
Exploiting Off-Chip Memory Access Modes in High-Level Synthesis�

Preeti Ranjan Panda Nikil D. Dutt Alexandru Nicolau

Department of Information and Computer Science
University of California, Irvine, CA 92697-3425, USA

Abstract

Memory-intensive behaviors often contain large arrays
that are synthesized into off-chip memories. With the in-
creasing gap between on-chip and off-chip memory ac-
cess delays, it is imperative to exploit the efficient access
mode features of modern-day memories (e.g., page-mode
DRAMs) in order to alleviate the memory bandwidth bot-
tleneck. Our work addresses this issue by: (a) modeling
realistic off-chip memory access modes for High-Level Syn-
thesis (HLS), (b) presenting algorithms to infer applicabil-
ity of HLS with these memory access modes, and (c) trans-
forming input behavior to provide further memory access
optimizations during HLS. We demonstrate the utility of our
approach using a suite of memory-intensive benchmarks
with a realistic DRAM library module. Experimental re-
sults show a significant performance improvement (more
than 40%) as a result of our optimization techniques.

1 Introduction

As library modules used in ASIC designs increase in
complexity, existing high-level synthesis strategies will
need to be modified to accommodate various aspects of
complex interface protocols. One such complex module
that has universal use in a wide variety of applications, is
memory. Arrays in behavioral specifications are typically
assigned to memories during synthesis. If these arrays are
small enough, they may be mapped into on-chip RAMs.
However, many applications involve large arrays, which
need to be stored in off-chip memories, such as DRAM.
Consequently, it is essential to employ a reasonably accu-
rate model for memory operations during synthesis. Mod-
ern memories have efficient access modes (such aspage
modeandread-modify-write), that are known to improve the
access bandwidth[6]. Since the newer generation of mem-
ories (Extended Data Out DRAMs, Synchronous DRAMs,
etc.) all incorporate these access modes, it is important to

�This work was partially supported by grants from ARPA (MDA904-
96-C-1472), NSF (MIP-9708067) and ONR (N00014-93-1-1348).

develop a methodology for incorporating realistic memory
library interface protocols into high-level synthesis, so that
scheduling, allocation and binding algorithms can exploit
these features to generate faster and more efficient designs.

Several
memory-related issues, such as memoryallocation[2, 12],
packing[9, 8], estimation[3], andselection[1] have been ad-
dressed in previous research on high-level synthesis. Most
of them target register files (also referred in literature as
foreground memory) and on-chip RAMs and ROMs (some-
times calledbackground memory) that share space on the
same chip as an ASIC. The problem of clustering of behav-
ioral variables into single- and multi-ported register files has
been addressed in [17, 10, 16].

In [11], a scheduling algorithm usingbehavioral tem-
platesis described. A behavioral template represents a com-
plex operation in a Control Data Flow Graph (CDFG) by
enclosing several individual CDFG nodes, and fixing their
relative schedule. Templates allow a better representation of
memory access operations than single multicycled CDFG
nodes, and lead to better schedules. However, since dif-
ferent memory operations are treated independently, typical
features of realistic memory modules (e.g., page mode for
DRAM) cannot be exploited, because the scheduler has to
assume the worst-case delay for every memory operation,
resulting in relatively longer schedules.

In this paper, we make the following contributions to-
wards incorporation of off-chip memory accesses in high-
level synthesis:

1. We present models for the well-known operation
modes of off-chip memories (e.g., various DRAMs),
which can be effectively incorporated into HLS tools.

2. We present algorithms for inferring the applicability of
the memory access modes to memory references in the
input behavior.

3. We outline techniques for transforming the Control-
Data Flow Graph (CDFG) for the input behavior to in-
corporate the memory access modes, so as to obtain an
efficient schedule.

0-89791-993-9/97 $10.00 1997 IEEE

2 Memory Access Optimizations in DRAMs

Column Decoder

Cell Array10

10

Row
Addr

Col Address

Addr
Bus

Data Bus

Row
Decoder

Data Buffer

2
10

2
10

19 10 9 0

20−bit Address

Row Addr Col Addr

Page

Figure 1. Typical DRAM Organization

Figure 1 shows a simplified view of the typical organi-
zation of a DRAM with 220 words (= 1 M words), with the
core storage array consisting of a 210�210 square. A 20-bit
logical address for accessing a data word in the DRAM is
split into a 10-bitRow Address– consisting of the most sig-
nificant 10-bits (bits 19 . . .10); and a 10-bitColumn Address
– consisting of the least significant 10 bits (bits9 . . . 0). The
Row Decoder selects one of 210 rows (or DRAMpages) us-
ing the row address, and theColumn Decoderuses the col-
umn address to select the addressed word from the selected
page. Since the row and column addresses are used over
disjoint time intervals, the address bus is time-multiplexed
between row and column addresses in order to save pin
count. The following feature, calledpage mode access, is
an important organizational attribute that results in signif-
icant access time reduction:The row-decoding step phys-
ically copies an entire page into a data buffer (Figure 1),
anticipatingspatial locality, i.e., expecting future references
to be from the same page. If the next memory access is to
a word in the same page, the row-decoding phase can be
omitted, and the data fetched directly from the data buffer,
leading to a significant performance gain.

Modern DRAMs commonly utilize the following six
memory access modes:

Read Mode – single word read, involving both row-
decode and column-decode.

Write Mode – single word write, involving both row-
decode and column-decode.

Read-Modify-Write (R-M-W) Mode – single word up-
date, involvingread from an address, followed by write
to the same address. This mode involves one row-
decode and column-decode stages each, and is faster
than two separate Read and Write accesses.

Page Mode Read– successive reads to multiple words in
the same page.

Page Mode Write – successive writes to multiple words in
the same page.

Page Mode Read-Modify-Write – successive R-M-W
updates to multiple words in the same page.

In order to motivate the need for explicitly modeling
and exploiting these modes, we demonstrate the effect on
design performance in HLS between scheduling with nor-
mal read operation, versus scheduling that exploits the page
mode read of a DRAM. The sample library memory mod-
ule used in this paper is the IBM11T1645LP Extended Data
Out (EDO) DRAM, and the input behavior is theFindAv-
erageroutine in Figure 3(a), where the scalar variableav
is mapped to an on-chip register, and the arrayb[0 . . . 3] is
stored in off-chip memory.

Row
Addr

Data

Col
Addr

Stage 1:
RowDecode
(45ns)

Stage 3:
Precharge
(45 ns)

Stage 2:
ColDecode (15 ns)

Trc = 105 ns

RAS

CAS

Address

Data

Tcas = 15 ns

Tras = 45 ns

ROW COL

VALID

(a) (b)

Tp = 45 ns

Figure 2. (a) Timing diagram for Memory Read cycle (b)
Model for Memory Read operation

Figure 2(a) shows a simplified timing diagram of theread
cycleof the 1M � 64-bit EDO DRAM. The Memory Read
cycle is initiated by the falling edge of the RAS (Row Ad-
dress Strobe) signal, at which time the row address is latched
from the address bus. The column address is latched at the
falling edge of CAS (Column Address Strobe) signal, which
should occur at leastTras = 45 ns later. Following this, the
data is available on the data bus afterTcas = 15 ns. Finally,
the RAS signal is held high for at leastTp = 45 ns to allow
for bit-line precharge, which is necessary before the next
memory cycle can be initiated.

From the above timing characteristics, we can derive a
CDFG node cluster for the memory read operation, which
consists of 3 stages (Figure 2(b)): (1) row decode; (2) col-
umn decode; and (3) precharge. The row and column ad-
dresses are available at the first and second stages respec-
tively, and the output data is available at the beginning of
the third stage. Techniques for formally deriving the node
clusters from interface timing diagrams have been studied in
the interface synthesis works such as [4], and can be applied
in this context.

Assuming a clock cycle of 15 ns, and a 1-cycle delay
for the addition and shift operations, we derive the schedule
shown in Figure 3(b) for the code in Figure 3(a), using the
memory read model in Figure 2(b). Since the four accesses

to arrayb are treated as four independent memory reads,
each of these incurs the entire read cycle delay ofTrc = 105
ns, i.e., 7 cycles, requiring a total of 7� 4 = 28 cycles.

(c)

(d)

av = (b[0] + b[1] + b[2] + b[3]) / 4

FindAverage:

(a)

(b)

RAS

CAS

Data

ROW COL COL COL COLAddr

VAL VAL VAL VAL

Optimized Schedule: 3 + 2 x 4 + 3 = 14 cycles

Row (b[0])

Col (b[0]) Col (b[1]) Col (b[2]) Col (b[3])

av

RowDecode
3 cycles

2 cycles 2 cycles 2 cycles 2 cycles Precharge
3 cycles

2

Unoptimized Schedule: 7 x 4 = 28 cycles

Row (b[0])

Col (b[0])

Row (b[1])

Col (b[1])

Row (b[2])

Col (b[2])

Row (b[3])

Col (b[3])

av

7 cycles

2

Figure 3. (a) Code forFindAverage(b) Treating the mem-
ory accesses as independent Reads (c) Timing diagram
of page mode readcycle (d) Treating the memory accesses
as one page mode read cycle

However, DRAM features such as page mode read can
be efficiently exploited to generate a much tighter sched-
ule for behaviors such as theFindAverageexample, which
access data in the same page, in succession. Figure 3(c)
shows the timing diagram for thepage mode readcycle, and
Figure 3(d) shows the schedule for theFindAverageroutine
using the page mode read feature. Note that the page mode
does not incur the long row decode and precharge times be-
tween successive accesses, thereby eliminating a significant
amount of delay from the schedule. In this case, the column
decode time is followed by aminimum pulse widthdura-
tion for the CAS signal, which is also 15 ns in our example.
Thus, the effective cycle time between successive memory
accesses has been greatly reduced, resulting in an overall
reduction of 50% in the total schedule length.

The key feature in the dramatic reduction of the schedule
length in the example above is the recognition that the input
behavior is characterized by memory access patterns that are
amenable to the page mode feature, and the incorporation of
this observation in the scheduling phase. In the following
sections, we first provide synthesis models for the various

access modes available in modern off-chip memories, and
then describe a technique that incorporates the models into
HLS by transforming the input behavior accordingly.

3 Representing Memory Accesses for HLS

Row
Addr Col

Addr

Data Out

Data In Col
Addr

RowDecode ColDecode (Read) ColDecode (Write) Setup Precharge

Figure 4. CDFG nodes used for memory operations

Instead of a single memory access node in the CDFG,
we model memory operations corresponding to the differ-
ent access modes using finer-grained memory access nodes
(Figure 4). TheRowDecodenode is a multicycle opera-
tor that marks the beginning of any memory operation. The
node has one input – the row address of the location, which
should be ready before this node is scheduled. TheColD-
ecode (Read)andColDecode (Write)nodes form the sec-
ond stage of the memory read and write operations. The
ColDecode (Read)node has one input – the column ad-
dress, and one output – the data read. TheColDecode
(Write) node has two inputs – the column address, and the
data to be written. TheSetupnode serves as a “delay” node
in order to implement minimum delay constraints between
successive stages of a memory operation. ThePrecharge
node is a multicycle node that marks the last stage of a mem-
ory cycle. Physically, it signifies the restoration of the mem-
ory bit-lines to the initial state, so that the next operation can
be initiated after the completion of this stage.

Row
Addr

Data Col
Addr

Stage 1:
RowDecode
(45ns)

Stage 3:
Precharge
(45 ns)

Stage 2:
ColDecode (15 ns)

(a) Write Mode (b) Read−Modify−Write Mode

Schedule Length = 10 cycles

Row(a[0]) Col(a[0])

3

Read−Modify−Write Cycle

a[0] = a[0] * 3

Code:

Figure 5. CDFG models of memory operations

For each memory access mode, we build composite
memory access nodes in the CDFG, based on the access pro-
tocol for that mode.

Read Mode: This mode was described in Section 2.
Write Mode: The memory write operation has simi-

lar timing characteristics to the read operation. The CDFG

node cluster for the write cycle is shown in Figure 5(a). The
ColDecode node used in the second stage is theColDecode
(Write) node identified in Figure 4.

Read-Modify-Write Mode: The Read-Modify-Write
(R-M-W) mode is illustrated in Figure 5(b) with a simple
behavioral statement:a[0] = a[0] � 3, which involves the
reading and writing of memory address fora[0]. The sched-
ule requires 10 cycles. Note that, an extra control step is
introduced between thesetupandwrite stages, because the
‘�’-operation requires 2 cycles. If the operation were to be
modeled as separate read and write cycles, we would re-
quire: 2� 7 = 14 cycles.

Page Mode Read: This mode was described in Sec-
tion 2. ThePage Mode Write andPage Mode R-M-W
modes are constructed similarly.

4 Incorporation of Memory Models in HLS

The memory operations described in Section 3 were de-
signed to exploit typical behavioral memory access patterns.
This requires analysis of the CDFG to identify behavioral
patterns that can be optimized by the various efficient mem-
ory access modes, and transformation of the CDFG to in-
corporate the optimizations. The actions that need to be
performed include: (1)clusteringof scalar variables; (2)
reorderingof memory accesses in the CDFG; (3)hoisting
conditional memory operations; and (4)loop transforma-
tions.

4.1 Clustering of Scalars

Scalar variables are normally assigned to on-chip regis-
ters. However, if the number of such variables is large, it
might be necessary to store these variables in memory. A
related optimization problem that arises in this address as-
signment is that, consecutive accesses to two different scalar
variables can be implemented as a single page mode opera-
tion if both are located in the same memory page. Suppose
the off-chip memory has a page size ofP words. The fol-
lowing problem needs to be solved:Group the scalar vari-
ables into clusters of size P (to reside in the same memory
page), such that the number of consecutive accesses to the
same memory page is maximized. The technique we use is
similar to the solution of an analogous problem in the con-
text of cache memory, where scalar variables are grouped
into clusters of sizeL (whereL is the size of acache line),
so as to minimize the number of cache misses[14].

At the end of this step, all variables are assigned a mem-
ory address. We assume, for convenience, that the first ele-
ment of all arrays are aligned to a memory page boundary.
Similarly, each row of a multi-dimensional array is padded
so that all rows begin at a page boundary, unless the array
is small enough to be accommodated in one page.

4.2 Reordering of Memory Accesses

The correct ordering of memory accesses is critical for
exploiting efficient memory access modes such as R-M-W.
For example, in the code: “a[i] = b[i] + a[i]”, the sequence
of accesses:“Read b[i] ! Reada[i] ! Write a[i]” al-
lows the utilization of the R-M-W mode for the addressa[i],
while the sequence“Read a[i] ! Readb[i] ! Writea[i]”
does not allow the mode, because of the intervening“Read
b[i]” operation.

(b) DFG for code (c) Graph of R−M−W paths

t = b[i] + c[i]
c[i] = t
s = t + d[i]
b[i] = s
d[i] = s

(a) Code segment

Path b[i]
Path c[i]

Path d[i]

d [i]

c [i]

c [i]

d [i] b [i]

b [i]

WriteRead

Path
b[i]

Path
c[i]

Path
d[i]

Maximal Clique

Figure 6. Ordering of memory operations determines
possibility of exploiting R-M-W mode

Figure 6(a) shows an example basic block of code for
which the corresponding DFG is shown in Figure 6(b). Fig-
ure 6(b) also shows three possible R-M-W paths, for ad-
dressesb[i]; c[i], andd[i]. Note that it is not possible to im-
plement the memory accesses to all the three locations as
R-M-W operations. For example, if we implement thec[i]
path as an R-M-W operation, then theb[i] path can no longer
be implemented as R-M-W, because“Read b[i]” has to oc-
cur before“Write c[i]” , thus forcing theb[i] path to be split
into separate“Read b[i]” and“Write b[i]” operations.

In general, only one of a pair of intersecting paths can be
implemented as R-M-W. In order to minimize the schedule
length for a DFG, we need to maximize the number of R-M-
W paths. The problem can be shown to be NP-complete by
building a graphG, in which the nodes represent the DFG
paths, and an edge exists between two nodes if the corre-
sponding paths are non-intersecting (Figure 6(c)). Deter-
mining the maximal number of R-M-W paths in the DFG
is now the problem of finding themaximal cliquein G,
which is known to be NP-complete. The greedy heuristic
described in [15] can be used to solve this problem. How-
ever, since the number of such paths are very small in typical
behaviors, an exhaustive solution can also be used.

4.3 Hoisting

Due to the time-multiplexing of the memory address
bus between row and column addresses, a scheduling opti-
mization is possible when two addresses in the same mem-
ory page are accessed from different paths of a conditional

(a)

p = d * 2
c = p + 1
if (c > 0)
 y = a[0]
else
 y = a[1]
end if

Sample
Code

Unoptimized
Schedule
(10 cycles)

Optimized
Schedule
(7 cycles)

(b) (c)

+

>

d 2

1

0

Row(a[0]) Row(a[1])

Col(a[0])

y y

Col(a[1])

n y

+

>

1

0

Col(a[0])

y y

Col(a[1])

d 2 Row(a[0])
= Row (a[1])

yn

Figure 7. Hoisting Optimization

branch. Consider the behavior shown in Figure 7(a). As-
sume that variablesp; c; d; andy are stored in on-chip reg-
isters, whereas arraya is stored in off-chip memory. Either
a[0] ora[1] is fetched from memory, depending on the result
of the conditional evaluation (c > 0). A simple schedule,
using the 3-stage read cycle model of Figure 2(b), and the
assumption that+; �; and> operations require 1 cycle, re-
sults in a schedule of length 10 cycles (Figure 7(b)). How-
ever, the knowledge thata[0] anda[1] reside in the same
memory page (memory address assignments are statically
computed) allows us to infer that both have the same row
address, and hence, the read cycle could be initiated be-
fore the comparison operation. The schedule resulting from
this optimization results in a length of only 7 cycles (Fig-
ure 7(c)). Outputy is available after 7 cycles in the unop-
timized schedule, but after only 4 cycles in the optimized
schedule. We call this optimization –hoistingof the Row-
Decode stage. Thehoistingoptimization is also applicable
for two elementsx andy in the same page, accessed in dif-
ferent conditional pathsC1 andC2 in the following cases:
(1) x is written inC1 andy is written inC2; (2) x is read in
C1 andy is written inC2; and (3)x is read or written inC1,
and there is no memory access inC2[15].

4.4 Loop Transformations

In order to utilize the page mode operations, the CDFG
for the behavior has to be transformed to reflect the page
mode operation. Since most of the computation occurs in
the innermost loops of nested loop structures, we concen-
trate on the memory accesses in the innermost loops.

Loops accessing single page per iteration

If a loop accesses locations from only a single memory page
per iteration, e.g., there is only one read operation (Read

a[i]) per iteration, the page mode operations can be applied
directly by restructuring the loop so that it iterates over the
array in blocks ofP iterations (whereP is the page size,
in words), so that we have one page mode read for every
P iterations. Figure 8(a) shows a section of the CDFG of
an example loop with a single memory access (a[i]) in one
iteration. We introduce an inner loop in which uptoP el-
ements from the same page are accessed. The transformed
CDFG is shown in Figure 8(b). Note that the RowDecode
and Precharge nodes enclose the inner CDFG loop, forming
one complete page mode operation.

i = 0

i < N

i = i + 1

Read (a[i])

Setup

Col (a[i])

j = j + P i = i + 1

Page
Mode
Operation

i = j
k = j + P

j <= N

j = 0

Row (a[j])

(i < k) & (i < N)

(a) CDFG for original code (b) Transformed CDFG

Figure 8. CDFG Transformation for page mode opera-
tion

Loops accessing multiple pages per iteration

If more than one array is accessed in one loop iteration,
the transformation shown in Figure 8 cannot be directly ap-
plied, because different arrays usually lie in different mem-
ory pages. In such cases, we can use a well known trans-
formation, loop unrolling[7], to create the opportunity for
utilizing page mode operations. Figure 9(a) shows an ex-
ample loop in which three different arrays,a; b, andc are
accessed in an iteration. If the loop is unrolled once (Fig-
ure 9(b)), elements of the same array can be accessed in
succession, leading to performance improvement resulting
from page mode operation. In Figure 9,r1; s1; t1, etc. are
registers into which memory elements are read in aRead
operation, and from which memory elements are written in
a Writeoperation.

(a) Code accessing multiple
arrays in loop

(b) Transformed code exposes
Page Mode Access

for (i = 0; i < N; i ++)
 r1 = Read a[i]

 s1 = Read b[i]

 Write c[i], t1
end for

a, b, c in
different
pages

for (i = 0; i < N; i=i+2)
 r1 = Read a[i]
 r2 = Read a[i+1]

 s1 = Read b[i]
 s2 = Read b[i+1]

 Write c[i], t1
 Write c[i+1], t2
end for

Page Mode
Read

Page Mode
Read

Page Mode
Write

Figure 9. Loop unrolling helps exploit page mode oper-
ations

Note that the unrolled loop in Figure 9(b) has a higher
register requirement. Thus, the unrolling factor is con-
strained by the maximum number of on-chip registers avail-
able. Suppose we are given a register file ofR registers. We
first do an initial scheduling of the loop body (basic block)
usinglist scheduling[7], to determine the number of regis-
ters,r, required for one iteration. Letm be the number of
memory accesses in the loop body. Note that all memory
accesses will not necessarily result in page mode accesses
after unrolling. Letm0 be the number of accesses that re-
sult in page mode accesses. If the loop is unrolledi times,
we need(m0 � i) registers to store the(m0 � i) values. How-
ever, the remaining(r�m0) registers, which are used in the
loop body to store temporary variables and non-page mode
memory accesses, need not be duplicated, since they can be
reused in the different iterations that constitute the unrolled
loop. Thus, if the total number of registers allowed in the
register file isR, we must have:

m0 � i + (r �m0) � R (1)

i.e., the loop unrolling factor,i, is given by:

i �
R� r +m0

m0
(2)

or

i =

�
R� r +m0

m0

�
(3)

Loops with disjoint subgraphs in body

A loop body is said to consist of disjoint subgraphs if the
DFG representing the body (basic block) can be divided into
more than one subgraph with no data dependence across
their memory operations (i.e., no data dependence edges
from one subgraph to the other). In such a case, each sub-
graph with at least one memory access in it, can be split into
a different loop in order to better utilize page mode memory
operation.

for (i = 0; i < N; i ++)
 A[i] = 0
 B[i] = 0
end for

No Page
Mode Write
Without
Unroll

(a) (b)

for (i = 0; i < N; i ++)
 B[i] = 0
end for

for (i = 0; i < N; i ++)
 A[i] = 0
end for Page Mode

Write Possible
Without Unroll

Figure 10. (a) Loop with disjoint subgraphs in body –
there is no data dependence between the 2 statements
(b) Split loop – page mode write can now be applied to
the individual loops

An example loop with disjoint subgraphs in its body is
shown in Figure 10(a). The two statements in the loop body
have no data dependence. We can split the loop into two
loops, as shown in Figure 10(b), so that page mode write can
now be applied to the individual loops without unrolling.
Page mode operations without loop unrolling are prefer-
able because unrolling increases the register requirements,
and also limits the number of memory accesses in one page
mode cycle, due to register file size constraints.

5 The CDFG Transformation Algorithm

AlgorithmTransformCDFGin Figure 11 outlines the se-
quence of steps for transforming the CDFG of the behav-
ior into an optimized form, so that a scheduling algorithm,
such as list scheduling, can be invoked on the transformed
CDFG. After performing the scalar variable clustering step,
we perform the Reordering, Hoisting and Loop Splitting
transformations in sequence, followed by restructuring of
the resulting loops, if applicable. The complexity of the
algorithm is that of the dominant loop restructuring (with
multiple pages per iteration) step —O(Bn2), wheren is
the number of CDFG nodes andB is the number of loop
nests in the behavior.

6 Experiments

We tested our proposed optimizations for utilizing effi-
cient memory access features, on benchmark examples from
the digital signal processing and scientific computing do-
mains, all of which share the common characteristic that
they process large data arrays. We present a summary of
our experimental results in this section.

Column 1 of Table 1 shows the list of benchmark ex-
amples (taken from [13]) on which we performed our ex-
periments. Beam(Beamformer) is a DSP application in-
volving temporal alignment and summation of digitized sig-
nals from anN -element radar antenna array.Dequantis
the de-quantization routine in the MPEG decoder applica-
tion. DHRC(Differential Heat Release Computation) is an
algorithm modeling the heat release in a combustion engine.
IDCT (Inverse Discrete Cosine Transform),LeafComp, and
LeafPlusare modules from the MPEG decoder application.

Algorithm TransformCDFG
Input: G – CDFG;R – Max. allowed
Register File Size;P – Memory Page Size
Output: Transformed CDFG
1.Cluster scalar variables into groups of sizeP
and assign memory addresses.
2.for each basic blockB in G do

Reorderto exploit R-M-W and page mode inB.
3.for each conditional node inG

PerformHoist transformation, if applicable.
4.for each innermost loopL in G

PerformLoop Splittingtransformation, if applicable.
5.for each loopL0 in updatedG

if single page accessed in one iteration
PerformLoop Restructuringfor page mode

else
PerformLoop Unrollandrestructuring

Figure 11. Algorithm for incorporating memory opti-
mization transformations into the CDFG for scheduling

Madd and MMult are matrix addition and multiplication
routines respectively.Lowpassis an image processing ap-
plication that applies a low-pass filter to an image.SOR
(Successive Over-Relaxation) is an algorithm used in eval-
uating partial differentiation equations. Column 2 shows the
number of basic blocks in each benchmark.

Memory Modes Optimizations
Benchmark B rmw pr pw prmw C R H L

Beam 10 Y Y Y N N Y N Y
Dequant 5 N Y Y N N N Y Y
Dhrc 2 N Y N N N N N N
Idct 13 N Y Y N N N N Y
LeafComp 7 N Y Y N N N Y Y
LeafPlus 5 N Y Y N N N Y Y
Lowpass 4 Y Y N N N Y N N
Madd 4 N Y Y N N N N Y
MMult 6 N Y N Y N N N Y
SOR 4 Y Y N N N Y N N

Table 1. Memory optimizations applied to benchmarks

Table 1 shows the memory modes utilized by the mem-
ory accesses in the various benchmark examples, and the
applicable optimizations. Columns 3, 4, 5, and 6 show (with
letter ‘Y’) which examples had memory access patterns for
which the Read-Modify-Write (rmw) mode, page mode read
(pr), page mode write (pw), and page mode read-modify-
write (prmw) respectively, were applied. Columns 7, 8, 9,
and 10 show the CDFG transformation techniques –Clus-
tering(C),Reordering(R), Hoisting(H), andLoop Transfor-
mations(L) – that were applied to each example. Note that
the scalar clustering technique could not be applied to any of
the examples, as the number of scalars in the example was

too small, and could be stored in the register file we used.
We compared the execution time due the schedules gen-

erated by 3 techniques: (1)Coarse-grain – the traditional
HLS approach, where memory access operation is treated
as a multicycled operation; (2)Fine-grain – a more refined
memory access model (e.g., the template strategy of [11]),
with each memory access operation being treated as an in-
dependent 3-stage operation; and (3)Optimized – our pro-
posed CDFG transformation-based approach, followed by
the application of list scheduling.

We used the approximate timing characteristics of the
IBM11T1645LP EDO DRAM memory chip, with a 15ns
clock. We used the following operator delays: ALU – 1
cycle; multiplier – 2 cycles; divider – 4 cycles; RowDe-
code and Precharge operators – 3 cycles; and ColDecode
and Setup operators – 1 cycle. We used a memory page size
of 256 words and register file size of 16 words. We assumed
that the number of ALUs, multipliers, and dividers is 1 each;
and the register file has 2 read ports and 1 write port.

Benchmark Cycle Count (Coarse-Grain)

Beamformer 1,251,844
Dequant 4,226
Dhrc 6,784
Idct 63,521,284
LeafComp 2,562
LeafPlus 3,074
LowPass 1,159,202
Madd 360,706
MMult 46,285,058
SOR 690,860

(a)

Beam Dequ Dhrc Idct LeafC LeafP LowP Madd MMult SOR
Benchmark

0

20

40

60

80

100

T
ot

al
 C

yc
le

s
(N

or
m

al
iz

ed
)

Coarse−Grain
Fine−grain
Optimized

(b)

Figure 12. (a) Cycle count for Coarse-Grain (b) Sum-
mary of Results

Figure 12 summarizes the experimental results for the
benchmark examples on which we tested our technique.
Figure 12(a) shows the number of clock cycles required by

the coarse-grain technique for each benchmark. On thex-
axis of Figure 12(b), we show the benchmark examples,
and on they-axis, we show the total execution times for the
schedules generated by the three techniques: Coarse-grain,
Fine-grain, and Optimized, normalized to the cycle count of
Coarse-grain, which is taken as 100.

The Optimized technique results in the fastest sched-
ules, as seen from Figure 12(b). On an average, Opti-
mized achieves a performance improvement of 45.2% over
Coarse-grain, and an improvement of 40.8% over the Fine-
grain technique. The performance improvement in the case
of Optimized is the consequence of efficient utilization of
the memory features such as read-modify-write and page
mode.

The performance improvement for the Optimized tech-
nique above could be at the expense of a slight increase in
controller area due to increased number of control states as
compared to the controllers required for the Coarse-grain
and Fine-grain schedules when the page mode operation
is used. We used themisII synthesis package[5] to opti-
mize the control logic for each case, and studied the con-
trol overhead for our optimization technique. We observed
that the controllers generated from the Optimized schedules
have an average area only 14.9% larger than those generated
from Coarse-grain, and 10.3% larger than those generated
from Fine-grain, for the benchmark examples[15]. Given
the significant improvement in performance with our opti-
mizations, we believe the control overhead is justifiable.

An important property of dynamic RAM is that the inter-
nal data bits need to be refreshed at regular intervals, since
each bit is implemented as a capacitor. The refresh intervals
of typical DRAMs are fairly large — the IBM11T1645LP
has a refresh interval of 128 ms. The time taken to perform
a singleRefresh cycle(which results in one whole DRAM
page being refreshed) is comparable to the duration of any
other access, such asRead cycle. As a post-processing step,
the schedule generated from the input behavior is adjusted
to incorporate the refresh cycles, ensuring that they do not
overlap in time with any other memory operation, since the
DRAM is unavailable for Reads and Writes during the re-
fresh. This is not an overhead due to our approach because
the refresh circuitry is needed for DRAMs, no matter what
synthesis technique is used. The details are described in
[15].

7 Conclusions

Off-chip memories, such as DRAMs, have several well-
known features that permit efficient data access. Present-
day synthesis tools and algorithms targeting on-chip mem-
ory storage treat different behavioral memory accesses inde-
pendent of each other, thereby ignoringseveral optimization
possibilities in memory accesses that arise in the context of
off-chip memories. We presented synthesis models for var-

ious off-chip memory access modes, as well as a technique
for analyzing a behavior to determine memory accesses that
can be optimized by exploiting the available memory fea-
tures. We transform the CDFG of the given behavior into
an optimized form, incorporating the efficient memory ac-
cess features. Our experiments, based on the timing char-
acteristics of a commercial DRAM chip, have indicated an
average performance improvement of more than 40%, as a
result of our optimization techniques.

Our technique for incorporating the synthesis models for
memories into HLS is independent of the actual HLS tasks
of scheduling, etc., and can be easily incorporated as a pre-
processing step into existing HLS design flows. The tech-
nique could also be utilized to optimize the interface with
other types of modules with complex interfaces and timing
characteristics, such as LAN controllers. Future research
includes extending the optimization techniques to work in
the presence of more complex array index expressions.

References
[1] S. Bakshi and D. Gajski, “A Memory Selection Algorithm for

High-Performance Pipelines,” Proceedings of EuroDAC, 1995.
[2] F. Balasa, et al., “Dataflow-driven Memory Allocation for Multi-

dimensional Signal Processing Systems,” Proc. ICCAD, 1994.
[3] F. Balasa, F. Catthoor, and H. D. Man, “Background Memory

Area Estimation for Multidimensional Signal Processing Sys-
tems,” IEEE Trans. on VLSI Systems, Vol. 3, No. 2, June 1995.

[4] P. Chou, R. Ortega, and G. Borriello, “Interface Co-Synthesis
Techniques for Embedded Systems”, Proc. ICCAD, Nov. 1995.

[5] R. K. Brayton, et al., “MIS: A multiple level logic optimization
system,” IEEE Trans. on CAD, vol. CAD-6, no. 6, Nov 1987.

[6] M. J. Flynn, “Computer architecture – pipelined and parallel pro-
cessor design,” Jones & Bartlett publishers, 1995.

[7] D. Gajski, et al., “High Level Synthesis: Introduction to Chip and
System Design,” Kluwer Academic Publishers, 1992.

[8] P. K. Jha and N. Dutt, “Library mapping for memories,” European
Design and Test Conference, March 1997.

[9] D. Karchmer and J. Rose, “Definition and Solution of the Memory
Packing Problem for Field-Programmable Systems,” IEEE Inter-
national Conferenceon Computer Aided Design, November, 1994.

[10] T. Kim and C. L. Liu, “Utilization of Multiport Memories in Data
Path Synthesis,” Design Automation Conference, 1993.

[11] T. Ly, et al., “Scheduling using Behavioral Templates,” 32nd
ACM/IEEE Design Automation Conference, June, 1995.

[12] P. E. R. Lippens, et al., “Allocation of Multiport Memories for Hi-
erarchical Data Streams,” Proc. ICCAD, November, 1993.

[13] P. R. Panda and N. D. Dutt, “1995 High Level Synthesis Design
Repository,” Intl. Symp. on System Synthesis, September 1995.
(ftp://ftp.ics.uci.edu/pub/HLSynth95)

[14] P. R. Panda, et al., “Memory Data Organization for Improved
Cache Performance in Embedded Processor Applications,” ACM
Transactions on DAES, Vol. 2, No. 4, October 1997.

[15] P. R. Panda, et al., “Exploiting Off-Chip Memory Access Modes
in High-Level Synthesis,” Tech. Rep. #97-32, U.C. Irvine, 1997.

[16] L. Ramachandran, D. Gajski, and V. Chaiyakul, “An algorithm for
array variable clustering,” Proc. ED&TC, 1994.

[17] L. Stok and J. A. G. Jess, “Foreground memory management in
data path synthesis,” International Journal of Circuit Theory and
Applications, vol.20, no.3, pp. 235-55, 1992.

	CD-ROM Home Page
	ICCAD97
	Front Matter
	Table of Contents
	Session Index
	Author Index

