
0-89791-993-9/97 $10.00 1997 IEEE

E�cient Circuit Partitioning to Extend Cycle Simulation Beyond

Synchronous Circuits

Charles J. DeVane�

Viewlogic Systems, Inc.

Marlboro, MA 01752-4615

Abstract

Cycle simulation techniques, such as levelized com-

piled code, can ordinarily be applied only to synchronous

designs. They usually cannot be applied to designs con-

taining circuit features like combinational paths, multi-

ple clock domains, generated clocks, asynchronous re-

sets, and transparent latches. This paper presents a

novel partitioning algorithm that partitions a non-cycle-

simulatable circuit containing these features into sub-

circuits that can be cycle simulated. Cycle simulation

techniques can be applied to the individual sub-circuits,

and the whole collection of sub-circuits can be simulated

together using conventional co-simulation techniques.

Empirical results demonstrate that this approach brings

the bene�ts of cycle simulation to circuits that were pre-

viously impossible to cycle simulate. The partitioning

algorithm requires time and space linear in the size of

the circuit, and in practice is very fast. We also dis-

cuss how the key ideas presented here can be applied to

accelerate HDL simulation.

1 Introduction

The rapidly expanding size and complexity of digital
systems has caused simulation to become a major bot-
tleneck in the design ow. To overcome this bottleneck,
designers are increasingly willing to abandon traditional
event-driven timing simulation and adopt a combina-
tion of static timing analysis and functional simulation.
Static timing analysis relieves the simulator from the
burden of verifying timing, so that only the circuit's
logical function needs to be simulated. The circuit can
be simulated at a level of abstraction higher than event-
driven timing simulation using faster algorithms.

In contexts where simulation of timing is not needed,
levelized compiled code (LCC) has been used very suc-
cessfully on large, purely synchronous designs. This
technique consumes very little memory and is usually
very fast, but it generally supports only a zero delay
model of logic and is appropriate only for synchronous

�The author's current address is: The MathWorks, Inc., Nat-

ick, MA 01760; cdevane@mathworks.com.

circuits. This model of simulation is sometimes called
cycle simulation, because it focuses on computing cir-
cuit values only on clock cycle boundaries.

Unfortunately, most designs are not purely syn-
chronous but include features like combinational paths,
asynchronous resets, transparent latches, multiple clock
domains, and generated clocks which are not readily
supported by the cycle simulation abstraction. It can
be feasible to cycle simulate these features in a test en-
vironment where the stimulus is a predetermined set
of test vectors. However, it is increasingly important
to verify circuits in context inside a complete system.
Problems arise as soon as a circuit with any of these
features is embedded in a system simulation where ex-
ternal feedback may cause the circuit input to be a dy-
namic function of the circuit outputs.

How can we exploit cycle-simulation algorithms like
LCC to simulate circuits with these features within a
complete system simulation? If circuits that cannot
be cycle-simulated can be automatically and e�ciently
partitioned into subcircuits that can be cycle-simulated
then the bene�ts of cycle simulation algorithms can be
extended to a broader class of circuits. Using conven-
tional co-simulation techniques, a hybrid simulation en-
vironment can apply cycle simulation to the subcircuits
that allow it, and conventional event-driven simulation
to the rest of the circuit (see Figure 1). Hybrid environ-
ments similar to this are already widely used to support
requirements like mixed-signal simulation, third-party
models, mixed-language HDL simulation, etc. The key
problem, then, is how to partition circuits into cycle-
simulatable sub-circuits.

In this paper we present an algorithm to partition
circuits into cycle-simulatable sub-circuits. The algo-
rithm is e�cient, generally being linear in both time
and space, and very fast in practice. We �rst establish
a notion of cycle simulation as a level of abstraction,
and then review prior work in this light. Next we de-
�ne a class of circuits that can be cycle-simulated. Then
we discuss several common circuit features which pre-
clude cycle simulation: combinational paths, multiple

event-driven
simulation
kernel

event-driven model

cycle model

third-party model

analog model, etc.

��3
��+ ��:��9
XXzXXy

QQs
QQk

Figure 1: Hybrid simulation environment supporting
event models and cycle models as well as other forms
of simulation.

clock domains, generated clocks, asynchronous resets,
and transparent latches. For each case it is shown how
to partition the circuit for e�cient simulation. An e�-
cient algorithm is presented that performs the desired
circuit partitioning, along with a brief sketch of the
proof of correctness and analysis of complexity. Experi-
mental results of applying this partitioning to actual in-
dustrial designs are then presented to demonstrate the
e�ciency and e�ectiveness of the algorithm. The paper
closes with an application of these structural ideas to
accelerating HDL simulation.

2 Background
2.1 The Cycle Simulation Abstraction

A hierarchy of abstraction for circuit simulation is
illustrated in Figure 2. At higher levels of abstraction
less information is computed, which leads to faster al-
gorithms. However, these faster algorithms are only
applicable to circuits for which the abstraction is ap-
propriate. Conversely, at lower levels of abstraction
more information is computed, leading to algorithms
that are slower but more broadly applicable. For exam-
ple, SPICE2[7] is much slower than event-driven logic
simulation, but can be applied to analog circuits for
which event-driven logic simulation is inappropriate.

speed higher abstraction

cycle simulation

event-driven logic simulation

analog simulation

lower abstraction exibility

6

?

Figure 2: A hierarchy of abstraction for circuit simula-
tion.

The term cycle simulation is sometimes equated with
LCC simulators [2] [4] [9]. However, this paper uses
the term more generally to describe any simulation al-
gorithm that focuses on computing and storing only
the values of circuit outputs and storage elements at
most once per clock cycle. By this de�nition cycle sim-
ulation operates at a higher level of abstraction than

event-driven logic simulation. Because they compute
and store fewer values at fewer time points, algorithms
that exploit the cycle simulation abstraction can be ex-
pected to have an inherent performance advantage for
appropriate circuits.

It is important to distinguish between the level of ab-
straction supported (or exploited) by a simulator and
the algorithms used to implement the simulator, be-
cause multiple algorithms may be used to support a
given level of abstraction. For example, instead of us-
ing LCC a cycle simulator can use techniques such as
branching code [1] [6] or threaded code [5]. Likewise, an
event-driven simulator need not have a run-time event
queue [3].

2.2 Previous Work

HSS/3[2], Terse[4], and SSIM[9] all demonstrate
the performance potential of software LCC simulators.
Terse can also perform static timing analysis during
model compilation. However, all these systems were
restricted to synchronous designs.

Research continues to improve the performance of
event-driven simulation. However, due to the di�erence
in levels of abstraction, the performance of event-driven
simulation still has not approached that of cycle sim-
ulation. For example, VeriSUIF[3] used compiler op-
timization techniques to eliminate the run-time event
queue while maintaining the event-driven abstraction.
It achieved impressive performance for an event-driven
simulator, but still falls short of cycle simulation. Al-
though VeriSUIF is a compiled simulator and incorpo-
rates a form of levelization, it does not use what is con-
ventionally known as LCC as in [2][4][9]. By compar-
ison, VeriSUIF's levelization optimization is limited in
its ability to suppress multiple evaluations. Because
VeriSUIF supports the event-driven abstraction, com-
puting intermediate values at intermediate time points,
its performance potential is necessarily limited com-
pared to cycle simulation. Another potential perfor-
mance problem may be compilation time.

Another relevant approach to improving simulation
performance is demand-driven simulation, as illustrated
by BACKSIM[8]. BACKSIM did not support timing
analysis and was used essentially as a cycle simulator.
During simulation, BACKSIM uses a depth-�rst search
to recursively walk backward through the circuit, col-
lecting only the information required to compute the
desired output values. BACKSIM can be viewed as
using dynamic levelization at run-time instead of the
compile-time static levelization used by LCC simula-
tors. The general concept of demand driven evalua-
tion can be seen behind our notion of fanin gates (Sec-
tion 3.2).

Several event-driven simulators have sought higher

performance by exploiting techniques like LCC at a rel-
atively �ne granularity. These simulators could be con-
sidered as hybrids between the event-driven abstraction
and the cycle abstraction. For example, HSS/4[2] im-
plemented event-driven scheduling of fanout-free trees
of gates, where the trees are evaluated obliviously. Sim-
ilarly, LECSIM[10] reduces scheduling overhead by em-
ploying two partitioning strategies. First, it groups each
strongly connected component into a single block which
is evaluated by LCC inside a small loop that iteratively
evaluates the block until it stabilizes. This scheme is
much cheaper than using the main scheduling mech-
anism. Second, LECSIM can group fanout-free trees
into single blocks for scheduling. Our approach can be
viewed as an extension of this hybridization, where we
use a di�erent partitioning that typically results in a
far coarser level of granularity.

3 Extending Cycle Simulation

This section �rst de�nes a class of circuits which can
be cycle-simulated. Several common circuit features
that preclude cycle simulation are discussed as well as
how each feature a�ects partitioning for e�cient simu-
lation.

3.1 Assumptions

For simplicity, assume that all circuit primitives
are either combinational gates or registers (storage el-
ements). Initially registers are assumed to be only
edge-triggered ip ops but in Section 3.7 registers are
extended to include transparent latches. All primi-
tives have some connected inputs and some connected
outputs. All signals have uni-directional signal ow;
i.e., any bi-directional signals have been converted to
uni-directional signals using bus resolution primitives.
The circuit contains no combinational feedback (asyn-
chronous state machines).1 Only zero-delay simulation
semantics are of interest.

Throughout this paper the term gate designates an
arbitrary combinational logic function of any complex-
ity and bit width, assuming only that it contains no
state. For example, a gate may be as simple as a 1-bit
2-input AND, or as complex as a 64-bit carry-lookahead
adder.

3.2 Circuits Which Can Be
Cycle-Simulated

The key idea behind cycle simulation is to compute
circuit values only at clock edges. Furthermore, cycle
simulation is usually only concerned with the values of
registers and circuit outputs.

1Combinational cycles can be handled by extracting them into

a separate partition which is co-simulated along with the other

partitions, similar to LECSIM's handling of strongly connected

components [10].

This, however, implies that cycle simulation only
makes sense for circuits that are controlled by a clock
{ synchronous state machines. Other circuits, such as
purely combinational logic or asynchronous state ma-
chines don't make sense for cycle simulation because
they may require evaluation at times other than clock
edges.

To de�ne more precisely a class of circuits that can
be cycle-simulated begin by considering a single edge-
triggered register. Clearly this can be correctly simu-
lated by only evaluating it on the active edge of the
clock. Now consider Figure 3. Zero-delay simulation
semantics only require evaluating this circuit at the ac-
tive clock edge to get correct results. This is because
the input of the combinational gate will change only in
response to the active clock edge. This reasoning can
be extended to any number of gates as long as their
transitive fanin is derived strictly from the outputs of
registers sharing the same clock.

QD

Figure 3: A register with a fanout gate.

Next consider Figure 4. Conventional event-driven
techniques will evaluate the combinational gate any
time its inputs change, which could be many times per
clock cycle. However, its output is used only on the
active clock edge. Since only the values of registers and
outputs need to be computed, the gate only needs to
be evaluated on the active clock edge. As before, this
reasoning can be extended to any number of gates as
long as their transitive fanout ultimately goes strictly
to the inputs of registers sharing the same clock.

QD

Figure 4: A register with a fanin gate.

A circuit which can be cycle-simulated is de�ned as
a collection of edge-triggered registers sharing the same
clock plus all the combinational gates which meet either
or both of the following conditions:

1. the gate's entire transitive fanin comes from the
registers, or

2. the gate's entire transitive fanout goes to the reg-
isters.

Gates meeting condition 1 are called fanout gates, be-
cause they are the fanout of the registers of the circuit.

QD QDA B
FDC

E

Figure 5: Examples of fanin and fanout gates.

Gates meeting condition 2 are called fanin gates, be-
cause they are the fanin of the registers of the circuit.

Figure 5 shows an instructive example. Both reg-
isters share the same clock. Gates A, B, and C meet
condition 1. Gates E, and F, meet condition 2. Gate D
meets both conditions.

3.3 Combinational Paths

What about gates that meet neither condition? As-
sume for the moment that all registers in the circuit
share the same clock. If a gate does not meet condition
1 then its transitive combinational fanin must include
the circuit's input. Similarly, if the gate does not meet
condition 2 then its transitive combinational fanout
must include the circuit's output. So there must be
some combinational path from a circuit input through
the gate and on to a circuit output. Figure 6 illustrates
this situation. Gate G is neither a fanin nor a fanout
gate. The combinational path through gate G is shown
in bold.

QD QD

G

B
FDC

E

A

Figure 6: Gate G cannot be cycle-simulated due to a
combinational path.

How should these gates be simulated? If the sim-
ulation environment simply exercises the circuit with
vectors in a relatively synchronous fashion, it may be
acceptable to evaluate these gates once per clock cycle
(or once per vector). However, an event-driven simu-
lation environment has no a priori knowledge of when
the gate's inputs change, or when its output is needed.
Hence, for correctness, the gate should be evaluated
whenever its inputs change. These gates are called
input-triggered gates.

If all the registers in the circuit share a clock, the
circuit can be subdivided into two partitions: a clock-

triggered partition containing all the registers plus all
the fanin and fanout gates and an input-triggered par-

tition containing all the remaining gates. The clock-
triggered partition need be evaluated only once per

QD QD

G

B
FDC

E

A

Clock-triggered partition

Input-triggered partition

Figure 7: Partitioning into clock-triggered and input-

triggered partitions.

QD QD

QD
QD

Figure 8: A circuit with multiple clock domains.

clock cycle, while the input-triggered partition must be
evaluated whenever its inputs change. Figure 7 illus-
trates the partitioning of Figure 6.

Nothing has been said about how the two partitions
should be evaluated. Any evaluation technique can be
used for either partition, including LCC, threaded code
[5], branching code [1] [6], etc.

3.4 Multiple Clock Domains

Introducing registers with di�erent clocks (i.e., mul-
tiple clock domains), as illustrated in Figure 8, requires
strengthening the de�nition of fanin and fanout gates.

It is not enough simply to restrict the transitive com-
binational fanout of fanin gates only to registers: all
the registers must share the same clock. Clearly, such
a fanin gate can be associated with the registers in
its fanout and evaluated only when those registers are
clocked. Similarly the transitive combinational fanin of
fanout gates must be restricted to registers sharing the
same clock. Such a fanout gate should be associated
with the registers in its fanin and only evaluated when
those registers are clocked.

This introduces an ambiguity in the partitioning.
Some gates can be both a fanout gate of one clock do-
main, and a fanin gate of a di�erent clock domain. The
choice of which domain the gate is associated with is
arbitrary, and may be made according to other expedi-
ents. For example, the choice could be made to mini-
mize signals that cross domains.

Some gates may fail to be fanin or fanout gates of any
partition. It is no longer the case that such gates must

QD QD

QD
QD

Figure 9: Partitioning of the circuit from Figure 8.

lie on a combinational path from circuit input to circuit
output. A gate that fails to be a fanout gate must have
transitive combinational fanin either from two or more
clock domains, or from a circuit input plus one or more
clock domains. Likewise, a gate that fails to be a fanin
gate must have transitive combinational fanout either
to two or more clock domains, or to a circuit output
plus one or more clock domains.

To simulate these circuits we extend the previous
partitioning strategy to construct one clock-triggered
partition for each clock, and one input-triggered parti-
tion. All the registers that share a clock are placed into
that clock's clock-triggered partition together with the
associated fanin and fanout gates. All the gates that
are neither fanin nor fanout gates are placed into the
input triggered partition. Figure 9 shows the result of
partitioning on the circuit of Figure 8. The gates in the
input-triggered partition are shown in bold.

3.5 Generated Clocks

So far the discussion has assumed that all the clock
signals are inputs to the circuit. What if some clocks are
generated within the circuit? Consider Figure 10. Gate
A is a fanin gate since it only drives the data input of
the register. But gate B, which drives a register's clock
input, is di�erent. If gate B is made a fanin gate as-
sociated with the register and evaluated only when the
register is clocked, neither it nor the register will ever
be evaluated. Rather, the partition must be evaluated
whenever gate B's inputs change. But this may increase
the number of inputs the partition is sensitive to and
complicate the partition evaluation code by forcing it
to detect the rising edge of the internal signal.

QDQDA

B

Figure 10: A circuit with a generated clock.

A simpler approach, illustrated in Figure 11, makes
the register's clock input an input to the register's par-

QDQD

Clock-triggered
partition B

Clock-triggered
partition A

A

B

Figure 11: Partitioning of the circuit from Figure 10.

tition. This forces B into another partition as either a
fanout gate or an input-triggered gate, as determined
by the rest of B's context. The simulation environ-
ment can provide the necessary clock edge detection,
as it must be doing anyway to support co-simulation
of multiple circuit partitions. The desired partitioning
is achieved by treating the clock inputs of registers ex-
actly as if they were circuit outputs. This will prevent
the driving gate from being a fanin gate, thus forcing
it to be a fanout gate or an input-triggered gate and
forcing the clock signal to be an input to the register's
partition.

3.6 Asynchronous Resets

So far all partitions have been sensitive only to
a single input, the clock, or else sensitive to all in-
puts. Asynchronously reset registers present an issue
because they must be evaluated not only on the ac-
tive clock edge but also when the reset is asserted.
This is readily handled by extending the notion of
clock domains into trigger domains. A trigger is any
<signal; event> tuple which causes a register to re-
quire evaluation. A trigger domain is all the logic that
is sensitive to a set of triggers. For example, all the
registers that are clocked by <risingedge; CLK> and
reset by <fallingedge;RESET > together with their
fanin and fanout gates form a single trigger domain.

3.7 Transparent Latches

So far all storage primitives have been edge-triggered
ip ops, which need to be evaluated only on the as-
serting edge of the clock (or reset). Transparent latches
present a problem because they must be evaluated not
only on clock edges, but also on data edges when the
clock is asserted. Their behavior is essentially combi-
national during the active clock phase.

For the purposes of cycle simulation, some design
methodologies can model transparent latches as edge-
triggered ip ops. For example, this is frequently the
case for multi-phase clock methodologies that use trans-
parent latches as the primary storage element. In these
cases latches can be converted into edge-triggered ip
ops. The ip ops can be clocked on the opening or
closing edge of the clock, whichever is most appropriate
for the individual design.

>�����)
�
�	
@
@R
PPPPPq

labeli labeli+1 � � � labeli+N
PPPPPq

@
@R
�
�	

�����)
?

Figure 12: Lattice of values for representing fanin and
fanout information.

However, some designs will not simulate correctly
without genuinely transparent latch behavior. This
case can be handled by treating both the clock and data
inputs to the latch as sensitive inputs. The latch must
be evaluated on the opening edge of the latch clock, and
whenever the data changes.

4 The Partitioning Algorithm

The input to our partitioning algorithm is a network
of registers and combinational gates connected by uni-
directional signals.

Recall that gate refers to an arbitrary combinational
logic function of any complexity or width, and register

refers to either edge-triggered ip ops or level-sensitive
latches. Gates and registers are collectively referred to
as primitives. For convenience, the network also con-
tains primitives representing the circuit inputs and out-
puts.

The circuit must contain no cycles of combinational
gates; i.e., any cycles in the network must be broken by
registers.

The output is the same network with all primitives
labeled according to their assigned partition; i.e., all
primitives with the same label are in the same partition.

For computing transitive combinational fanin and
transitive combinational fanout and labeling primitives
we use a lattice of values as in Figure 12. The lattice
includes a label for each partition. Registers are labeled
according to their trigger sets. Gate are initially labeled
with > to indicate that no fanin (fanout) information
is known about the gate. If fanin from (fanout to) only
one partition i is discovered the gate will be relabeled
labeli. If fanin from (fanout to) multiple partitions is
discovered the gate will be relabeled ?.

Each gate has the following �elds:

gate.fanin the lattice value for the gate's transitive
fanin;

gate.fanout the lattice value for the gate's transitive
fanout;

gate.partition the �nal partition assignment for the
gate.

Each register has a �eld reg.partition to hold the
register's label. All of these �elds are initialized to >.

Conceptually, the algorithm has four phases. First,
the registers are partitioned according to trigger sets
such that all the registers that share a given set of
triggers are contained in their own partition. These
partitions are the kernels of the clock-triggered parti-
tions. The �nal circuit partitioning will have these par-
titions plus the (possibly empty) input-triggered parti-
tion. Each partition (including the input-triggered par-
tition) is assigned a unique label from the lattice. Each
register is labeled with its partition's label.

Second, fanin information is propagated forward
from register outputs and circuit inputs to the gates,
leaving each gate labeled according to its transitive
combinational fanin. This is accomplished using a
depth-�rst search which �rst recursively visits all of
a gate's fanin before labeling the gate. The recursive
search stops at registers, which have already been la-
beled, and circuit inputs, which are treated as if la-
beled with the input-triggered partition's label. If all
the gate's fanin are labeled identically then the gate re-
ceives that label; otherwise the gate is labeled with ?.
This label is stored in gate.fanin.

Third, fanout information is propagated backward
from register inputs and circuit outputs to the gates,
leaving each gate labeled according to its transitive
combinational fanout. This is accomplished using a
depth-�rst search which �rst recursively visits all of the
gate's fanout before labeling the gate. The recursive
search stops at registers, which have already been la-
beled, and circuit outputs, which are treated as if la-
beled with the input-triggered partition's label. As a
special case, sensitive register inputs (e.g., clock, asyn-
chronous reset, or latch data inputs) are handled as if
they were circuit outputs. If all the gate's fanouts are
labeled identically then the gate receives that label; oth-
erwise the gate is labeled with ?. This label is stored
in gate.fanout.

Finally each gate is classi�ed as fanin, fanout
or input-triggered and assigned its �nal label. If
gate.fanout is neither ? nor the input-triggered
partition's label then the gate is a fanin gate and
gate.fanout is assigned to gate.partition. Other-
wise, if gate.fanin is neither ? nor the input-triggered
partition's label then the gate is a fanout gate and
gate.fanin is assigned to gate.partition. If the gate
can be neither a fanin gate nor a fanout gate, the gate
belongs in the input-triggered partition and that parti-
tion's label is assigned to gate.partition.

Once a gate is classi�ed, gate.fanin is no longer
needed, so in practice it may share the same storage
with gate.partition.

5 Proof and Analysis
The proof of correctness is straightforward and the

details are omitted for brevity. Correct propagation of
fanin and fanout information can be proven by induc-
tion on the length of combinational paths. The gate
classi�cation and labeling is constructed from the de�-
nitions of fanin and fanout gates.

Analysis of space and time complexity is also
straightforward. The space and e�ort of collecting trig-
ger sets is proportional to the number of registers mul-
tiplied by the number of sensitive inputs per register,
which is ordinarily a small constant (usually at most
3). This is clearly bounded by the size of the network.
Propagation of fanin and fanout information are each
performed by depth-�rst searches, which require time
and space proportional to the size of the network. Thus
the complete algorithm requires space and time linearly
proportional to the size of the network.

6 Empirical Results

6.1 Implementation

The partitioning algorithm has been incorporated in
a VHDL hybrid event-driven/cycle simulator based on
a commercially available VHDL simulator. The portion
of a design that conforms to a synthesizable subset of
VHDL (for example, an ASIC design) can be simulated
as a cycle model or in normal event-driven mode. The
non-synthesizable portion (typically a testbench requir-
ing �le I/O) is simulated in event-driven mode.

The cycle models are constructed by �rst synthesiz-
ing and optimizing a network of RTL-level primitives,
such as wide logic gates, adders, multipliers, encoded
multiplexers, etc. Note that each RTL primitive is the
equivalent of many conventional gates. The model com-
piler's circuit optimizations can selectively transform
transparent latches into edge-triggered ip-ops trig-
gered on either the opening or closing edge of the clock
(Section 3.7), and can also transform asynchronously
reset registers into synchronously reset registers. The
circuit is then partitioned and a 2-state or 4-state LCC
model, using native code, is generated for each parti-
tion. The partition models are combined with a highly
e�cient \microkernel" to form a single model which in-
terfaces to the host VHDL simulator through its C lan-
guage interface. The microkernel manages all interac-
tion amongst the partitions, and between the partitions
and the host simulator.

6.2 Measurements

To demonstrate the utility of this approach, Table 1
gives empirical measurements taken on three \indus-
trial strength" test cases. The �rst of these, case M,
is a model of the MIPS R3000 microprocessor execut-
ing an instruction diagnostic. The other two cases are

ASIC designs from industry. Each design includes a
testbench running in event-driven mode.

RTL primitives is the primitive count for each de-
sign after optimizations. Total partitions is the number
of partitions produced for each design, followed by a
breakdown of partition types. Clock-triggered (1 signal)

is the number of partitions that were sensitive to only
a single signal; clock-triggered (2 signals) is the number
of partitions sensitive to two signals. input-triggered

indicates whether an input-triggered partition was gen-
erated. Partitioning time is the approximate time in
seconds which the cycle model compiler spent in the
partitioning algorithm running on a Sun Sparc 20 with
256MB of memory. Partitioning memory is the approx-
imatememory required by the partitioning algorithm in
addition to the basic network data structures. Due to
a re�nement in the implementation only 4 bytes per
primitive are required.

A detailed discussion of the simulator's architecture
and performance is beyond the scope of this paper, but
some performance numbers are given to compare the
hybrid simulation to the same design simulated purely
in the event-driven simulator. Hybrid acceleration is the
directly measured overall speedup gained by using hy-
brid simulation versus purely event-driven simulation.
Cycle fraction is a conservative estimate of how much of
the design was accelerated using cycle simulation, mea-
sured as a fraction of the purely event-driven simulation
time. Cycle acceleration is a conservative estimate of
how much the cycle fraction was accelerated. Event

density is an estimate of the fraction of signals that
changed value during a cycle model evaluation.

test case M S N
RTL primitives 2,051 42,949 96,063
total partitions 1 4 11

clock-triggered (1 signal) 1 1 5
clock-triggered (2 signals) 0 2 5

input-triggered no yes yes
partitioning time (secs) .18 2.3 6.5

partitioning memory (KB) 8 168 375
hybrid acceleration 6.8x 9.9x 1.8x

cycle fraction 88% 91% 75%
cycle acceleration 34x 55x 3.8x

event density 17% 16% 1%

Table 1: Partitioning and simulation performance for
three large designs.

6.3 Discussion

The partitioning algorithm runs very fast and con-
sumes very little memory. In fact, in all cases the time
spent on partitioning was less than 1% of the total

model compilation time. Memory consumption was a
similarly negligible fraction.

Case M is the archetypical purely synchronous cycle-
simulatable circuit. The entire model falls into one par-
tition, and is accelerated substantially.

Case S is more typical of real designs. It contains
one clock domain that is entirely asynchronously reset.
It contains another clock domain which is partly asyn-
chronously reset, so the reset portion goes in one par-
tition and the remainder in another partition. It also
includes a substantial amount of logic in combinational
paths.

Case N is a very large and very complex design. Its
relatively poor acceleration is accounted for by the low
event density. Using threaded compiled code might
have produced better performance than LCC for this
design. It would not be di�cult for a simulator to in-
corporate both algorithms, o�ering the user a choice, or
even dynamically switching between them during sim-
ulation by periodically measuring the event density.

The most important point about this data is that real
industrial designs containing multiple clock domains,
asynchronous resets, generated clocks, combinational
paths, etc. were simulated correctly using a cycle sim-
ulation algorithm within a system simulation context.

7 Accelerating HDL designs

The ideas beneath the notions of fanin and fanout
gates can be generalized into an \optimizing" transfor-
mation to accelerate conventional HDL simulation.

Suppose an HDL program contains clocked processes

which are sensitive to only a few signals (e.g., CLK
and RESET), and combinational processes which are
sensitive to all their inputs. If the values computed
by a combinational process are used only by a clocked
process, then the combinational process can be merged
into the clocked process. This is analogous to grouping
fanin gates with their registers. Similarly, if all the
input values used by a combinational process come from
a clocked process, then the combinational process can
be merged into the clocked process. This is analogous
to grouping fanout gates with their registers.

Merging processes in this fashion has two bene�ts.
First, reducing the sensitivity list of the combinational
processes may reduce the frequency of evaluation. Sec-
ond, reducing the interprocess data ow reduces the
number of queued events, which are expensive.

8 Conclusions

We have presented a novel circuit partitioning al-
gorithm that extends the bene�ts of cycle simulation
to circuits that were previously not cycle-simulatable.
The algorithm is e�cient, and fast in practice. Results

showed that this approach does indeed yield substan-
tial performance improvements for very large industrial
designs. We also showed how the key ideas underlying
this structural algorithm can be applied to accelerating
HDL simulations as well.

Acknowledgements
Thanks to Rick Sullivan and Mark Coiley for in-

troducing me to this problem, for the numerous ideas
they contributed, and especially for many lively and
enjoyable debates. Thanks also to John Bond and Tim
McBrayer for their proofreading and very helpful sug-
gestions.

References
[1] Pranav Ashar and Sharad Malik. Fast functional sim-

ulation using branching programs. In Proceedings of

the IEEE International Conference on Computer-Aided

Design, November 1995.

[2] Zeev Barzilai, J. Lawrence Carter, Barry K. Rosen, and

Joseph D. Rutledge. Hss{a high speed simulator. IEEE

Transactions on Computer-Aided Design, pages 601{

617, July 1987.

[3] Robert M. French, Monica S. Lam, Jeremy R. Levitt,

and Kunle Olukotun. A general method for compiling

event-driven simulations. In Proceedings of the Design

Automation Conference, pages 151{156, 1995.

[4] Craig Hansen. Hardware logic simulation by compila-

tion. In Proceedings of the Design Automation Confer-

ence, pages 712{715, 1987.

[5] David M. Lewis. Hierarchical compiled event-driven

logic simulation. In Proceedings of the IEEE Interna-

tional Conference on Computer-Aided Design, Novem-

ber 1989.

[6] Patrick C. McGeer, Kenneth L. McMillan, Alexan-

der Saldanha, Alberto L. Sangiovanni-Vincentelli, and

Patrick Scaglia. Fast discrete function evaluation using

decision diagrams. In Proceedings of the IEEE Interna-

tional Conference on Computer-Aided Design, Novem-

ber 1995.

[7] L. W. Nagel. Spice2: A comuter program to simu-

late semiconductor circuits. Technical Report Rep. No

ERL-M520, Electronics Research Laboratory, Univer-

sity of California, Berkeley, CA, May 1975.

[8] Steven P. Smith, M. Ray Mercer, and Bishop Brock.

Demand driven simulation: Backsim. In Proceedings

of the Design Automation Conference, pages 181{187,

1987.

[9] Laung-Terng Wang, Nathan E. Hoover, Edwin H.

Porter, and John J. Zasio. Ssim: A software levelized

compiled-code simulator. In Proceedings of the Design

Automation Conference, 1987.

[10] Z. Wang and P. M. Maurer. Lecsim: A levelized event

driven compiled logic simulator. In Proceedings of the

Design Automation Conference, pages 491{496, 1990.

	CD-ROM Home Page
	ICCAD97
	Front Matter
	Table of Contents
	Session Index
	Author Index

