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Abstract To accelerate the industrial adoption of HLS, we have devel-

This paper presents a versatile scheduling model and an effi-0Ped Matisse[4], a versatile architectural design tool, which
cient control synthesis methodology which enables architectural2nSWer many challenges described earlier. It is beyond the scope
(high-level) design/synthesis systems to seamlessly support gf this paper to describe the differences of Matisse from tradi-
broad range of architectural design applications from datapath- tonal HLS. This paper addresses two of the important issues;
dominated digital signal processing (DSP) to micro-processors/ amely, thescheduling modeénd control synthesisOur contri-
controllers and control-dominated peripherals, utilizing multi- Pution is that the proposed approaches are versatile and capable
phase clocking schemes, multiple threading, data-dependenff uniformly specifying and implementing static, dynamic, and
delays, pipelining, and combinations of the above. The work pre-PiPeline scheduling with considerations of clocking and synchro-
sented in this paper is an enabling technology for high-level syn-nization, which are essential for the successful application of
thesis to go beyond traditional datapath-dominated DSP HLS to a broad range of designs in the commodity ICs. Addition-
applications and to start becoming a viable and cost-effective ally, several unique techniques utilized in our control synthesis
design methodology for commodity ICs such as micro-processorsA’e presented, including clocking-driven coarse-grain control par-

controllers and control-dominated peripherals. titioning, FSM optimization,.and pontrol signal mgrging via
] default values. These techniques improve the efficiency of the
1. Introduction synthesized controllers and are found to be crucial for commodity

IC applications.

High-level synthesis (HLS) offers a methodology which In the remainder of this paper, we begin with the related work

promises a significant productivity increase by raising the . : . .
abstraction level of digital design. A tutorial on HLS methodol- in Section 2. Our scheduling model and the supported clocking

ogy and past research can be found in [1] and [2]. After close toscheme are illustrated in Section 3. Section 4 describes the con-

h -~ “trol synthesis and its unique techniques in detail. In Section 5, we
two decades of research, commercial HLS tools have been intro resent results obtained from industrial designs including a case

ggf sgtrker? (()avr\llgyh[g’\}vzg%nhavfssv?/ﬁlnbzzr:ni epgog]ua?ggtr; el;srﬁ'tggghgllgtudy on the effectiveness of FSM optimization and a power-con-
ogy for production designs. sumption trade-off study of single-clock versus multi-phase clock

In a cost and benefit study of the HLS methodology conductedqes'gns' Finally, we conclude this paper with some future direc-
) tions in Section 6.
in Motorola, several challenges to HLS tools were found such as
offering _significant_ly bet_ter _cycle-_time and def_ect reduction than 2. Related Work
RTL/logic synthesis while incurring no deterioration of design ) o ) )
quality, providing interactive and incremental design process for _ Static non-pipeline scheduling model and the associated con-
better user control, and most importantly supporting a broadtrol synthesis have been the subjects of intensive high-level syn-
range of architecture design applications including datapath-dom-thesis research in last two decades. Park reported a pipeline
inated designs like DSP, processor-type designs like micro/DspAcheduling method for synthesis of pipelines from behavioral
co-processors, and control-dominated designs like peripherals. SPecifications [5]. The generation of the control path for Park's
The demand of supporting a broad range of design applica-PiPeliné scheduling model was subsequently addressed by Weng
tions is due to the fact that adopting the HLS methodology is al6]- Girczyc applied the concept of functional pipelining similar
drastic design paradigm shift for designers as well as design orgal©® Park’s to pipeline individual loops (loop winding) [7]. Prabhu
nizations. It requires considerable investment from them in train- described a pipeline synthesis system which utilizes a pipelined
ing and time to incorporate HLS into the existing design flows controller in junction with functional pipelining in the data path
and to become mature enough for production design, verification,for improving the design throughput [8]. _ _
and optimization throughout the new design flows. Hence, with- _In the area of dynamic scheduling, relative scheduling was
out supporting a broad range of design applications, the return ofntroduced by Ku to address scheduling with unbounded-delay
the investment on a domain-specific HLS methodology becomesoPerations [9]. Additionally, they used a relative control synthesis
sporadic and often unjustified. approach to generate an interconnection of interacting FSMs.
Papachristou et. al proposed a multi-phase clocking architec-
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pipeline scheduling along with single or multi-phase clocking

scheme uniformly. Block e displeac ALUAE
. . Smbey oF masner elock utles por aeimey osaler £

3. Unified Scheduling Model 2 iniry Byele rasbering relative by blocks ALAWE

The scheduling model in this context is regarded as the speci | “dhwduls Stuls; Sonpipslined Initiskion Irksreal {sasts
fication method and representation of the scheduling informatior -
andnot the scheduling algorithms. 1 =ind AU 2

In a study of various industrial designs with designers, we cre- e il A WD 1 ] 1
ated a list of HLS design modeling techniques required to suppor povel B A lwin ] ] 1
the majority of designs for datapath-dominated, control-domi- Fr— alolel 1] = 3
nated and processor-type applications. As listed in Table 1, the I\ e
are (1) conditional branching and looping, (2) operation chaining, absolute/relative/ sync/unsync ‘\offset/clock
(3) multi-cycle delays, (4) data-dependent delays, (5) multi-
thread execution, (6) pipelining, and (7) multi-phase clocking. | then_statement block

Table 1: Frequent HLS modeling techniques. | TR Al T

else statement block

Category 1|1 2| 3| 4| 5| 6| 7 i aut =6 -k |ﬁ I.I|='| 'I
datapath dominated X A X y Figure 2. Example of hierarchical scheduling
asif , case andwhile . The generic entity in the hierarchy is
control dominated | X | X [ X [ X [X X called astatement blockhich comprises of a list of statements to
be scheduled together according to their data flow and user (seri-
processor type XXX |X X X alization) dependencies. Each compound statement in a statement

block creates another level of the hierarchy with one or more
statement blocks corresponding to the branching bodies or the
loop body. Figure 2 shows an example of a behavioral description
&n Verilog HDL where the branching statemén(tond) fur-
ther links to the two statement blocks oftlisn andelse bod-

In this section, we will present a hierarchical scheduling
model for uniformly specifying all the above styles of execution
and sequencing. The novelty of our scheduling model is that th
specification of clocking and synchronization is no longer global.
They are specified locally at each schedulable entity (operation Ofgg ot the next level. Note that the offsets ofttten andelse
statement) along with typical attributes like offset and delay. blocks shown in Figure 2 are relative to their paienstatement.

3.1. Clocking schemes The semantics of the hierarchical scheduling model is recur-
The supported clocking scheme can include a single cIockSively defined as follows. When a statement block is activated, the
(master clock), multiple phase clocks, and a mixture of a masterStatements in that statement block execute according their sched-
clock and one or mare phase clocks. As shown in Figure 1, wher!ing specifications. The execution of a compound statement
phase clocks are used, they are required to be synchronous arﬁvot/es adct_lvatlng lzetro ohr molrlethof th? atssdockatted statltglmel?t
have the same period called the primary cycle. The primary cycleP'0CKS and IS compléteé when all thé activated statement DIOCKS
is further divided into a number of pickets. Each phase clock is &€ cOmplete. An activated statement block is complete when the
restricted to have one active pulse per primary cycle. The duratiorPXecution of all its statements are complete.
and active level (high or low) of the active pulse are specified at3.3. Intra-block scheduling
the picket level. If a master clock is used together with phase
clocks, the primary cycle is a multiple of master cycles for the
purpose of synchronization.

Let S be a statement block which comprises of a list of state-
ments. The intra-block scheduling model defines the execution of
each statement é1 S by a tuple of attributep( vi, o, ¢, d);

< » primary cycle namely reference poi, phase synchronization mogle offset
0;, clock wavefornt;, and delay;.
rr_ positive phase clock Reference point The p; attribute defines the reference time
) - T(p) to whichs is scheduled relatively, and is a subsebsfich
active positive phase clock thatOs0p;, 5 has a dependency gnands is a compound state-
pulse T positive phase clock ment with a non-deterministic or unbounded del¥g). For-
et \ﬁ ive oh ook mally, T(p) can be expressed as:
pickets negative phase cloc T(pl) = ma)(T( SvT(Sj)"'D(Sj)‘ )
master clock . T S P .
1 2 3 4 whereT(S)is the activation time of statement bldsKT(g) is the
— start time of§, andD(s)) is the duration of;.
master cycle If 5 doesn't depend on any compound statement within state-
Figure 1. Supported clocking schemes ment blockS i.e.p; is an empty sef(p) is equal tor (S} in other
words,s; is scheduled with respect to the beginning.ofhe lat-
3.2. Hierarchical scheduling ter case is called absolute scheduling in Matisse, whereas the

The procedural HDL description can contain control-flow OPPOSite is relative scheduling. , o
constructs such as branching and iteration. The control flow spec- SyNnchronization modeThey; attribute is a boolean flag indi-
ification is modeled through the hierarchy of our scheduling €ating whether or not to use phase synchronization and is only

model. The hierarchy is defined by the compound statements sucfPPlicable to multi-phase clock scheduling. Wiyeis true, the
reference time to whic$ is scheduled is deferred T&(p;) which



is the beginning of the next primary cycle after the original refer- reference point lapse time occurs when statergefépends on
ence timeT(p). This attribute is mostly used to a situation where events which are not synchronized with the clgck

the statements (eventg)scheduled with different phase clocks Finally, the 3rd row expresses the start tifigg) when phase
need to be executed according to the phase order; e.g., a phasesgnchronization is usedy;€l). In such as,T(s) becomes the
event always follows a phase-1 event. Typically, the statements irbeginning of cycley; after T'(p;), the deferred reference time as
E have a common reference papgt If T(pg) occurs in a middle  shown in Figure 3. Since the clock edges;ohay not be in line

of a primary cycle as shown in Figure 3, by setting ly¢gh and with the primary cycles, a phase lapse td(®) is defined as the
y(g) to true,s ands have a synchronized reference tiifi¢pg) delay from the beginning of a primary cycle to the beginning of
after which the order of the clock phases are known statically.  the subsequent clock cycle®f also illustrated in Figure 3.

3.4. Pipeline scheduling

P primary cycle n  primary cycle ntl

< >< > Our scheduling model supports functional and loop pipelin-
si ing. Functional pipelining [5] is regarded as a form of scheduling
(phasel)_l— under a globalnitiation interval The initiation interval repre-
sents the time interval between two consecutive executions of a
s; I_I scht_eduled Qesign _behavior: Loop pi_pelining (also called loop
(phasey) folding or winding) is a localized functional pipelining of a loop.
— The local initiation interval defines the time interval between two
' O(phase,) consecutive executions of a scheduled loop body. In our model,
T(re) T'(pe) these two forms of pipelining are modeled the same way since the
Figure 3. Example of phase synchronization functional pipelining can be regarded as the loop body of the
design process.
Offset, clock and delayTheo; attribute is an integer valié In our hierarchical scheduling model, pipeline scheduling can
Z0* for specifying the offset in cycles of the selected clock  be specified at the top level or to an individual loop. The pipeline
after the reference tim&(p;) or T'(p;). By giving thec; (clock) execution is implicitly applied to the statement blocks within the

attribute locally to each statement (operation), multi-phase clockscheduling sub-hierarchy derived from the top-level statement
scheduling and synchronization are enabled in our model. Finally,plock or the loop statement. The following restrictions are also
thed; (delay) attribute is also an integer value and used for speci-assumed. All the statements within the scheduling sub-hierarchy
fying multi-cycle operations must use the same clock and absolute scheduling. Additionally,
Start time calculation.Table 2 expresses the start tiffig) nested loops are not supported in a pipeline. o
under three scenarios; namely, phase unsynchronized with a zero Pipeline scheduling changes the delay definition of a pipelined
offset, phase unsynchronized with a non-zero offset, and phaséoop. Lets be a loop statement with iterations and with a loop
synchronized. bodyILBi wh(zse ;atency iE)(LI?i). If 5 islnotdpiperl]inedD(s) is
. . equal ton;xD(LB;). However, ifs; is pipelined with an initiation
Table 2: Statement start times intervall;, D(s) becomesr{-1)xl; + D(LB;) as shown in Figure 5

where (-1)xl; is the time it takes to initiate the last iteration.

Yi| O T(s) i

o2
0 (0 | Tm) -

/ -

0 [ >0 | T(p) - o(p;) + o*period(g) o

€— 7). D(L:
11X T'(py) +9(c;) + o* period(g) (ni-1)e; _’|<_ (1 I)—>|

Figure 5. Loop pipelining

The first two rows expredgs) without phase synchronization
(¥;=0). In such cases should start ASAP after the reference point  wjthin the pipelined scheduling sub-hierarchy, each statement
T(p). When offsep; is 0, T(s) is same ad(p;) as shown in the  js associated with an additional pipeline start time. 4 dte a
1st row. The 2nd row express@@).when 0; is not0. In such statement irLB;, the pipeline start timérp(sj.) is equal to(T(g)-
cases will be started at the beginning of the cyoleafter T(p;). T(g)) % |; where % is a modulus operator. During pipeline execu-
In this equationperiod(g) is the cycle length of; and3(p)) is tion, s, will be executed periodically atxl;+TP(s) wheremz°*
qalled the. refergnce point lapse time. The refgre_nce point IgpsttH s (the loop) is complete. Note that some statemeiiBin
time &(p;) is defined as the delay from the beginning of the first may execute more tham times in a pipelined loog. The extra
cycle to the reference timg(p). It is used due to the cases where executions occur during pipeline filling and/or flushing.
T(p;) is not inline with the clock edges gf (especially in multi- . .
phase clocking designs) as shown in Figure 4. Typica(ty) is 4. Unified Control Synthesis

0; in other words, the entire first cycle is available. A non-zero Control synthesis for HLS is a process of generating a control

unit which will drive the data path as required by the schedule and
using the values derived from the resource/interconnect alloca-

lel cycle 2 . . . .
< vee > < Y » tion. A tutorial on control synthesis for HLS can be found in [11].
<~ As stated earlier, control synthesis in Matisse is required to
I ) . . . ; .
v support static/dynamic scheduling, single/multi-phase clocking,
6(17)&4/—7’ T(p) multi-thread executions, and loop pipelining seamlessly and uni-

formly. Additional critical requirements are that no extra cycles

Figure 4. Example of a reference point lapse time are introduced for nested branching and loop entry/exit unless



explicitly specified and that conditional blocks or while loops can clk;;. As a result, the execution of the statements in each group
be skipped with combinational delay (zero cycle skip). To achieve G;; only have different offsets with respect™g;) or T'(p;;)-
this aggressive goal, we developed a template-driven hierarchicaFurthermore, the different offsets share the same dlscrete unit, the

control synthesis with an additional optimization step.
4.1. Hierarchical control model

clock cycle ofclk; ;. Therefore, it can be seen easily that a single
FSM in control elementE; is sufficient to control the execution
of statementss; ;. The structure of a control element will be dis-

The multitude of scheduling styles to be supported, com- cyssed later in Section 4.3.

pounded with multi-phase clocking schemes, makes the tradi-
tional flat and single-FSM control model ineffective. We chose to g |ist of input signal®,
utilize a hierarchical control model which somewhat resembles toegither {start

Within control blockCB;, each control elemei@E;; receives

i required by its reference poqnqtJ
i }if pjj Is empty (absolute schedullng) arofn

our hierarchical scheduling model. Figure 6 shows that the hlerar-p|ete s | s pl i} The signalcomplete s is driven by one of
chical control model is an interconnection of hierarchical control theB circuit for S|gnaII|ng the completion of the compound state-
blocks, each of which is responsible for controlling a Statementments CE| begins its execution when each S|gndp|]"||s raised

block in our scheduling model. Each control bl@ig; has a pair
of hand-shaking signafgart ; anddone; for transferring con-
trol flow to and from its parent control block.

start done dpctrl,
(merged data-path
control signals)

CB

dongy
dpctrly

CBy CBy
Figure 6. Example of hierarchical control model

4.2. Control block

As shown in Figure 7, a control blo€®; further comprises
an interconnection of one or more control eleme@g{,.. .,
CE } and three types of peripheral circuii:D, andM.

Coarse-grain FSM partitioning The responsibility for exe-
cuting the statements in the statement blocKBfaccording to

the specified schedule are divided among control elementspe taken. For a loop stateménthestart

CE }, where the core of each control elem&t;

{CE1--.,

is an FSM A coarse-grain partitioning is performed to d|V|de the
G n} such that each group of
statement§s; ; has a common reference pamy, the same phase
synchronlzatlon modg ;, and most importantly the same clock

statements into groups3{y, .. .,

st|ar1; dong dpetrl
b— ] L
CEl — l&~ 7CEi M
@
= ]
& - wait; ;
_%5 = 3 activatgpije A
& = D; —
| Bi 7= 'l_wt%ne
CB

stary

Ctrly

dong; stak\donex /
dpctrl,l dp

------ CBy

Figure 7. Template of control block

and subsequently raiseswsit ;; signal when its execution is
finished. The data-path control sngnals driveriyy; are sent to
anM-type peripheral circuit for merging.

Flow control. B circuits are used to implement the control
flow of compound statements suchifis case , andwhile .
They are responsible for tlstart /done signals betweeB;
and its child control blocks and raise tbemplete signals
when the execution of the compound statements are finished. For
example, leB. be theB circuit for a conditional statemeatwith
K brancheskry, ..., brg}. The input signal oB; isactivate
from a control eIemenCE wherecl]G;;. CE, raisesacti-
vate . during the cycle that begins executlng The function of
B. can be expressed as the following logic equations.

start,, = activate [tond,,

K K
complete = Z dong, +activate, Drl cond,
k=1 k=1

wherecond ,, denotes the branching condition lmf The first
equation implements the branching control by raisingsthg

signal of a branch whose condition is true and wheegins its
execution §ctivate  .=1). The second equation raisesm-

plete . when the selected branch is done or there is no branch to
b Signal driven byB
becomes the iteration control of the loop bdyFor example, let

| be awhile loop. One way to implemem; is as follows:

starty, = (activatg +dong,) [(tonq
complete = dong, (tond

Done detectionTheD circuit D; in Figure 7 is responsible for
raising thedone signal when the execution of the control block
CB is finished. Recall from Section 3.2, the completiorCef
requires the completion of all the statements in its statement
block, which is the time that all the control elemer@&ys,. ..,
CE; n} have raised thewait  signals and all thB circuits inCB;
have raised thetomplete signals.

In general, it's not necessary oy to depend on all theait
and complete signals because there often exist some prece-
dence relationships among these signals. A simple static timing
analysis on the schedule 6B;’s statement block can be per-
formed to eliminate thosevait and complete signals that
have precedence of other signals. Consequently, the remaining
wait andcomplete signals are the ones whose assertions can
only be determined dynamically. Often, there is only one remain-
ing signal forD; to depend on. In such casBg,becomes a wire
connecting the signal directly tone;. However, if there are
two or more remaining signals, their assertions may not be simul-
taneousD; may need to memorize some input assertions using
latches or flip-flops.



Control signal merging Since we utilize a distributed multi-  their assertions. If;; (phase synchronization mode) is true, an
FSM control model, the data-path control signals with more thanadditional flip-flop clocked by aync signal as shown in Figure
one driver need to be merged before connecting to data-path conB is inserted at the output Bf; to generate a phase synchronized
ponents. As shown in Figure 7, the control signals from the con-enable’ ;; . The sync signal is typically one of the phase
trol elements and the child control blocks are merged clocks which defines the boundaries of primary cycles; e.g., the
hierarchically through ah circuit. A typical approach for signal  phase-1 clock.
merging is to use data selectors such as multiplexers, which Control FSM. FSM; is the core ofCE; which asserts the
requires generating additional data selection logic. associated data-path control signals orabevate  signal of

By exploiting the fact that the HLS designs should be free of each compound statement@; at the specified offseESM; is
resource conflicts and by making use of default control values, wean L-state FSM with circular state transitions and clocked with
have developed an efficient technique to merge control signals vialk;;. L is the latency oG;;'s schedule excluding the delays of the
simple logic; hence, improving area and performance. The basiccompound statements. Figure 9 shows the basic circular state
idea is as follows. If all the sources (FSMs) of a data-path controltransitions 0FSM;, where the assertions of the data-path control
signal send a pre-defined default value whenever there is no spesignals or theactivate  signal for each statemextn G;; are
cific (active) control value required to performed the scheduled assigned to stats,.
statements, then the data-path control signal will not be asserted
by two or more different active control values at any given time.
Otherwise, the design is not free of resource conflicts because th
associated data-path component will be asked to perform differ-

ent functions at the same time. Formally,debe a 1-bit control it 9 o ( ) . @
signal with multiple sourcesc§,, ... ,csy} and a default control
valuedval., The merging function can be expressed as follows:

. lout ijL

if dval.g= 0

enable ij

M
cs = c
21 ¥ Figure 9. Basic state-transition graph of ~ FSM;;
M . .
cs = l_l cs if dvalg, = 1 4.4. Pipeline control .block o . .
In our control synthesis, loop pipelining is done in a special

i=1

If csis a multi-bit signal, the merging can be done by bit-wise
ORIng or ANDing the source signals depending on the default
value of each individual bits. Alternatively, if arbit control sig-
nal does not utilize all the possil#t@ values, one can encode the
used values first to reduce the number of bits for merging. The
encoded control signal can then be decoded just once after th
final merging.

4.3. Control element start dpctrl; (data-path control signals) ~ dong
As discussed in the previous section, each control elemen | A
flush oP J

pipeline control block which controls the entire loop body. As
shown in Figure 10, the external interface of a pipeline control
block remains the same as non-pipeline control blocks. Hence, it
can co-exist with other control blocks seamlessly. Within a pipe-
line control block, there are one pipeline control elentit,

one pipelineD-type peripheral circuibP;, and zero or more shift
?egisters for storing conditional values.

CE;; controls a group of statemer@®; which have a common |9
reference poing; ;, the same phase synchronization mggleand e
most importantly the same clock; ;. Figure 8 shows tha&lE

consists of a finite-state machiR€M ;, aR-type peripheral cir-

cuitR;j, and an optional phase synchronization flip flop. condk

enable;;
complete —| Y —> dpcirl;

or Rij \% ’ cond. o

start; endble”
— j i )
5 g FSM; —> activate,

sync—sh D clkij—> Figure 10. Template of pipelined control block
donei% —> Waitiyl'

cB,

optional o ) )
Pipeline control elementCE’, is an FSM withl states,
Figure 8. Template of control element wherel€ is the discrete initiation interval. The assertions of each
statements within the pipeline scheduling sub-hierarchy is
Reference circuitR is responsible for determining the refer- assigned to stat&"(s)/period(cl)Dwhere T%(s) is the pipeline
ence time foFSM; according tap;; andy; ;. The circuit behavior start time as defined in Section 3.4. As with non-pipeline control
of R, is similar to'theD-type peripheral Circuit described in Sec- elements, the state transitionsQ##”; are also circular.
tion 4.2. The inputs dR;; are thecomplete  signals of the com- Conditional assertionsThe assertions are conditional if the
pound statements in 'Jreference point or start ; if p; is statements within the pipeline scheduling sub-hierarchy is
empty.R ; raises thenable ;; signal to starESM; when all enclosed by one or more conditional statements. The condition
its inputs are asserted. If the number of inputs is greater than ondOr the assertions is the conjuction of all the branching conditions
R;; contains memory devices such as latches or flip-flops to storddf the enclosing conditional statements. Due to the nature of pipe-



line execution, if the latency of a conditional statement is longer
than initiation interval, multiple instances of a conditional state-
ment will be executed concurrently. However, throughout the exe-
cution of each instance, the conditional value for conditional
assertions should always be the one at the time the instance is in
tiated. Hence, we utilize shift registers to store the history of the
conditional values.

Let sreg. be the shift register for a conditional statentenith
latency D(c). The number ot instancesn., executing concur-
rently is[D(c)/I0 The length ofreg; is alson.. CE; raises signal
shift . at the cycleT®(c)/periodclk)din which a newc
instance is initiated. Raisinghift . causesreg, to shift once
and store a new value odénd.. For each statemestwithin c, the
source ofcond. which s should use for its conditional assertions
depends orit's offset with respect to the beginning af For
example, Figure 11 shows the execution of three instances an
each of which is divided into three stages of lenigtiit the
beginning ofcy, a newcond, ; is stored irsreg[1] and used dur-
ing its 1st stage execution. By the tinyds initiated,c, is execut-
ing the 2nd stage angbnd; ; is now shifted tesreg[2]. Hence,
sreg[2] is the source ofond, used by the 2nd stage execution.
Formally, the source afond, for each statemestwithin a condi-
tional statement can be expressed sieg[ [{T(s)-T(c))/10].

i D(c)
2

Cq F 1

S N SRS

Co 1

3
2
1
C3l 1
1
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Figure 11. Pipeline instances
Pipeline done Thedone; signal driven by thé®P; circuit

/

R £

CE,

clkg

Figure 12. Example of logic collapsing

combinational circuit. A logic collapsible entity denotes an entity

whose behavior degenerates into logic functions. Two logic col-

lapsible entities are mutually collapsible if they have the same
starting cycle and clocking. Figure 12 shows an example of logic
collapsing anf statement where bothen andelse parts are
mutually collapsible.

FSM collapsing is also a bottom-up technique which recur-
sively collapses control elements, control blocks, and B-type cir-

also becomes more involved than the non-pipeline counterpartseyits which are FSM collapsible. A FSM collapsible entity

Recall that the fundamental part of our pipeline execution (Ioop denotes an entity whose behavior can be implemented by a sin-
pipelining) is to initiate a new iteration of loop body every initia- gle-thread FSM. Therefore, control elements, by default, are FSM
tion interval (see Figure 5) until the loop exit condition is met. collapsible. Two FSM collapsible entities are mutually collapsible

However, the pipeline execution is not yet complete at thatif they share the same clocking and there exists a common refer-

moment due to the fact that there are sflli((;))/10- 1) itera-

ence point among them. By sharing the same clocking and a com-

tions yet to be finished. The process of completing the remainingmon reference point, the execution of two single-thread FSMs are

active iterations is typically called pipeline flushing. In our pipe-
line control modelCEP, raises signdlush ; at the first pipeline
state wherstart ; is dropped and continues the execution of the
remaining iterationsDP; is a delay circuit, such as a counter,
which raiseglone; after a pre-determined number of cycles for
the remaining execution, which§D(L;)-1)/periodclk;)Ocycles.

4.5. Optimization

Although our hierarchical control model with multiple distrib-
uted FSMs is extremely flexible and capable of supporting all the
its objectives uniformly, we also found that there is room for opti-
mization; in particular, the portions of the design which use static
scheduling and a single clock. We developed two types of optimi-
zation techniques; namely, logic collapsing and FSM collapsing.
The primary goal of both techniques is to collapse a sub-hierarch
of control blocks if possible into a single entity. Thus, both the

state registers and the logic of merging data-path control signals

can be reduced.

Logic collapsingis a bottom-up technique which recursively
collapses stateless control elements, control blocks Bawyge
circuits (see Section 4.2). Recall from Section 4.3 that each con
trol elementCE; contains arL-state FSMCE; becomes state-
less whenL is 1, meaning that the FSM degenerates into a

in lock steps; hence, they can be statically merged into one. There
are two common ways of merging single-thread FSMs; namely,
state sharing and state connecting. State sharing is applicable to
two or more single-thread FSMs whose executions can share
common starting and ending points. An example of state sharing
is shown in Figure 13(a). The result of state sharing is a new sin-
gle-thread FSM whose state number is equal to the one with more
states and the outputs become conditional by the respective FSM
enable signals. State connecting, on the other hand, is suitable
for two or moremutually exclusivesingle-thread FSMs whose
executions can share common starting and ending points. Figure
13(b) shows an example of two mutually exclusive single-thread
FSMs. State connecting creates two new starting and ending
statesS., o andS; ; to replace the ones used by original FSMs. The

yoriginal mutually exclusive execution is achieved through two

conditional state transitions emitting fragg,,

5. Experiments

In this section, we first report the range of design applications
that the work described in this paper was used. Following that, a

case study of FSM optimization is presented. Finally, the support
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Figure 13. Example of FSM collapsing
of multi-phase clocking schemes is demonstrated with an experi- Table 4: Results of FSM Optimization
ment of single vs. multi-phase clocking on power consumption.
5.1. Coverage of design applications Design Area Reduction
The scheduling model and control synthesis presented in this ——
paper are implemented in an industrial HLS systdatjsse and 8-bit microcontroller 48%
has been successfully used in a broad range of industrial desigr ) .
for evaluation or production. The designs included hard-wired FIR Filter 37%
DSPs, an encryption/decryption engine, a bus-to-bus interface, ¢ .
control-dominated peripheral, and a microcontroller. Table 3 lists ADPCM predictor 18%

some notable designs and their underlying HLS modeling tech-

niques (refer to Table 1 for numbering scheme). So far in all of aiso found that the amount of area improvement is design-specific
these projects, the area and performance of the automatically genand proportional to the room allowed for optimization.
erated controllers were found or estimated by the designers to b

comparable to traditional RTL design techniques. B.3. Effects of clocking on power
Since multi-phase clocking schemes are supported in Matisse

Table 3: Designs and modeling coverage and Matisse also provides an environment for architectural power

optimization [12], we set out to experiment a power saving tech-
Design 12| 3| 4| 5| 6] 7 nique using multi-phase non-overlapping clocks proposed by
Papachristou et al [10]. The basic idea is as following. Given a
ADPCM predictor X| X[ X X schedule, instead of using traditional resource and interconnect
allocation using a single clock with a frequefictheir technique
Encryption/decryption| X| X X utilizes n non-overlapping clocks with frequenty and a data-
- path architecture with disjoint modules, each running on a dis-
Bus-to-bus interface | X X X X X tinct clock. Additionally, two special allocation methods were
proposed to map each node in the data-flow graph (DFG) into a
Vector I/O buffer x| X x| X specific module according to the operation’s time step in a modu-
] lus fashion. For example, nodes scheduled at time tstae
FIR filter XXX X mapped to a module running @K, wherek ist mod n The
o authors argued that their approach can achieve lower power con-
8-bit microcontroller | X | X | X | X sumption than traditional HLS designs due to a “capacitance

o reduction” effect and the reduced frequency. Power savings up to
5.2. A case study of FSM optimization 50% were reported in their paper.

To study the effectiveness of our logic and FSM collapsing  We implemented various designs of the example described in
techniques, we conducted a case study on 3 designs in Table 3heir paper. Due to the limited space of this paper, please refer to
For each design, we generated a full hierarchical controller and arj10] for the detailed description of the example and design sche-
optimized controller using both logic and FSM collapsing. The matics. Each design, including the controller, synthesized into
generated controllers were synthesized using Synopsys Desiggates using Synopsys Design Compiler and power was estimated
Compiler using the same set up, including the library and the perby an accurate gate-level power estimation tool [13]. Table 5
formance constraints. summarizes the experimental results

It can be seen from Table 4 that an optimized controller can  Circuitl is a single-clock design with two add/subtract ALUs
achieve up to 48% area reduction over an unoptimized one. Weand used by the authors for comparison withuit2 which is a



two-clock design. With a set of random input test vectorsyit2
indeed was found to achieve 39% power reduction civeuitl.
Since circuitl and circuit2 have different resource allocations and[l]
clocking schemes, it was not apparent what the individual effects
were on power savings. We found that all architectures generated
by the multi-phase clock technique can still be clocked by a single[z]
clock with clock gating at registers. Hence, we implemented
circuit3 which has the same architectureimsuit2 but uses a sin-  [3]
gle clock. As shown in Table 5, by compariegcuit2 and [4]
circuit3, the power savings by the multi-phase clock technique [5]
alone becomes 23%. Finally, we implemented another two-clock
design,circuit4, which was given by the authors using their inte-
grated allocation method (Figure 7 in [10]). It was also found to
consume less power than single-clock designs, but not better tha[‘b]
circuit2. Note that the controllers synthesized by our tool for
circuit2 andcircuit4 consist of two FSMs driven by two specified
non-overlapping clocks respectively.

Table 5: Effects of clocking on power

[7]

Design| Clocking/Arch. | Power Ared Func. Units 8]
Circuitl| 1 clock 1.00| 1000 2(+/-) ]
Circuit2| 2 clocks 0.61| 1114 2(+), 1(-)
Circuit3| 1 clock, same archi-0.77 | 1115 2(+), 1(-) [10]
tecture as circuit2
Circuit4| 2 clocks, integrated 0.68 | 1388 2(+), 1(-)
allocation version [11]
6. Conclusion [12]

We have presented a novel scheduling model and an efficient
control synthesis which seamlessly and uniformly support static/
dynamic scheduling, single/multi-phase clocking, multi-thread
execution, and loop pipelining. Our contribution is an enabling [13]
technology for HLS to go beyond traditional datapath-dominated
DSP applications and to start becoming a viable and cost-effec-
tive design methodology for commodity ICs such as micro-pro-
cessors/controllers and control-dominated peripherals.

The presented scheduling model and control synthesis have
been implemented in an industrial HLS system and used to suc-
cessfully design many industrial designs for evaluation or produc-
tion, including digital filters, an encryption/decryption engine, a
bus-to-bus interface, a high-speed vector 1/O buffer, and a micro-
controller. We also showed the effectiveness of our optimization
techniques which make our hierarchical control synthesis as effi-
cient as traditional single flat FSM control synthesis for static
scheduling while capable of supporting dynamic scheduling and
multi-phase clocking schemes. Finally, we conducted a study on a
power-saving technique using multi-phase clocking as proposed
in [10].

We believe that there are still other opportunities for further
optimizing our hierarchical control model. Furthermore, micro-
coded controllers along with hardwired FSMs should be sup-
ported due to the increasing need of architecture reuse and
programmable designs.
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