is assumed
to have unit area for this purpose. The algorithms are run
from random initial placements, and cells are stored in a
bucket structure, an array of doubly-linked lists indexed by
the gain from making a swap. Tie breaking (accessing the
doubly-linked list) is done in a LIFO fashion [11, 3].

3 Experimental details
All experiments are run on a DEC Alpha 5000/400MHz

with 128Mb of memory. The larger data sets used
for experimentation were obtained from Alpert’s web-
site (http://vlsicad.cs.ucla.edu/˜cheese/ )
which in turn are netlist versions of some standards from
TU Munich from their copy of the ACM/SIGDA Layout
Benchmark Suite from MCNC. Some smaller test prob-
lems were from the Berkeley OCTTOOLS environment.
The details are listed in Table 1. Notice in some cases the
pins are 0 due to the earlier processing of the netlist (in our
experiments pins and cells are treated identically). Trials
were also run with Dutt and Deng’s recently released C++
code for FM partitioning, lookahead, and their PROP al-
gorithm [5]. Use of Dutt and Deng’s code is discussed in
the appendix. We have compared our FM implementation
in both timing and resultant cutset size to Dutt and Deng’s
C++ code, with the timing differences explainable by our
use of C.

Finally, in comparing results from algorithms with un-
equal times, we use thebest-of-X wrapper. This wrapper
runs the faster algorithm multiple times so that the algo-
rithms being compared have approximately equal run time
(ignoring discretization effects). Results are then reported
for the best of the X ran. For instance if comparing PROP
against FM, typically a best-of-5 wrapper would be used.



Dataset Nets Cells Pads
C1355 245 73 204
C1908 282 249 58
C2670 529 348 296
C3540 811 761 72
C5315 907 729 296
C6288 1925 1893 64
biomed 5742 6514 0
struct 1920 1952 0
industry2 13419 12637 0
industry3 21923 15406 0
avq-small 22124 21853 65
avq-large 25384 25113 65
s9234 5844 5866 0
s13207 8651 8772 0
s15850 10383 10470 0
s35932 17828 18148 0
s38417 23843 23949 0
s38584 20717 20995 0
golem 144949 103048 0

Table 1: Summary of the Data sets

Our full algorithm corresponds to about 40-60 FM runs,
depending on the data set, so for each data set X is chosen
accordingly to make a time-equalized comparison.

4 Why full passes in the FM algorithm?
The basis of our research is the following observation.

Shown in Figure 1 is the microscopic behavior of the cost
function during a typical run of the algorithm. The X-axis
corresponds to swaps, and the Y-axis is the evaluated cost
function. The lines drawn vertically from the cost curve
down to the X-axis indicate the start/end of a pass. Note
that the first three passes have not been included in the fig-
ure since these would dwarf the above curves as the algo-
rithm is mostly performing rapid gradient descent initially.

What is most interesting about the figure is the inverted
“U” shape of the costs during each later pass. The first
pass or two (not shown) are “U” shaped as the algorithm
does rapid gradient descent. Note that the end point of
each pass is identical in cost to the starting point, due to the
symmetry of swapping every cell. The inverted “U” shape
means that the algorithm invariably chooses the best parti-
tion from near the beginning or the end of the pass. This
makes sense if one considers that the algorithm is merely
making local changes towards the end of a run, and the lo-
cal changes therefore lie near the beginning or end of the
pass. This raises the question, what does the effort for the
middle 95% of the pass achieve? We refer to afull passas
one that eventually locks every node during its course. In
view of this we made the following hypothesis:

Hypothesis 1: The use of full passes in the

Figure 1: Typical behavior of cost

later passes of the FM algorithm is serving the
purpose of performing a local restart for the al-
gorithm, and this goal can also be achieved by
stochastic local moves.

To test out the hypothesis, we designed and ran a num-
ber of experiments. We modified FM so that no pass would
run for more than half way through. We call thisHalf-
pass FM. Second, we implemented a stochastic variation
of FM. The stochastic variation has two complementary as-
pects: we would like to introduce shorter passes, but with
shorter passes alone, the performance of the algorithm is
poorer (results of an experiment not reported here). There-
fore, the introduction of a means of escaping local minima
is also introduced using stochasticity. Components of this
stochastic FM (SFM) are as follows:

Initial FM passes: Full passes are done for the first 4
passes, and thereafter, passes are stopped short, and oc-
casional stochastic passes are used to escape local minima.
The initial passes in FM are mostly running down-hill, with
the cutset size decreasing. The full passes initially seemed
to be important to settle the search in a good local region,
perhaps due to the nature of tabu search used in FM. Sig-
nificant stochasticity is injected into the algorithm by the
starting point for search so there seemed no benefit in in-
troducing additional stochasticity.

Short Passes: These passes are constrained to be less
than 15% in size of a full pass, and as the algorithm con-
verges, the pass length is decreased yet more using a simple
adaptive scheme. The current pass length is set to 200% of
the length of the successful prefix of the previous pass, but
is constrained to not go below 2% of a full pass. We refer



to these passes asshort passes. Note we view this imple-
mentation of a short pass is being a straw-man for the pur-
poses of our experimentation, and we make no claim about
the parameters (15%,200%,2%) being carefully tuned, or
theoretically justified. The justification for this scheme is
as follows: passes cannot be too short (hence, 2%) or no
neighborhood search is done; once a reasonable state is
found (in the initial 4 FM passes) passes do not need to be
long on the basis of evidence shown in Figure 1 (hence,
15%); finally, shortening passes on the basis of the length
of previous passes seems to be an inherently dangerous
practice (hence 200% of the previous pass).

Stochastic Passes: the second kind of pass we use is to
escape local minima. The stochastic pass does not choose
the top or best cell to move (according to gain), but instead
draws the “next best cell” repeatedly from the gain bucket
structure and then rejects it with probabilityδ, whereδ is
set so that the probability of drawing a down-hill (favor-
able) move if one exists is 0.8. That is, prefer swaps at
the top of the gain bucket array, and with probability about
0.8, move down-hill. Moreover, the stochastic pass will
moveρ percent of a full pass whereρ 2 [0:02;0:10] and
is selected uniformly. Again, we make no claim about the
parameters(0:8;0:02;0:10) being carefully tuned, or theo-
retically justified. On one particular problem the stochastic
pass performed poorly in comparison with the full pass,
and in this case we played with the parameterρ with some
success. The justification for this choice is as follows: the
stochastic pass is implemented to generally go down-hill
at each move, and the stochastic pass is allowed variable
length. We found the length of the stochastic pass is a
determiner of the algorithm’s performance, but in simple
studies we could not find a way to judge an appropriate
length so randomization of the length seemed a fair middle
ground. Clearly, the stochastic pass could not be too long
or too short. A long stochastic pass is no different to a full
restart of the algorithm.

Stochastic FM: Our stochastic FM goes as follows:
When the algorithm reaches a local optimum (the most re-
cent pass chose its first state as the best new state), it then
runs one stochastic pass to attempt to escape followed by
a sequence of regular short passes until another local op-
timum is reached. If the new local optimum is superior,
then this becomes the current state, otherwise the algorithm
restarts from the previous local optimum. In this way, the
algorithm repeatedly does gradient descent, and on reach-
ing a local minimum attempts to jump out with a stochastic
pass. As it stands this algorithm never terminates, so we
terminate if no improvement is gained after 100 passes, or
if a time-bound is exceeded. We call thisstochastic FM, as

Figure 2: Stochastic FM

given in Figure 2. Depending on the problem used and the
time bound, stochastic FM may do 2 to 20 times as many
passes as regular FM. While this approach might remind
one of simulated annealing, the algorithm is quite differ-
ent, as discussed in Section 5.

These two FM variations, half-pass and stochastic, are
compared empirically against standard FM in Table 2.
Stochastic FM labelled SFM is run for about the same time
as regular FM by setting the time-bound appropriately.
Half-pass FM is labelled 1/2-FM. It is clear that the half-

Dataset FM SFM 1/2-FM
C1355 22.6� 4.1 21.4� 3.2 28.5� 6.9
C1908 38.7� 3.3 36.6� 2.6 43.5� 6.9
C2670 38.2� 6.8 35.5� 4.4 40.7� 6.1
C3540 84.1� 14.6 80.7� 11.7 105� 21.1
C5315 47.2� 10.4 48.7� 3.6 68.3� 13.7
C6288 86.9� 24.3 94.3� 15.7 121� 24.6
biomed 214� 39.5 240� 18.8 256� 31.4
struct 55.1� 10.5 48.3� 5.5 92.8� 10.8
industry2 769� 193 923� 103 1269� 175
industry3 568� 185 516� 223 999� 347
avq-small 609� 132 698� 95.5 1196� 154
avq-large 774� 175 795� 78.8 1332� 185
s9234 93.4� 27.3 113� 24.4 201� 35.3
s13207 131� 22.7 144� 14.8 187� 25.1
s15850 186� 37.3 200� 36.7 301� 36.0
s35932 191� 47.4 305� 57.4 531� 75.1
s38417 521� 70.8 484� 38.6 560� 89.9
s38584 289� 105 481� 134 887� 139
golem 3156� 318 2990� 201 6228� 836

Table 2: Results for FM vs. Stochastic (SFM) vs. Half-pass
(1/2-FM)

pass FM is a terrible algorithm. It seems the full passes, de-



spite all their overhead, are necessary for the performance
of the FM algorithm1. Note we believe this is an artifact of
the property that for binary partitioning, the state at the end
of a pass is a mirror of the state at the start of the pass, and
we expect this would not hold for other related algorithms.
Stochastic FM is a reasonable algorithm. In some larger
problems it is inferior, however. Given that we have done
little to tune the performance of the stochastic component
of the algorithm, we believe there is considerable room for
improvement. Playing with the parameters on some hard
problems (for instance thes38584problem) showed we
could get considerably better performance. While it ap-
pears that one of our more efficient stochastic passes is not
comparable to one full pass in terms of contribution to the
final result, this is not in contradiction with our hypothe-
sis, and the stochastic FM algorithm is yielding reasonable
performance all up. We concluded that Hypothesis 1 has
good evidence in its favor.

One obvious question that arises from all this is: What
happens if the stochastic FM is allowed to run for longer?
We conducted a variety of experiments to explore this
question. It seems that in general, the longer the stochas-
tic algorithm is run, the better the performance over time
equalized best-of-X FM, yet more support for our hypoth-
esis. The longer stochastic FM algorithm routinely yields
improvements of up to 25% over time-equalized best-of-
X FM. The shorter (middle) version of stochastic FM in
these experiments runs for about 6 regular FM runs. The
longer version runs for the equivalent of 50 regular FM
runs but usually terminates far shorter since we have the al-
gorithm terminate if there is no improvement of cost after
100 passes. Surprisingly we found that best-of-X shorter
SFM was comparable with longer SFM in minimum cut-
set size after being time-equalized, so there seemed little
reason to distinguish between restarting the algorithm or
letting it run for longer.

5 Notes on Stochastic Search Algorithms
The stochastic technique we have introduced in the pre-

vious section could be compared with simulated anneal-
ing, for instance reviewed in [16]. We note that by most
accounts, standard simulated annealing is not competitive
with best-of-X FM so we did not implement it. There
are several differences between our stochastic FM and
standard implementations of simulated annealing. First,
stochastic passes are only introduced into our SFM algo-
rithm at the point of a local minima. All other times,
standard gradient descent via a variation of FM is used.
Thus our approach is sampling the space of local minima
stochastically, not the full search space. This would seem

1This is a fact we are sure many researchers and Kernighan and Lin
are aware of.

to be a more appropriate technique for optimization. Sec-
ond, our approach has a very different stochastic compo-
nent. The FM core maintains a list of all possible moves at
each point, and the stochastic element samples efficiently
from that, with a high probability of an upward move. In
contrast, standard simulated annealing only samples one
move at a time, so is not able to sample high quality moves
as efficiently as our variation.

Simulated annealing in its popular form is based on the
theory of Gibbs sampling. While Gibbs samplers are see-
ing a resurgence in statistics, it is well known that they
are inefficient. Some basic problems are discussed in [14],
and a simple explanation is as follows: Gibbs samplers
generally takeO(N2) to moveN steps, more or less be-
cause of the fact that the standard deviation of a sample
is O(1=

p
N), and hence the sum of the sample isO(

p
N)

away from the mean. One might argue that the use of
tabu lists in local search could be justified on the same
grounds—the full space is more slowly traversed if moves
are allowed to be entirely local instead of enforcing some
discrete analogue to line-search.

More recent methods for Monte Carlo Markov Chain
sampling use better proposal distributions or more sophis-
ticated methods for taking multiple steps. To use stochastic
methods in search, one clearly needs these more efficient
samplers. We view our approach as anad hoctechnique for
introducing stochasticity in search without having to suffer
the known inefficiencies of the Gibbs samplers inside stan-
dard simulated annealing.

6 Making multiple runs more efficient
One can see from Figure 1 that the last half of the run

is mostly just polishing the final solution. Moreover, the
standard deviations in the final cutset size for multiple FM
runs are quite large in comparison with the improvements
made in the last half or two-thirds of the run. We gathered
data over many runs of many different problems, and de-
termined that the correlation coefficient between the inter-
mediate and final cutset sizes approaches 1.0 towards the
end of the run, and is already quite high half-way through
the run.

Perhaps one could estimate part way through a run that
the current run could not, with high probability, improve
sufficiently fast to produce a new lower cost winner. The
plot of different costs in Figure 3 shows the progress of
the cutset size after each pass for 20 different runs on the
“avq-large” dataset. Lines are shaded grey depending on
the size of the final cutset. From the plot, the potential of
cutting-off runs at about pass 7 is clear. A good time to
perform the corresponding test on the “golem” dataset is at
pass 13. Since we cannot determine “7” or “13” ahead of
time for different datasets, we need to do so adaptively as
the algorithm gains empirical experience on the particular



Figure 3: Multiple FM runs from the avq-large domain

dataset. Such a strategy could be considered to be a serial,
on-line version of the “go with the winners” algorithm for
tree search suggested by Aldous [2].

We have implemented this algorithm in the following
simple way, shown in Figure 4. We place a “cutoff best-
of X” wrapper around the FM variant we are running. It
records data about runs and passes during operation. After
each pass, it performs a simple quality test to see if this
run is converging fast enough. The quality test is an adap-
tive component of the algorithm that improves in rigor as
the algorithm proceeds. It passes the first 5 runs without
trouble, and thereafter checks to see if the current pass has
cutset size as good as the same numbered pass in previous
runs that were in the lower 20-th percentile of final cutset
size. The lower 20-th percentile ofN runs is estimated con-
servatively: take the run with theMax(4;N=5)-th smallest
final cutset size. The wrapper runs X runs in all. Again,
this quality test is a simple,ad hocadaptive scheme we
have used as a straw-man for the purposes of testing out
the basic concept.

We applied this wrapper to standard FM. This makes the
best-of-X algorithm run about 20% faster, and appears to
have little detrimental effect on performance. When run-
ning best-of-X FM and cutoff b-of-20 FM for the same
amount of time, cutset size reductions where 0-15%, for
instance on golem mean cutset size went from 2618 down
to 2435 when using cutoff runs. We believe there is con-
siderable room for improvement in our implementation.
For instance, we could reduce running time further with
a smarter adaptive core.

7 A proposed new algorithm: ASFM
We have combined the above two affects—stochastic

passes to escape local minima, and cutoff runs to abort po-
tentially poor runs—in the one algorithm we callASFM,
where the “AS” stands for “adaptive stochastic”. Since the
code for these two modifications discussed in Sections 4

Figure 4: Cutoff best-of-X wrapper

and 6 do not interact, to implement this we merely set both
sets of switches in our implementation. We explored two
variations of this basic implementation, where the stochas-
tic element was allowed to run for a shorter or longer pe-
riod of time, corresponding in time to roughly 6 or 10-15
times a full FM run. As before, all results are time equal-
ized using the best-of-X wrapper. The results for these ex-
periments are given in Table 3.

The longer stochastic version appeared superior so we
chose that as our winning algorithm. This is our final
ASFM. As a comparison, we compare our algorithm with
Dutt and Deng’s PROP in Tables 4 and 5. Table 4 gives the
average performance for each algorithm over 10 repeated
trials. For the trials reported in Table 4, X for PROP is
about 5-7 runs, and X for FM is about 25-40. Because
of the differences in implementation, these comparisons
should be taken with a grain of salt. The problem where
key differences arise between ASFM and PROP iss38417,
and indicates the clear superiority of the heuristic rules in
PROP. However, with some tuning of our stochastic pa-
rameters, we were able to get closer to the performance of
PROP.

Results in Table 4 are the average of 10 runs. The best
results from these runs are given in Table 5, giving the best
performance achieved, and the total time taken to achieve
that for both ASFM (for ten trials) and best-of-X PROP
(which has its real times given), and the value X used for
PROP. For instance, for one run of38584, ASFM takes ap-
proximately 2 minutes, and 30 seconds onbiomed. When
compared with the results of Hauck and Borriello [11] run
on a much slower machine, the results in Table 4 are com-
parable, not the best results in Table 5. This difference
between ASFM and the quality of solutions in [11] can be
largely attributed to the effects of clustering. The final col-



Dataset b-of-X b-of-X cutoff cutoff
FM b-of-20 b-of-20

short SFM long SFM
C1355 17.6� 0.5 17.3� 0.5 17.3� 0.5
C1908 32.7� 1.6 30.9� 1.6 30.3� 2.2
C2670 25.4� 1.2 19.3� 1.7 21.9� 2.9
C3540 63.1� 1.1 60.2� 0.4 61.3� 1.3
C5315 36.8� 6.9 32.2� 3.2 32.3� 3.2
C6288 50.3� 0.7 50.0� 0.0 50.2� 0.6
biomed 135� 5.2 94.2� 4.1 83.0� 0.0
struct 42.0� 1.4 39.6� 1.7 38.8� 0.7
industry2 403� 64.4 293� 10.3 285� 27.9
industry3 262� 19.7 248� 6.7 247� 7.7
avq-small 300� 30.7 244� 25.9 252� 31.0
avq-large 391� 30.5 339� 37.2 304� 33.8
s9234 52.0� 2.3 47.5� 1.4 46.2� 1.9
s13207 87.9� 9.4 82.9� 5.6 78.1� 5.3
s15850 113� 12.8 85.9� 8.0 77.0� 7.9
s35932 117� 10.6 87.6� 13.8 83.5� 19.1
s38417 372� 22.6 310� 33.5 282� 28.7
s38584 136� 8.7 114� 12.9 84.1� 12.0
golem 2403� 119 2123� 137 1834� 247

Table 3: Results for best-of-X FM vs. short and long
ASFM

Dataset b-of-X b-of-X ASFM
FM PROP

C1355 17.6� 0.5 18.1� 1.0 17.3� 0.5
C1908 32.7� 1.6 30.8� 1.6 30.3� 2.2
C2670 25.4� 1.2 18.1� 0.9 21.9� 2.9
C3540 63.1� 1.1 64.3� 2.5 61.3� 1.3
C5315 36.8� 6.9 30.1� 2.3 32.3� 3.2
C6288 50.3� 0.7 51.0� 2.7 50.2� 0.6
biomed 135� 5.2 88.4� 6.0 83.0� 0.0
struct 42.0� 1.4 37.5� 3.3 38.8� 0.7
industry2 403� 64.4 246� 35.4 285� 27.9
industry3 261� 19.7 292� 33.0 247� 7.7
avq-small 300� 30.7 307� 53.6 252� 31.0
avq-large 391� 30.5 na 304� 33.8
s9234 52.0� 2.3 50.9� 5.5 46.2� 1.9
s13207 87.9� 9.4 88.6� 13.2 78.1� 5.3
s15850 112� 12.8 83.5� 12.0 77.0� 7.9
s35932 117� 10.6 72.2� 3.7 83.5� 19.1
s38417 372� 22.6 97.2� 18.0 282� 28.7
s38584 136� 8.7 70.2� 10.3 84.1� 12.0
golem 2403� 119 1785� 190 1834� 247

Table 4: Results for FM, PROP and ASFM

Dataset bof-10 time bof-X time X best
ASFM in secs. PROP in secs. publ.

C1355 17 4.8 17 6.8 73 *
C1908 29 5.05 29 7.25 58 *
C2670 18 10.20 17 14.84 73 *
C3540 60 19.71 61 28.35 47 *
C5315 29 24.5 28 35.3 62 *
C6288 50 55.6 50 81.3 33 *
biomed 83 312.1 84 451.3 51 83
struct 37 49.4 35 70.8 61 33
industry2 240 698.7 199 1007 38 174
industry3 241 811.1 243 1171 50 241
avq-small 204 1229 214 1762 77 129
avq-large 241 1583 na na 79 127
s9234 42 185.0 45 266 71 40
s13207 71 257.8 73 374 59 57
s15850 66 313.5 54 454 50 44
s35932 61 727.0 73 1052 60 42
s38417 231 995.3 57 1436 51 49
s38584 65 1102 56 1582 56 47
golem 1429 13197 1625 18952 113 *

Table 5: Best results for PROP and ASFM

umn in Table 5 lists the best known result from [11, 6, 13].

8 Discussion
First, we believe the interpretation of full passes we give

in Section 4 is a significant insight into FM and KL-style
algorithms. For instance, this explains why k-way parti-
tioning with FM and KL-style algorithms does not perform
well. For k-way partitioning withk greater than 2, the final
state in the pass is not a mirror of the initial state, so as
the pass proceeds, the states just drift away from the initial
state and a second local move is not created at the end of
the pass. The subsequent comparison between our mod-
ified stochastic search algorithm and simulated annealing
(discussed in Section 5) also indicates there is consider-
able potential for improved stochastic search algorithms of
a very different flavor to standard simulated annealing. Our
methods and results throws additional light on the role of
stochasticity in search, and alternatives was of introducing
it; compare with the empirical investigations by Gent and
Walsh on satisfiability [9].

The results of the experiments in Section 7, when
compared with results from state-of-the-art algorithms
recorded in the literature such as PROP [5] STRAWMAN
[11] and PANZA [13] are competitive. Since PROP is it-
self an iterated algorithm with full passes, and STRAW-
MAN uses FM as its basis, it is realistic that our approach
can also be used to speed up these algorithms even more.
We do not advocate the use of our approach to replace so-
phisticated algorithms such as these others, but rather for
fine-tuning of these approaches, or as a rapid prototyping
approach for other optimization problems where one can-
not afford the research effort required to devise more so-



phisticated techniques.
Because the stochastic and adaptive approach we use

has not undergone much fine tuning, we believe there is
considerable room for our ASFM algorithm to improve.
For instance, the stochastic pass in SFM could be further
explored, and the means of adapting the cutoff in ASFM
could be put on a more solid statistical foundation. Lo-
cal stochastic perturbation (similar to our stochastic pass)
has been explored, for instance, in satisfiability [9], and
it appears that well-motivated perturbations are superior
to random ones. Moreover, our algorithm has an embed-
ded adaptive component that illustrates, albiet in a simple
context, the use of learning within constraint satisfaction.
Simple adaptive schemes are beginning to see more use in
search [7], as authors attempt to fine-tune key algorithm
parameters dynamically.
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Appendix: Compilation and parameter de-
tails

Unfortunately our compiler (g++ version 2.7.2) would
not optimize Dutt and Deng’s code without producing
memory errors so we ran their code unoptimized. To be
fair, we therefore shrank their times by a factor of 0.7
when making timing comparisons. Our own code is writ-
ten in C and was optimized with “gcc -O2”. PROP was
run with the following parameters: algorithm=0 iter=1 ra-
tio=0.45 initProb=0.98 upper=1.75 lower=-1.75 min=0.4,
recommended by Dutt.
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