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Abstract
This paper presents a versatile scheduling model and an effi-

cient control synthesis methodology which enables architectural
(high-level) design/synthesis systems to seamlessly support a
broad range of architectural design applications from datapath-
dominated digital signal processing (DSP) to micro-processors/
controllers and control-dominated peripherals, utilizing multi-
phase clocking schemes, multiple threading, data-dependent
delays, pipelining, and combinations of the above. The work pre-
sented in this paper is an enabling technology for high-level syn-
thesis to go beyond traditional datapath-dominated DSP
applications and to start becoming a viable and cost-effective
design methodology for commodity ICs such as micro-processors/
controllers and control-dominated peripherals.

1. Introduction
High-level synthesis (HLS) offers a methodology which

promises a significant productivity increase by raising the
abstraction level of digital design. A tutorial on HLS methodol-
ogy and past research can be found in [1] and [2]. After close to
two decades of research, commercial HLS tools have been intro-
duced recently [3] and have seen some production use. But, it is
not yet known how soon HLS will become a mainstream technol-
ogy for production designs.

In a cost and benefit study of the HLS methodology conducted
in Motorola, several challenges to HLS tools were found such as
offering significantly better cycle-time and defect reduction than
RTL/logic synthesis while incurring no deterioration of design
quality, providing interactive and incremental design process for
better user control, and most importantly supporting a broad
range of architecture design applications including datapath-dom-
inated designs like DSP, processor-type designs like micro/DSP/
co-processors, and control-dominated designs like peripherals.

The demand of supporting a broad range of design applica-
tions is due to the fact that adopting the HLS methodology is a
drastic design paradigm shift for designers as well as design orga-
nizations. It requires considerable investment from them in train-
ing and time to incorporate HLS into the existing design flows
and to become mature enough for production design, verification,
and optimization throughout the new design flows. Hence, with-
out supporting a broad range of design applications, the return of
the investment on a domain-specific HLS methodology becomes
sporadic and often unjustified.

To accelerate the industrial adoption of HLS, we have devel-
oped Matisse [4], a versatile architectural design tool, which
answer many challenges described earlier. It is beyond the scope
of this paper to describe the differences of Matisse from tradi-
tional HLS. This paper addresses two of the important issues;
namely, thescheduling model andcontrol synthesis. Our contri-
bution is that the proposed approaches are versatile and capable
of uniformly specifying and implementing static, dynamic, and
pipeline scheduling with considerations of clocking and synchro-
nization, which are essential for the successful application of
HLS to a broad range of designs in the commodity ICs. Addition-
ally, several unique techniques utilized in our control synthesis
are presented, including clocking-driven coarse-grain control par-
titioning, FSM optimization, and control signal merging via
default values. These techniques improve the efficiency of the
synthesized controllers and are found to be crucial for commodity
IC applications.

In the remainder of this paper, we begin with the related work
in Section 2. Our scheduling model and the supported clocking
scheme are illustrated in Section 3. Section 4 describes the con-
trol synthesis and its unique techniques in detail. In Section 5, we
present results obtained from industrial designs including a case
study on the effectiveness of FSM optimization and a power-con-
sumption trade-off study of single-clock versus multi-phase clock
designs. Finally, we conclude this paper with some future direc-
tions in Section 6.

2. Related Work
Static non-pipeline scheduling model and the associated con-

trol synthesis have been the subjects of intensive high-level syn-
thesis research in last two decades. Park reported a pipeline
scheduling method for synthesis of pipelines from behavioral
specifications [5]. The generation of the control path for Park’s
pipeline scheduling model was subsequently addressed by Weng
[6]. Girczyc applied the concept of functional pipelining similar
to Park’s to pipeline individual loops (loop winding) [7]. Prabhu
described a pipeline synthesis system which utilizes a pipelined
controller in junction with functional pipelining in the data path
for improving the design throughput [8].

In the area of dynamic scheduling, relative scheduling was
introduced by Ku to address scheduling with unbounded-delay
operations [9]. Additionally, they used a relative control synthesis
approach to generate an interconnection of interacting FSMs.

Papachristou et. al proposed a multi-phase clocking architec-
ture model and technique for synthesis of low power RTL imple-
mentations [10]. However, the associated control synthesis was
not addressed.

To our best knowledge, no prior scheduling model and control
synthesis were found to address the issues of static, dynamic, and
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pipeline scheduling along with single or multi-phase clocking
scheme uniformly.

3. Unified Scheduling Model
The scheduling model in this context is regarded as the speci-

fication method and representation of the scheduling information
andnot the scheduling algorithms.

In a study of various industrial designs with designers, we cre-
ated a list of HLS design modeling techniques required to support
the majority of designs for datapath-dominated, control-domi-
nated and processor-type applications. As listed in Table 1, they
are (1) conditional branching and looping, (2) operation chaining,
(3) multi-cycle delays, (4) data-dependent delays, (5) multi-
thread execution, (6) pipelining, and (7) multi-phase clocking.

In this section, we will present a hierarchical scheduling
model for uniformly specifying all the above styles of execution
and sequencing. The novelty of our scheduling model is that the
specification of clocking and synchronization is no longer global.
They are specified locally at each schedulable entity (operation or
statement) along with typical attributes like offset and delay.

3.1. Clocking schemes
The supported clocking scheme can include a single clock

(master clock), multiple phase clocks, and a mixture of a master
clock and one or more phase clocks. As shown in Figure 1, when
phase clocks are used, they are required to be synchronous and
have the same period called the primary cycle. The primary cycle
is further divided into a number of pickets. Each phase clock is
restricted to have one active pulse per primary cycle. The duration
and active level (high or low) of the active pulse are specified at
the picket level. If a master clock is used together with phase
clocks, the primary cycle is a multiple of master cycles for the
purpose of synchronization.

3.2. Hierarchical scheduling
The procedural HDL description can contain control-flow

constructs such as branching and iteration. The control flow spec-
ification is modeled through the hierarchy of our scheduling
model. The hierarchy is defined by the compound statements such

as if , case  andwhile . The generic entity in the hierarchy is
called astatement block which comprises of a list of statements to
be scheduled together according to their data flow and user (seri-
alization) dependencies. Each compound statement in a statement
block creates another level of the hierarchy with one or more
statement blocks corresponding to the branching bodies or the
loop body. Figure 2 shows an example of a behavioral description
in Verilog HDL where the branching statementif (cond)  fur-
ther links to the two statement blocks of itsthen  andelse  bod-
ies at the next level. Note that the offsets of thethen  andelse
blocks shown in Figure 2 are relative to their parentif  statement.

The semantics of the hierarchical scheduling model is recur-
sively defined as follows. When a statement block is activated, the
statements in that statement block execute according their sched-
uling specifications. The execution of a compound statement
involves activating zero or more of the associated statement
blocks and is complete when all the activated statement blocks
are complete. An activated statement block is complete when the
execution of all its statements are complete.

3.3. Intra-block scheduling
Let S be a statement block which comprises of a list of state-

ments. The intra-block scheduling model defines the execution of
each statement si in S by a tuple of attributes (pi, yi, oi, ci, di);
namely reference pointpi, phase synchronization modeyi, offset
oi, clock waveformci, and delaydi.

Reference point. The pi attribute defines the reference time
T(pi) to whichsi is scheduled relatively, and is a subset ofS such
that∀sj∈pi, si has a dependency onsj andsj is a compound state-
ment with a non-deterministic or unbounded delayD(sj). For-
mally, T(pi) can be expressed as:

whereT(S) is the activation time of statement blockS, T(sj) is the
start time ofsj, andD(sj) is the duration ofsj.

If si doesn’t depend on any compound statement within state-
ment blockS, i.e.pi is an empty set,T(pi) is equal toT(S); in other
words,si is scheduled with respect to the beginning ofS. The lat-
ter case is called absolute scheduling in Matisse, whereas the
opposite is relative scheduling.

Synchronization mode. Theyi attribute is a boolean flag indi-
cating whether or not to use phase synchronization and is only
applicable to multi-phase clock scheduling. Whenyi is true, the
reference time to whichsi is scheduled is deferred toT’(pi) which

Table 1: Frequent HLS modeling techniques.

Category 1 2 3 4 5 6 7

datapath dominated X X X X

control dominated X X X X X X

processor type X X X X X X

T pi( ) max T S( ) T sj( ) D sj( )+
sj pi∈

,( )=

Figure 1. Supported clocking schemes
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Figure 2. Example of hierarchical scheduling



is the beginning of the next primary cycle after the original refer-
ence timeT(pi). This attribute is mostly used to a situation where
the statements (events)E scheduled with different phase clocks
need to be executed according to the phase order; e.g., a phase-2
event always follows a phase-1 event. Typically, the statements in
E have a common reference pointpE. If T(pE) occurs in a middle
of a primary cycle as shown in Figure 3, by setting bothy(si) and
y(sj) to true,si andsj have a synchronized reference timeT’(pE)
after which the order of the clock phases are known statically.

Offset, clock and delay. Theoi attribute is an integer value∈
Z0,+ for specifying the offset in cycles of the selected clockci
after the reference timeT(pi) or T’(pi). By giving theci (clock)
attribute locally to each statement (operation), multi-phase clock
scheduling and synchronization are enabled in our model. Finally,
thedi (delay) attribute is also an integer value and used for speci-
fying multi-cycle operations

Start time calculation. Table 2 expresses the start timeT(si)
under three scenarios; namely, phase unsynchronized with a zero
offset, phase unsynchronized with a non-zero offset, and phase
synchronized.

The first two rows expressT(si) without phase synchronization
(yi=0). In such case,si should start ASAP after the reference point
T(pi). When offsetoi is 0, T(si) is same asT(pi) as shown in the
1st row. The 2nd row expressesT(si) whenoi is not 0. In such
case,si will be started at the beginning of the cycleoi afterT(pi).
In this equation,period(ci) is the cycle length ofci andδ(pi) is
called the reference point lapse time. The reference point lapse
time δ(pi) is defined as the delay from the beginning of the first
cycle to the reference timeT(pi). It is used due to the cases where
T(pi) is not inline with the clock edges ofci (especially in multi-
phase clocking designs) as shown in Figure 4. Typically, δ(pi) is
0; in other words, the entire first cycle is available. A non-zero

reference point lapse time occurs when statementsi depends on
events which are not synchronized with the clockci.

Finally, the 3rd row expresses the start timeT(si) when phase
synchronization is used (yi=1). In such as,T(si) becomes the
beginning of cycleoi afterT’(pi), the deferred reference time as
shown in Figure 3. Since the clock edges ofci may not be in line
with the primary cycles, a phase lapse timeδ(ci) is defined as the
delay from the beginning of a primary cycle to the beginning of
the subsequent clock cycle ofci, also illustrated in Figure 3.

3.4. Pipeline scheduling
Our scheduling model supports functional and loop pipelin-

ing. Functional pipelining [5] is regarded as a form of scheduling
under a globalinitiation interval. The initiation interval repre-
sents the time interval between two consecutive executions of a
scheduled design behavior. Loop pipelining (also called loop
folding or winding) is a localized functional pipelining of a loop.
The local initiation interval defines the time interval between two
consecutive executions of a scheduled loop body. In our model,
these two forms of pipelining are modeled the same way since the
functional pipelining can be regarded as the loop body of the
design process.

In our hierarchical scheduling model, pipeline scheduling can
be specified at the top level or to an individual loop. The pipeline
execution is implicitly applied to the statement blocks within the
scheduling sub-hierarchy derived from the top-level statement
block or the loop statement. The following restrictions are also
assumed. All the statements within the scheduling sub-hierarchy
must use the same clock and absolute scheduling. Additionally,
nested loops are not supported in a pipeline.

Pipeline scheduling changes the delay definition of a pipelined
loop. Letsi be a loop statement withni iterations and with a loop
body LBi whose latency isD(LBi). If si is not pipelined,D(si) is
equal tonixD(LBi). However, ifsi is pipelined with an initiation
interval Ii, D(si) becomes (ni-1)xIi + D(LBi) as shown in Figure 5
where (ni-1)xIi is the time it takes to initiate the last iteration.

Within the pipelined scheduling sub-hierarchy, each statement
is associated with an additional pipeline start time. Letsj be a
statement inLBi, the pipeline start timeTp(sj) is equal to(T(sj)-
T(si)) % Ii where % is a modulus operator. During pipeline execu-
tion, sj will be executed periodically atmxIi+Tp(sj) wherem∈Z0,+

until si (the loop) is complete. Note that some statement inLBi
may execute more thanni times in a pipelined loopsi. The extra
executions occur during pipeline filling and/or flushing.

4. Unified Control Synthesis
Control synthesis for HLS is a process of generating a control

unit which will drive the data path as required by the schedule and
using the values derived from the resource/interconnect alloca-
tion. A tutorial on control synthesis for HLS can be found in [11].

As stated earlier, control synthesis in Matisse is required to
support static/dynamic scheduling, single/multi-phase clocking,
multi-thread executions, and loop pipelining seamlessly and uni-
formly. Additional critical requirements are that no extra cycles
are introduced for nested branching and loop entry/exit unless

Table 2: Statement start times

yi oi T(si)

0 0 T(pi)

0 >0 T(pi) - δ(pi) + oi*period(ci)

1 X T’(pi) + δ(ci) + oi*period(ci)

Figure 3. Example of phase synchronization
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explicitly specified and that conditional blocks or while loops can
be skipped with combinational delay (zero cycle skip). To achieve
this aggressive goal, we developed a template-driven hierarchical
control synthesis with an additional optimization step.

4.1. Hierarchical control model
The multitude of scheduling styles to be supported, com-

pounded with multi-phase clocking schemes, makes the tradi-
tional flat and single-FSM control model ineffective. We chose to
utilize a hierarchical control model which somewhat resembles to
our hierarchical scheduling model. Figure 6 shows that the hierar-
chical control model is an interconnection of hierarchical control
blocks, each of which is responsible for controlling a statement
block in our scheduling model. Each control blockCBi has a pair
of hand-shaking signalsstart i  anddone i  for transferring con-
trol flow to and from its parent control block.

4.2. Control block
As shown in Figure 7, a control blockCBi further comprises

an interconnection of one or more control elements {CEi,1,…,
CEi,n} and three types of peripheral circuits:B, D, andM.

Coarse-grain FSM partitioning. The responsibility for exe-
cuting the statements in the statement block ofCBi according to
the specified schedule are divided among control elements
{ CEi,1,…, CEi,n}, where the core of each control elementCEi,j
is an FSM. A coarse-grain partitioning is performed to divide the
statements into groups {Gi,1,…, Gi,n} such that each group of
statementsGi,j has a common reference pointpi,j, the same phase
synchronization modeyi,j, and most importantly the same clock

clki,j. As a result, the execution of the statements in each group
Gi,j only have different offsets with respect toT(pi,j) or T’(pi,j).
Furthermore, the different offsets share the same discrete unit, the
clock cycle ofclki,j. Therefore, it can be seen easily that a single
FSM in control elementCEi,j is sufficient to control the execution
of statementsGi,j. The structure of a control element will be dis-
cussed later in Section 4.3.

Within control blockCBi, each control elementCEi,j receives
a list of input signalsPi,j required by its reference pointpi,j. Pi,j is
either {start i } if pi,j is empty (absolute scheduling) or {com-
plete s | s ∈ pi,j}. The signalcomplete s is driven by one of
theB circuit for signalling the completion of the compound state-
ments. CEi,j begins its execution when each signal inPi,j is raised
and subsequently raises itswait i,j  signal when its execution is
finished. The data-path control signals driven byCEi,j are sent to
anM-type peripheral circuit for merging.

Flow control. B circuits are used to implement the control
flow of compound statements such asif , case , andwhile .
They are responsible for thestart /done  signals betweenCBi
and its child control blocks and raise thecomplete  signals
when the execution of the compound statements are finished. For
example, letBc be theB circuit for a conditional statementc with
K branches {br1,…, brK}. The input signal ofBc is activate c
from a control elementCEi,j wherec∈Gi,j. CEi,j raisesacti-
vate c during the cycle thatc begins executing. The function of
Bc can be expressed as the following logic equations.

wherecond br  denotes the branching condition ofbr. The first
equation implements the branching control by raising thestart
signal of a branch whose condition is true and whenc begins its
execution (activate c=1). The second equation raisescom-
plete c when the selected branch is done or there is no branch to
be taken. For a loop statementl, thestart lb  signal driven byBl
becomes the iteration control of the loop bodylb. For example, let
l be awhile  loop. One way to implementBl is as follows:

Done detection. TheD circuit Di in Figure 7 is responsible for
raising thedone  signal when the execution of the control block
CBi is finished. Recall from Section 3.2, the completion ofCBi
requires the completion of all the statements in its statement
block, which is the time that all the control elements {CEi,1,…,
CEi,n} have raised theirwait  signals and all theB circuits inCBi
have raised theircomplete  signals.

In general, it’s not necessary forDi to depend on all thewait
and complete  signals because there often exist some prece-
dence relationships among these signals. A simple static timing
analysis on the schedule ofCBi’s statement block can be per-
formed to eliminate thosewait  and complete  signals that
have precedence of other signals. Consequently, the remaining
wait  andcomplete  signals are the ones whose assertions can
only be determined dynamically. Often, there is only one remain-
ing signal forDi to depend on. In such cases,Di becomes a wire
connecting the signal directly todone i . However, if there are
two or more remaining signals, their assertions may not be simul-
taneous,Di may need to memorize some input assertions using
latches or flip-flops.

startbrk
activatec condbrk

⋅=

completec donebrk

k 1=

K

∑ activatec condbrk

k 1=

K

∏⋅+=

startlb activatel donelb+( ) condl⋅=

completel donelb condl⋅=

Figure 6. Example of hierarchical control model
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Control signal merging. Since we utilize a distributed multi-
FSM control model, the data-path control signals with more than
one driver need to be merged before connecting to data-path com-
ponents. As shown in Figure 7, the control signals from the con-
trol elements and the child control blocks are merged
hierarchically through anM circuit. A typical approach for signal
merging is to use data selectors such as multiplexers, which
requires generating additional data selection logic.

By exploiting the fact that the HLS designs should be free of
resource conflicts and by making use of default control values, we
have developed an efficient technique to merge control signals via
simple logic; hence, improving area and performance. The basic
idea is as follows. If all the sources (FSMs) of a data-path control
signal send a pre-defined default value whenever there is no spe-
cific (active) control value required to performed the scheduled
statements, then the data-path control signal will not be asserted
by two or more different active control values at any given time.
Otherwise, the design is not free of resource conflicts because the
associated data-path component will be asked to perform differ-
ent functions at the same time. Formally, letcs be a 1-bit control
signal with multiple sources {cs1,…,csM} and a default control
valuedvalcs. The merging function can be expressed as follows:

If cs is a multi-bit signal, the merging can be done by bit-wise
ORing or ANDing the source signals depending on the default
value of each individual bits. Alternatively, if ann-bit control sig-
nal does not utilize all the possible2n values, one can encode the
used values first to reduce the number of bits for merging. The
encoded control signal can then be decoded just once after the
final merging.

4.3. Control element
As discussed in the previous section, each control element

CEi,j controls a group of statementsGi,j which have a common
reference pointpi,j, the same phase synchronization modeyi,j, and
most importantly the same clockclki,j. Figure 8 shows thatCEi,j
consists of a finite-state machineFSMi,j, a R-type peripheral cir-
cuit Ri,j, and an optional phase synchronization flip flop.

Reference circuit. Ri,j is responsible for determining the refer-
ence time forFSMi,j according topi,j andyi,j. The circuit behavior
of Ri,j is similar to theD-type peripheral circuit described in Sec-
tion 4.2. The inputs ofRi,j are thecomplete  signals of the com-
pound statements in reference pointpi,j or start i  if pi,j is
empty.Ri,j raises theenable i,j  signal to startFSMi,j when all
its inputs are asserted. If the number of inputs is greater than one,
Ri,j contains memory devices such as latches or flip-flops to store

their assertions. Ifyi,j (phase synchronization mode) is true, an
additional flip-flop clocked by async  signal as shown in Figure
8 is inserted at the output ofRi,j to generate a phase synchronized
enable’ i,j . The sync  signal is typically one of the phase
clocks which defines the boundaries of primary cycles; e.g., the
phase-1 clock.

Control FSM. FSMi,j is the core ofCEi,j which asserts the
associated data-path control signals or theactivate  signal of
each compound statement inGi,j at the specified offset.FSMi,j is
an L-state FSM with circular state transitions and clocked with
clki,j. L is the latency ofGi,j ’s schedule excluding the delays of the
compound statements. Figure 9 shows the basic circular state
transitions ofFSMi,j, where the assertions of the data-path control
signals or theactivate  signal for each statementx in Gi,j are
assigned to stateox.

4.4. Pipeline control block
In our control synthesis, loop pipelining is done in a special

pipeline control block which controls the entire loop body. As
shown in Figure 10, the external interface of a pipeline control
block remains the same as non-pipeline control blocks. Hence, it
can co-exist with other control blocks seamlessly. Within a pipe-
line control block, there are one pipeline control elementCEp

i,
one pipelineD-type peripheral circuitDp

i, and zero or more shift
registers for storing conditional values.

Pipeline control element. CEp
i is an FSM withIci states,

whereIci is the discrete initiation interval. The assertions of each
statements within the pipeline scheduling sub-hierarchy is
assigned to stateTp(s)/period(clki) whereTp(s) is the pipeline
start time as defined in Section 3.4. As with non-pipeline control
elements, the state transitions ofCEp

i are also circular.
Conditional assertions. The assertions are conditional if the

statements within the pipeline scheduling sub-hierarchy is
enclosed by one or more conditional statements. The condition
for the assertions is the conjuction of all the branching conditions
of the enclosing conditional statements. Due to the nature of pipe-

cs csi
i 1=

M

∑=

cs csi
i 1=

M

∏=

if dvalcs = 0

if dvalcs = 1

Figure 8. Template of control element
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line execution, if the latency of a conditional statement is longer
than initiation interval, multiple instances of a conditional state-
ment will be executed concurrently. However, throughout the exe-
cution of each instance, the conditional value for conditional
assertions should always be the one at the time the instance is ini-
tiated. Hence, we utilize shift registers to store the history of the
conditional values.

Let sregc be the shift register for a conditional statementc with
latencyD(c). The number ofc instances,nc, executing concur-
rently isD(c)/I. The length ofsregc is alsonc. CEp

i raises signal
shift c at the cycleTp(c)/period(clki) in which a newc
instance is initiated. Raisingshift c causesregc to shift once
and store a new value ofcondc. For each statements within c, the
source ofcondc which s should use for its conditional assertions
depends onit’s offset with respect to the beginning ofc. For
example, Figure 11 shows the execution of three instances and
each of which is divided into three stages of lengthI. At the
beginning ofc1, a newcondc,1 is stored insregc[1] and used dur-
ing its 1st stage execution. By the timec2 is initiated,c1 is execut-
ing the 2nd stage andcondc,1 is now shifted tosregc[2]. Hence,
sregc[2] is the source ofcondc used by the 2nd stage execution.
Formally, the source ofcondc for each statements within a condi-
tional statementc can be expressed assregc[ (T(s)-T(c))/I ].

Pipeline done. The done i  signal driven by theDp
i circuit

also becomes more involved than the non-pipeline counterparts.
Recall that the fundamental part of our pipeline execution (loop
pipelining) is to initiate a new iteration of loop body every initia-
tion interval (see Figure 5) until the loop exit condition is met.
However, the pipeline execution is not yet complete at that
moment due to the fact that there are still (D(Li))/I − 1) itera-
tions yet to be finished. The process of completing the remaining
active iterations is typically called pipeline flushing. In our pipe-
line control model,CEp

i raises signalflush i  at the first pipeline
state whenstart i  is dropped and continues the execution of the
remaining iterations.Dp

i is a delay circuit, such as a counter,
which raisesdone i  after a pre-determined number of cycles for
the remaining execution, which is(D(Li)-I)/period(clki) cycles.

4.5. Optimization
Although our hierarchical control model with multiple distrib-

uted FSMs is extremely flexible and capable of supporting all the
its objectives uniformly, we also found that there is room for opti-
mization; in particular, the portions of the design which use static
scheduling and a single clock. We developed two types of optimi-
zation techniques; namely, logic collapsing and FSM collapsing.
The primary goal of both techniques is to collapse a sub-hierarchy
of control blocks if possible into a single entity. Thus, both the
state registers and the logic of merging data-path control signals
can be reduced.

Logic collapsing is a bottom-up technique which recursively
collapses stateless control elements, control blocks, andB-type
circuits (see Section 4.2). Recall from Section 4.3 that each con-
trol elementCEi,j contains anL-state FSM.CEi,j becomes state-
less whenL is 1, meaning that the FSM degenerates into a

combinational circuit. A logic collapsible entity denotes an entity
whose behavior degenerates into logic functions. Two logic col-
lapsible entities are mutually collapsible if they have the same
starting cycle and clocking. Figure 12 shows an example of logic
collapsing anif  statement where boththen  andelse  parts are
mutually collapsible.

FSM collapsing is also a bottom-up technique which recur-
sively collapses control elements, control blocks, and B-type cir-
cuits which are FSM collapsible. A FSM collapsible entity
denotes an entity whose behavior can be implemented by a sin-
gle-thread FSM. Therefore, control elements, by default, are FSM
collapsible. Two FSM collapsible entities are mutually collapsible
if they share the same clocking and there exists a common refer-
ence point among them. By sharing the same clocking and a com-
mon reference point, the execution of two single-thread FSMs are
in lock steps; hence, they can be statically merged into one. There
are two common ways of merging single-thread FSMs; namely,
state sharing and state connecting. State sharing is applicable to
two or more single-thread FSMs whose executions can share
common starting and ending points. An example of state sharing
is shown in Figure 13(a). The result of state sharing is a new sin-
gle-thread FSM whose state number is equal to the one with more
states and the outputs become conditional by the respective FSM
enable  signals. State connecting, on the other hand, is suitable
for two or moremutually exclusive single-thread FSMs whose
executions can share common starting and ending points. Figure
13(b) shows an example of two mutually exclusive single-thread
FSMs. State connecting creates two new starting and ending
statesSc,0 andSc,1 to replace the ones used by original FSMs. The
original mutually exclusive execution is achieved through two
conditional state transitions emitting fromSc,0.

5. Experiments
In this section, we first report the range of design applications

that the work described in this paper was used. Following that, a
case study of FSM optimization is presented. Finally, the support

Figure 11. Pipeline instances
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of multi-phase clocking schemes is demonstrated with an experi-
ment of single vs. multi-phase clocking on power consumption.

5.1. Coverage of design applications
The scheduling model and control synthesis presented in this

paper are implemented in an industrial HLS system,Matisse,and
has been successfully used in a broad range of industrial designs
for evaluation or production. The designs included hard-wired
DSPs, an encryption/decryption engine, a bus-to-bus interface, a
control-dominated peripheral, and a microcontroller. Table 3 lists
some notable designs and their underlying HLS modeling tech-
niques (refer to Table 1 for numbering scheme). So far in all of
these projects, the area and performance of the automatically gen-
erated controllers were found or estimated by the designers to be
comparable to traditional RTL design techniques.

5.2. A case study of FSM optimization
To study the effectiveness of our logic and FSM collapsing

techniques, we conducted a case study on 3 designs in Table 3.
For each design, we generated a full hierarchical controller and an
optimized controller using both logic and FSM collapsing. The
generated controllers were synthesized using Synopsys Design
Compiler using the same set up, including the library and the per-
formance constraints.

It can be seen from Table 4 that an optimized controller can
achieve up to 48% area reduction over an unoptimized one. We

also found that the amount of area improvement is design-specific
and proportional to the room allowed for optimization.

5.3. Effects of clocking on power
Since multi-phase clocking schemes are supported in Matisse

and Matisse also provides an environment for architectural power
optimization [12], we set out to experiment a power saving tech-
nique using multi-phase non-overlapping clocks proposed by
Papachristou et al [10]. The basic idea is as following. Given a
schedule, instead of using traditional resource and interconnect
allocation using a single clock with a frequencyf, their technique
utilizes n non-overlapping clocks with frequencyf/n and a data-
path architecture withn disjoint modules, each running on a dis-
tinct clock. Additionally, two special allocation methods were
proposed to map each node in the data-flow graph (DFG) into a
specific module according to the operation’s time step in a modu-
lus fashion. For example, nodes scheduled at time stept are
mapped to a module running onCLKk wherek is t mod n. The
authors argued that their approach can achieve lower power con-
sumption than traditional HLS designs due to a “capacitance
reduction” effect and the reduced frequency. Power savings up to
50% were reported in their paper.

We implemented various designs of the example described in
their paper. Due to the limited space of this paper, please refer to
[10] for the detailed description of the example and design sche-
matics. Each design, including the controller, synthesized into
gates using Synopsys Design Compiler and power was estimated
by an accurate gate-level power estimation tool [13]. Table 5
summarizes the experimental results

Circuit1 is a single-clock design with two add/subtract ALUs
and used by the authors for comparison withcircuit2 which is a

Table 3: Designs and modeling coverage

Design 1 2 3 4 5 6 7

ADPCM predictor X X X X

Encryption/decryption X X X

Bus-to-bus interface X X X X X

Vector I/O buffer X X X X

FIR filter X X X X

8-bit microcontroller X X X X

Table 4: Results of FSM Optimization

Design Area Reduction

8-bit microcontroller 48%

FIR Filter 37%

ADPCM predictor 18%

S1,0

S1,1

S1,2

S1,3

S2,0

S2,1

S3,2

time

out1,1

out1,2

out1,0 out2,0

out2,1

FSM1 FSM2

Sc,0

S1,1

S1,2

Sc,1

enable1|

FSMc
(mutually exclusive)

reference
point

out1,0

out1,1

out1,2

S2,1

enable2|
out2,0

out2,1

(b). State Connecting

Figure 13. Example of FSM collapsing

S1,0

S1,1

S1,2

S1,3

S2,0

S2,1

S3,2

time

reference
point

out1,1

out1,2

out1,0

out2,0

out2,1

FSM1 FSM2

Sc,0

Sc,1

Sc,2

Sc,3

enable1|out1,1

enable1|out1,2

enable1|out1,0

enable2|out2,0

enable2|out2,1

FSMc

(a) State Sharing



two-clock design. With a set of random input test vectors,circuit2
indeed was found to achieve 39% power reduction overcircuit1.
Since circuit1 and circuit2 have different resource allocations and
clocking schemes, it was not apparent what the individual effects
were on power savings. We found that all architectures generated
by the multi-phase clock technique can still be clocked by a single
clock with clock gating at registers. Hence, we implemented
circuit3 which has the same architecture ascircuit2 but uses a sin-
gle clock. As shown in Table 5, by comparingcircuit2 and
circuit3, the power savings by the multi-phase clock technique
alone becomes 23%. Finally, we implemented another two-clock
design,circuit4, which was given by the authors using their inte-
grated allocation method (Figure 7 in [10]). It was also found to
consume less power than single-clock designs, but not better than
circuit2. Note that the controllers synthesized by our tool for
circuit2 andcircuit4 consist of two FSMs driven by two specified
non-overlapping clocks respectively.

6. Conclusion
We have presented a novel scheduling model and an efficient

control synthesis which seamlessly and uniformly support static/
dynamic scheduling, single/multi-phase clocking, multi-thread
execution, and loop pipelining. Our contribution is an enabling
technology for HLS to go beyond traditional datapath-dominated
DSP applications and to start becoming a viable and cost-effec-
tive design methodology for commodity ICs such as micro-pro-
cessors/controllers and control-dominated peripherals.

The presented scheduling model and control synthesis have
been implemented in an industrial HLS system and used to suc-
cessfully design many industrial designs for evaluation or produc-
tion, including digital filters, an encryption/decryption engine, a
bus-to-bus interface, a high-speed vector I/O buffer, and a micro-
controller. We also showed the effectiveness of our optimization
techniques which make our hierarchical control synthesis as effi-
cient as traditional single flat FSM control synthesis for static
scheduling while capable of supporting dynamic scheduling and
multi-phase clocking schemes. Finally, we conducted a study on a
power-saving technique using multi-phase clocking as proposed
in [10].

We believe that there are still other opportunities for further
optimizing our hierarchical control model. Furthermore, micro-
coded controllers along with hardwired FSMs should be sup-
ported due to the increasing need of architecture reuse and
programmable designs.
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