Generalized matching from theory to application

Patrick Vuillod?

Luca Benini

*

Giovanni De Micheli

Stanford University
Computer Systems Laboratory
Stanford, CA 94305

Abstract

This paper presents a novel approach for post-mapping optimiza-
tion. We exploit the concept of generalized matching, a technique
that finds symbolically all possible matching assignments of library
cells to a multi-output network specified by a Boolean relation.
Several objectives are targeted: area mainimization under delay
constraints, power minimization under delay constraints and un-
constrained delay minimization.

We describe the theory of generalized matching and the algo-
rithmec optimization required for its efficient and robust imple-
mentation. A tool based on generalized matching has been imple-
mented and tested on large ezamples of the MCNC’91 benchmark
sutte. We obtain sizable improvements in: (i) speed (6% in av-
erage, up to 20.7%); (i) area under speed constraints (13.7% in
average, up to 29.5%) and (iii) power under speed constraints
(22.8% in average, up to 88.1%).

1 Introduction

Multiple-output technology-independent logic optimization based
on Boolean relations (BRs) is potentially more powerful than
Unfortunately, BR-
based techniques are more computationally expensive than tra-
ditional approachessuch as algebraic[2] or don’t care-based [6, 3]

traditional single-output optimization[1].

techniques and for this reason they have not yet succeeded as
practical optimization engines. In [4] we introduced the con-
cept of generalized matching (GM), a multiple-output Boolean
matching technique which allows concurrent matching of two or
more single-output library cells (or of one multiple-output cell)
with a multi-output Boolean function. Generalized matching
extends the Boolean relation-based approach to the technology
dependent part of the synthesis flow.

Generalized matching, as formulated in [4], has the same
drawback of its technology-independent counterpart, namely the
high computational complexity. Hence, the formulation pre-
sented in [4] is very computationally demanding. In this work
we introduce a new theoretical framework and algorithmic re-
finements that enable the application of GM to large circuits.
We move from the observation that speed is usually the primary
concern in synthesis. The timing budget for combinational logic
is obtained from architectural specification. The first objective
of synthesis is to produce an implementation that meets the tim-
ing constraints, and then to optimize secondary cost functions
such as power or area.

When speed is the primary objective, two logic optimiza-
tion problems have practical relevance: wnconstrained timing
optimization and optimization of a secondary objective func-
tion (area/power) under tight timing constraints. The solution
to the first problem is useful for the designer to test the feasi-
bility of the constraints. If the timing budget is exceeded after
unconstrained timing optimization, the designer must re-design
or re-partition the specification. The second problem is proba-

*Work partially supported by NSF contract MIP-9421129
TThe author is now with Synopsys-Europe

0-89791-993-9/97 $10.00 [0 1997 |IEEE

bly the most frequent in practice: the designer wants to obtain
the minimum-area or minimum-power implementation that sat-
isfies the timing constraint.

We apply GM in the last stages of the synthesis process,
namely we target the incremental optimization of a mapped
netlist. Post-mapping optimizationis also known as re-mapping.
Our starting point is a netlist that has already been optimized
by traditional synthesis techniques [5] for maximum speed with
area recovery. Re-mapping is applied to either increase speed,
or reduce area/power without decreasing speed.

The main theoretical contribution of this paper is the for-
mulation of an algorithm for the solution of the minimum-cost
(area or power) timing-constrained generalized matching prob-
lem. Additionally, we have made several efforts to achieve effi-
ciency and robustness, obtaining satisfactory results. We demon-
strate the robustness of our approach by reporting results for
all largest multi-level benchmarks in the MCNC’91 [15] suite.
We obtain sizable improvements in speed, area under speed
constraints and power under speed constraints. Moreover, re-
mapping is most effective on larger netlists.

The paper is organized as follows. We first describe the
rationale and high-level flow of our re-mapping approach (Sec-
tion 2). In Section 3 we describe in detail the timing-constrained
area minimization problem. In Section 4 we present experi-
mental results. Constrained power minimization [16] and un-
constrained speed optimization are not described in this paper
(although we do provide experimental results) for space reasons.

2 The re-mapping approach

State-of-the art synthesis tools adopt a three-phase approach
to logic optimization. First technology-independent optimiza-
t1ioms are applied; then the network is mapped to the technol-
ogy library of choice (library binding); finally the mapped netlist
is further optimized by iterative algorithms that perform local
transformations. We call re-mapping the last step [7, 8, 9]. Some
re-mapping approaches [10] focus on changing the connectivity
of the netlist in such a way that some gates either become re-
dundant (and can be removed) or become sub-optimal (and can
be replaced). Re-mapping transformations based on changes of
the network connectivity are often called re-wiring.

We adopt a re-mapping approach. Starting from an opti-
mized and mapped netlist, we apply our optimization engine
to specific regions of the mapped netlist where local improve-
ments are more likely. Once a target region is selected, it is
optimized and, if optimization is successful, one or more cells
are replaced with lower cost alternatives. Moreover, local wiring
can be changed: the new cells may have different inputs. Hence,
local re-wiring is performed as well.

Given a mapped network, the high level flow diagram of the
re-mapping procedure is shown in Figure 1. Static timing anal-
ysis is performed and required times, arrival times and slacks

Timing analysis
Select target region
Build candidate cluster I

improvement

No more

Eliminate suboptimal el

Compute M(c)

Build Cost & Constrairjt

Min. Cost Constrained Matg

Replacement test

Return optimized network

Figure 1: High-level flow of the re-mapping procedure

are computed for all nodes in the network. Then a breadth-first
iteration on target regions of the network is started. From each
target region, candidate multi-output clusters are generated and
their neighborhood is analyzed to construct a Boolean relation
representing the degrees of freedom available for the remapping
of the cluster. Matching starts by eliminating library cells that
are certainly sub-optimal, then the GM problem is solved by
constructing a matching function M whose ON-set implicitly
represents all possible replacements for cells in the candidate
cluster.

The symbolic representation of timing constraint and area
(or power) cost are built and the ON-set of M is first pruned
by eliminating replacements that violate the constraints, then
the minimum-cost replacements are selected from the pruned
matching function. Replacement is performed if there is im-
provement with respect to the initial mapping. The breadth-
first iteration is repeated until no further improvements are
achieved.

A good choice of the target regions in the mapped netlist is
paramount for the success of the re-mapping strategy. Different
choice criteria are applied depending on the nature of the cost
function that we want to optimize. Power and area are extensive
cost functions, i.e. they depend on the entire circuit, while
speed is an intensive cost function, i.e. it is determined only by
a critical portion of the circuit (the slowest paths). When we
optimize an extensive cost measure, we want to distribute the
optimization effort on the entire netlist, while the optimization
of an intensive cost function can be better achieved by focusing
only on the critical portion.

For extensive cost functions (area and power), the target
regions are the multiple fanout points (MFPs) of the network.
There are two main reasons for this choice. First, traditional
library binding algorithms follow a cone-based paradigm [11].
A very efficient search of the optimum mapping is performed
on fanout-free regions of the circuit, but the search stops when
MFPs are reached. As a result, the final implementation consists
of highly optimized fanout-free regions connected by multiple
fanout points. Roughly speaking, we target the loss of optimal-
ity caused by the interruption of the cone-based search when
a MFP is reached. Second, since our optimization strategy is
based on the computation of a Boolean relation expressing the
degrees of freedom for the implementation of a multiple-output
subnetwork, it is more likely to find degrees of freedom when
the output functions of the subnetwork share some support vari-
ables. This is generally true when two or more gates driven by
a MFP are considered as candidates for optimization.

Given a MFP, candidate clusters are generating by selecting
sets of gates whose inputs or outputs are directly connected to
the MFP. Although arbitrarily large clusters could be selected,

the run time and memory requirements rapidly increases with
the number of inputs and outputs in the cluster. For the sake of
robustness and to keep run time under control we conservatively
set the cluster size to two for all experiments reported in the
paper. The selection of which cells to include in the clusters
is decided by a sliding window algorithms (omitted for space
reasons).

3 Min-cost Constrained Matching

In this section we focus on constrained minimization. Speed is
the constraint and area is the optimization target. The cluster-
ing algorithm constructs candidate clusters starting from MFPs.
Given the cluster we: 1) build the Boolean relation that repre-
sents the degrees of freedom for matching created by the clus-
ter’s neighborhood; ii) perform minimum-area matching and
guarantee that timing constraints are not violated. In the next
subsections we describe how the two tasks are carried out. First
we focus on the construction of the Boolean relation. Second, we
provide the theoretical formulation of the generalized matching
problem and we show how it can be solved efficiently. Third, we
extend GM to take into account a cost function (area) and con-
straints (on timing) and we show how area can be minimized
within timing constraints in computationally efficient fashion.
In the following treatment we assume that the reader is familiar
with Boolean algebra, BDD and ADD manipulation [6, 13].

3.1 Building the Boolean Relation

Let us consider a multi-output cluster function f embedded in a
logic network as shown in Figure 2.

h(x)

Figure 2: A multi-output cluster function embedded in its neigh-
borhood

We adopt a formalism similar to that used by Watanabe et
al. in [12]. We call x and z the vectors of Boolean variables at
the inputs and the outputs of the network that embeds the clus-
ter function f. The functionality of such network is represented
by the Boolean function h(x). We call it the neighborhood of {f.
The inputs of the cluster function can be seen as a function p(x)
of the inputs x. The function q(0,x) describes the behavior of
the outputs z when the outputs of the cluster functions are seen
as additional primary inputs.

From h, p and q we obtain three characteristic func-
tions: H = H] hj(x)®z;, P = H] p;(x)®i; and Q@ =
H] q; (o, x)@zj. The characteristic functions fully describe the
neighborhood around the multi-output function f. In particular,
they enable the computation of a Boolean relation representing
the maximum set of compatible functions of f, i.e. functions that
can implement f without changing the input-output behavior of
h. Watanabe et al. showed that the characteristic function
F of the Boolean relation can be obtained with the following
formula [12]:

F(i,0) = Vxz[(P(x,1) - Q(0,x,2)) = H(z,x)] (1)

In words, F represents the set of values of i and o such
that if @ is true and P is true, then H is true for all possible
values of x and z. Formula (1) allows us to find all functions f
that, when composed with p and q, produce exactly function h.
There are generally many functions with this property. These
functions are represented by a Boolean relation, and F is the
characteristic function of such relation.

Having shown how F can be computed when the neighbor-
hood h is given, we need to clarify how h is selected. Ideally,
we would like to compute F by considering as h the entire logic
network, from primary inputs to primary outputs. This choice
would give us the maximum degrees of freedom for the imple-
mentation of the cluster function [12]. Unfortunately this is
computationally infeasible but for the smallest networks. Thus,
the neighborhood has to be a small subset of the logic network,
a “bubble” around the cluster function.

Notice that GM relies on finding a Boolean relation that
gives the most degrees of freedom to the chosen cluster. Intu-
itively, we want to establish a relation between the outputs of f
that gives more degrees of freedom than computing separately
their don’t cares.

Consider a two-output cluster function. To obtain an ad-
vantageous Boolean relation, we need to find nodes in the fanout
cone and fanin cone of both outputs of f . Intuitively, a com-
mon fanout node within the neighborhood is an indication that
functionality at the neighborhood outputs is controlled by the
interaction of both outputs. Similarly, a common fanin node
implies that there is some sharing of information among the in-
puts of f . If fanin and fanout cones of the components of f
are disjoint, F represents the same degrees of freedom that can
be expressed by don’t cares. Since we consider clusters starting
from MFPs, at least one common fanin exists. To build the
neighborhood, we explore the transitive fanout and fanin of the
cluster. We control complexity by limiting the search to a given

depth.

O O
%W% poed

N

|

Figure 3: Building the neighborhood of a cluster.

Example 1 We show on Figure 3 how the neighborhood construction

algorithm works. The picture represents a portion of a logic network,
the vertices being logic gates and the arrows the connections between
them. We start from a two-node cluster, marked in black in the top
left part of the Figure 3. The parameter depth is set to 2. To
build the neighborhood, we first select the reconvergent nodes in

the transitive fanout and fanin of the clusters (with depth 2) from
the cluster. These nodes are marked in black on the top right. The
nodes on paths connecting the cluster with reconvergent nodes are
marked in black on the bottom left. Finally, we take the “envelope”
of these nodes to get the neighborhood. The neighborhood is the
set of nodes marked in black in the bottom right part of Figure 3.

Given the neighborhood, the Boolean relation F is obtained
by Equation 1. We build the BDDs of the Boolean relations
P, H, and @ by traversing the neighborhood. F is then com-
puted using Equation 1. The overall complexity depends on the
computation of the relation H. Our neighborhood construction
algorithm has been designed to minimize the complexity of the
computation of H, while at the same time to obtain a final F
expressing useful degrees of freedom.

3.2 Generalized Matching

The GM problem consists of finding all possible sets of n li-
brary cells that can implement one of the functions represented
by F [4]. To accomplish this task we define the concept of quo-
tient function L(i,c) for our technology library. The pictorial
representation of the quotient function is shown in Figure 4 for
a simple library with Ny, = 3 cells, g1, g2 and g3.

CeC

Figure 4: Quotient function of the target library.

In the figure, the blocks M1, M2, M3 and Mout represent
multiplexers, with control inputs ¢ = [co, ¢1,...,¢7]T. The first
three multiplexers control the input pin assignments. By chang-
ing the control inputs we can control how the external inputs are
connected to the pins of the cells. Multiplexer Mout controls
cell selection: it selects which cell is connected to the output.
For the sake of simplicity, we assume single-output library cells
(as in Figure 4) in the following treatment. GM is applicable to
multi-output cells as well [4].

In order to perform generalized matching, we need to check
if a two-output cluster function f(i) can be replaced by two
library cells. Remember that the cluster function and its degrees
of freedom are represented by a Boolean relation F(i,0). We
can express GM with a Boolean formula in L and F [4]:

M(c) = Yi3o (F(i,0) - (Li 1) @ o1)(L(i,e2) B 02)) (2)

Where F is the Boolean relation for the cluster, L is the
quotient function. Notice that for each output, we have distinct
sets of control variables, hence ¢ = [c1,¢c2]. This is because
each output of f can be matched by a different cell with different
input assignments. M(c) is called matching function and can
in principle be computed by simply implementing Equation 2
with standard BDD operators.

The ON-set of M (c) denotes all possible assignments of the
cluster to two library cells with the property that the new imple-
mentation of the cluster function can replace the old one without

changing the behavior observed at the neighborhood boundary.
In other words, Equation 2 allows us to compute all cell selec-
tions and input assignments compatible with F. If we replace
the pre-existing implementation of f with any implementation
in the ON-set of M, we are guaranteed that the input-output
behavior of h is unchanged (more details on this can be found
in [4]). Each minterm of M (c) represents a solution. The as-
signments are easy to analyze, because they correspond to mul-
tiplexer selections.

The main practical problem in the computation of M(c)
is that, although the BDD representation of M(c) is generally
very compact, the same is not true for the intermediate results
of the computation in Equation 2. Experimentally, we observed
that BDD blowup was very common while computing the con-
junction of F with the quotient functions and while computing
the quantifications. We can express the final result, but there’s
a peak BDD size to overcome. To avoid going up to this peak,
we partition the problem. We compute the matching function
for each output separately, and use the partitioned solutions
to reduce the size of the BDDs in Equation 2 before universal
quantification. Notice that the procedure does not compromise
the global optimality of the final solution. This claim will be
clarified in the following discussion.

Again, we discuss the case of two outputs for the sake of
simplicity. The matching function of output 01 can be computed
by the following formula:

Mi(e1) = Yi3o (F(i,0) - (L(i,c1)Bor)) (3)

The same formula holds for output oy (after a change of
indices from 1 to 2). Computing M; and M, separately can be
much easier than computing M, because the BDDs have fewer
support variables, and only one conjunction has to be computed
before quantification. This observation is confirmed in practice.
The computation of M; and M requires much less memory
than the computation of M.

It is easy to see that Mj(c) and M (c) are less constrained
than M (c): My > M and M > M. M (c) expresses all possible
matches for output o7, assuming that o2 can be implemented
by an arbitrary function of the inputs. In general the ON-set
of My (M) contains solutions that are not valid. All matches
of f1 (f2) that are admissible only when f> (f1) is a function
that cannot be implemented by any cell in the library are in the
ON-set of My (M) but are not in the ON-set of M. A match
can be in the ON-set of M only if it is valid for both outputs,
while a match is in the ON-set of M; (M>) simply if it is valid
for fi1 (f2), no matter what happens to f2 (f2). We can use
the M7 and My as conservative bounds for pruning the search
space of M (c) because we know that if a value c* is not in the
ON-set of both M1 and M, it will be in the OFF-set of M, and
we do not need to take it into account when matching M.

The simplest way to exploit this property is to compute
the restriction of L(i,c1) and L(i, c2) with respect to M;(c1)
and M>(c2), respectively, and then compute M with Equa-
tion 2. In other words we can replace L(i,c1) in Equation 2
with Lyes(i,c1) defined as follows (the same can be done for

L(i,CQ)):
Lres(i,cl) = { L(i’cl) if M1(cl) =1

otherwise

4
don’t care 4)

By computing M; and M, we prune the search space, and
the computation of M(c) is much faster. Notice that we do not
make any approximation here. Our bound is conservative, and
the matching function is computed exactly: M(c) still gives us

all possible assignments for the cluster. This method can be
used for more than two input clusters. ,

3.3 Cost Function and Constraints

Until now, we have proposed a solution to the basic GM prob-
lem. Now we focus on its useful extension by considering cost
functions and constraints. We assume that area is the cost func-
tion and timing is the constraint. Although we have a way to
compute all possible legal replacements for f , we want get
the minimum-area matchings satisfying the timing constraints.
Hence, we need to apply a cost function to M(c) and find at
least one assignment ¢* minimizing it. Moreover, we need to
enforce the satisfaction of the constraints.

Our minimum-cost constrained matching algorithm merges
GM with cost minimization and constraint enforcement. We
exploit the existence of a previous implementation (since we are
re-mapping) and of constraints to obtain bounds on the cost
function and tight constraints. In this way we drastically prune
the search space and further increase computational efficiency,
without giving up optimality. We will first describe how bound-
ing can improve the performance of our algorithm, then we will
show how to find all minimum area matches, finally we describe
how to prune solutions that violate the timing constraints.

It is not necessary to include in the quotient function cells
and assignments for which we are certain that the global costs
will be higher than that of the original implementation. Addi-
tionally, it is useless to express assignments that would violate
the timing constraints. These assignments can be suppressed
when building the quotient function. When computing L(i, ¢1)
and L(i,c2), some library cells are not even included, because
their area is too large. The area of a cell included in the quotient
function must be A < A, g — Aprrn, where A4 is the area of
the current implementation of f and A ;7 is the smallest area
of any cell in the library.

After My and M> have been computed, we can use both
area and timing to further reduce the solution space that has to
be explored by Equation 2. Consider area first. We call Aprrn 1
the minimum area of any match in M;. All matches in M> such
that area Ay > Ag g — Aprrn,1 can be pruned, because the total
area of a solution involving them is certainly larger than A ;4.
The same reasoning can be done for M1, A; and Ayrrn 2.

mi ni num cost of M

solutionsof M1

Figure 5: Bound on the partial solutions.

Example 2 Consider the example in Figure 5. The graph shows
the cost of all solutions in M;. The x-axis corresponds to the
solutions, and the y-axis to the area cost. The cost 2.5 is the
original cost of the cluster (for both outputs) before re-mapping.
We assume that the minimum cost for M3 (not shown) is 1. We can
prune all solutions in M, that have a higher cost than 2.5—-1=1.5
without loss of optimality, because these solutions will lead to a

higher cost than the original implementation of the cluster. The

gray area corresponds to the solutions that we can discard. We
keep only the solutions of M; in the black area.

For timing, the line of reasoning is similar, but more in-
volved. Although we will discuss timing computation in greater
detail, we just observe for now that delays depend on input
loads, therefore, when we concurrently match two or more cells,
we need to take into account the load that the cells cause on
the fanin gates. We call Dpoynq,2 the delay for a match in M>
(i.e. a cell implementing f»), assuming that the load caused by
the cell implementing f; is the minimum among all matches in
Mi. If Dpound,2 exceeds the timing constraint, the match can
be pruned. The same reasoning holds for M1 and Dgound,1-

Notice that both timing and area bounds are conservative
and do not prune any match that can improve the current map-
ping of the cluster. Roughly speaking, we use area and timing
to prune solutions in M7 (M) that could not be optimal even
if they were coupled to the best possible match in My (Mj).
The bounds are very useful in further decreasing the number of
candidate matches for M and the efficiency of the computation
of Equation 2.

Once M (c) has been computed, we want to find the minimum-
area assignment that satisfies the timing constraints. One solu-
tion would be to enumerate all the minterms of M (c) and eval-
uate them for area and timing. This is not acceptable because
the number of minterms of M can be large and an enumerative
solution would be unacceptably slow.

A more efficient solution is to use ADDs [13] to build sym-
bolically the cost function and the constraints. ADDs are appro-
priate because they represent in a compact way discrete func-
tions, and they interface seamlessly with BDDs (they have the
same structure, the only difference being that leaves can have
any value).

To compute minimum-area matching, we build the ADD for
the cost function with the same support variables as the BDD for
M(c). A path in the ADD leads to a leaf containing the area of
the cell identified by the values of control variables encountered
on the path. Once the ADD A(c) of the cost function is build, we
can compute the product with the BDD of the matching function
and select the minterm pointing to the minimum value of it
(product and minimum selection are standard ADD operators).
Since the area of a cell is not affected by input assignment,
the support of A(c) contains only variables controlling the cell
selection in the quotient function.

Figure 6: ADD cost function for area for 4 variables

Example 3 Consider alibrary L = {NAND2 AND2 NAND3, AND3}

with area costs respectively {1,2,3,4}. The ADD A(c) of the area
cost function for this library is represented in Figure 6. The control
variables for cell selection are ¢y and c¢g. For instance, cgcy selects
the NAND3 gate. In the ADD of the cost function, we see how the
path with ¢g and ¢7 leads to the cost of the NAND3, i.e. 3. Assume

that the matching function is M(c) = 0001020g020507. Taking the
minimum of the product A(c)- M(c) we obtain the value 3, and the
value ¢* of the control variables for which A(c)- M (c) is minimized

N 11
is ¢* = cocreacheycscecy.

The cost function for area can be computed once for all.
Its number of nodes is very small, it’s bounded by 2 x |Nyp|-
All ADD operators involved in the construction of the symbolic
representation of the cost function and its minimization over the
ON-set of M have complexity O(|M(c)| - |A(c)|). |M(c)| is the
number of nodes in the BDD of the matching function, |A(c)|
is the number of nodes in the ADD of the cost function. Since
usually both [M(c)| and |A(c)| are small (at most in the order
of 100 BDD nodes for |M(c)|), the computation of the area cost
is very fast compared to an enumeration of the minterms of M.

After finding the minimum area matches, the last step of
the algorithm is to enforce the timing constraints. Constraints
can be manipulated in a symbolic fashion as well. Before de-
scribing their ADD-based representation, we describe how tim-
ing constraints are computed. For each cluster output, arrival
time and required time are computed. We can replace a clus-
ter by an alternative implementation if the new arrival times
at all cluster outputs do not exceed the required times. For
timing constraints, we use the critical path of the circuit as the
maximum delay that can exist from the primary inputs to the
primary outputs. From this constraint, we compute the arrival
and required times for all nodes.

Gy [

i [’
Orp 2

Figure 7: Delay computation for a gate

We use the real delay model as in SIS [5]. Consider a gate
g with input pins y = [y1,%2,...,9n]” shown in Figure 7. The
pins are connected with inputs i = [i1,42,...,in]7. We assume
that pin y; is connected to input z;. The arrival time at the
output of the gate is:
(tarr, + a X C4L + ﬁz) (5)

tarr = max
1=1,2,...,n

o is the effective output resistance of the gate, C'y is the
effective load capacitance at the output, and 3; is the pin-
dependent intrinsic delay of the gate. Finally, torr; is the arrival
time at input 7;. It is a function of both ¢; and y; because it
depends on the pin of gate g and the fanin gate gpy; driving
input ¢;:

tarr, =K; + 771‘(64(3the7", + Ozn,) (6)

7; is the effective output resistance of the fanin gate gry;,

K; is the part of tqrr; depending on previous stages (and the

intrinsic delay of the fanin gate), Cosper,; is the load capacitance

of the fanin gate that does not depend on g and (', is the input
load capacitance of pin y;.

Observe that the arrival time at the output of a gate tgrr

depends on the input assignment, if we change the assignment

of pins to inputs, the arrival time may change for two reasons:

o the arrival time at the inputs tqrr, changes,

e the intrinsic delay 3; changes because it is pin-dependent
as well

In the quotient function L(i,c), input assignments are set by
the control variables. The quotient function represents a set of
cells and input assignments. Each one of such assignments is
characterized by an arrival time to the output of the gate it
represents. Hence, t4rr for a quotient function is a function of
the control variables. In other words, for a cluster output that
we want to match we can build the ADD T,y (c) of the arrival
time: it represents the arrival time at the output for any input
and cell assignment. A value c* of the control variables selects
a path in Tarr(c) that leads to a leaf containing the value of the
arrival time at the output when the cell and input assignment
corresponding to c¢* are chosen.

The computation of Ty is complicated by the fact that we
are concurrently matching a multi-output cluster function using
multiple quotient functions. The complication arises when we
compute the arrival time {4, at the inputs ¢; of the cluster.
Remember that ¢4, depends on the output resistance and the
load capacitance. The gates in the fanin of the cluster are loaded
with a capacitance that depends on how the pins of gates in the
cluster are connected to them. In symbols: Tarr, (c) = K; +
R;(Cother,i + Ci(c)), where K;, R; and Cosper; are constants,
while C;(c) is an ADD representing how the load capacitance
on input ¢ changes with the input assignments of the cells in the
quotient functions.

It is important to notice that T4rr; depends on the entire
c. If we are matching a two-output cluster, T4rr; is an ADD
whose support includes both ¢; and ¢y (the control variables of
quotient functions L1 and Ly in Equation 2). The computation
of the arrival time at each output of the cluster is done with the
following symbolic formula.

Tarr(c) = miaX(Tarrl(c) + a(c) X Cr + B(c)) (7)

Where Torr,, @ and 3 are ADDs in the control variables,
and all operators involved in the computation are standard ADD
operators. The leaves of Ty contain all possible arrival times
for the output.

1
Tl
b2
iy —4 2
’ 01

O
i | R
A 3
\\:Cg\1> N
2
,d/3'
@) 4 (b)

Figure 8: Symbolic representation of timing constraints

Example 4 Consider the situation shown in Figure 8: we want
to compute the ADDs Tq,,(c) for the two outputs of the cluster of
Figure 8 (a). We make several simplifying assumption for the sake
of clarity. First, we assume that K; = 0 and Cother, = 0 for all
inputs. The driving resistances have the same value for all inputs
n; = 1 and the load on o3 and oz is null. Second, we assume that
f1 can be matched only by cell g1 and f2 can be matched only by
cell go. The input loads and intrinsic propagation delays for the
cells are shown in Figure 8 (a). Moreover, we assume that g2 can be
connected only to inputs i2 and i3, while we can connect the input
pins of g1 to iy and i2. The connection of both pins of a cell to the
same input is not allowed.

With these simplifying assumptions, we just need two control
variables to express the degrees of freedom in the input assignments.

Control variable ¢y controls the connection of g1: ¢; = 0 means that
pin a is connected with input iy and pin & is connected with input
i3. The opposite connection is chosen when ¢; = 1. Similarly, when
¢a = 0, pin ¢ is connected with input ¢5 and pin d is connected with
input is.

Assume for example ¢; = 0, ¢ = 0. The arrival times at the
inputs are Tarrl(O, 0) = Ciny(0,0) =1, Tarrl(O, 0) = Ciny(0,0) =
243 =35, Tarrl(O, 0) = Ciny(0,0) = 4. For output oy the arrival
time is Tarr(0,0) = maz{(3 +1),(2 + 5)} = 7 this is one leaf of
the ADD Tq,,(c1, ¢2) representing the arrival time at oy for every
combination of control variables. The complete ADD is shown in
Figure 8 (b).

The algorithm for the computation of the constraint ADD
is quite involved and it is not described for space reasons. The
ADD of timing constraints is used to prune the matching func-
tion. This is done three times during GM. The first two times
the timing constraint ADDs for M7 and M> are computed and
used for bounding, as discussed at the beginning of this sub-
section. The last time, after M has been computed, with the
purpose of eliminating infeasible solutions.

3.4 The Complete Matching Algorithm

Having described all sub-tasks involved in performing minimum-
cost constrained matching, we conclude our analysis by describ-
ing the complete matching algorithm. The pseudo-code of the
algorithm for minimum-area matching under timing constraints
is shown in Figure 9.

ComputeBRelOptimize(clusterF, Network)
neighborhood = ComputeNeighborhood(clusterF, Network)
bdd_rel = make boolean relation (neighborhood, clusterF)
¢ = compute control variables according size of clusterF
bdd_quot = compute quotient function_with_area_bounds(¢)
/* pass of matching output per output */
foreach (o € outputs (clusterF))
bdd_m only[o] = matchingfunc (o, bdd_quot);
/* bounding with area and timing constraints */
foreach (o € outputs (clusterF))
bdd_m only[o] = bound_with_area (clusterF, bdd_m_only[]);

bdd_m only[o] = bound_with_timing_constraint (clusterF, bdd_m _only)

if (bdd.m _only[o] == NIL)
return (NIL);

bdd_red quot[o] = compress_quotient function (bdd_quot, bdd_m only[o])

¥
bdd_m = matching func (clusterF, bdd_red_quot[])
bdd_m = timing_constr (bdd_m)
bdd_best = get_best_area (bdd_m, add_area)
/* In the case of one the three function fails:
no match, or violation of the timing, or no best area
than the current implementation */
if (bdd_best == NIL)
return (NIL);
/* Puts the bdd_best in “readable” form, i.e. returns in best_match
the cell number and the pin connections rather than a bdd */
best_match = analyze_best_minterm (bdd_best)
return (best_match);

Figure 9: Algorithm of the matching step

The algorithms first finds the neighborhood of the cluster
function, and computes the Boolean relation bdd_rel, as seen
in Subsection 3.1. Then the quotient functions are constructed
disregarding the library cells whose area cannot improve the
current solution, as seen in Subsection 3.3. The single-output
matching functions are then computed by matching func, and
pruned using area bounds and timing constraints, as discussed
in the second part of Subsection 3.3. The quotient functions
are then compressed using the conservative bounds and the new
smaller bdd_red_quot are used for performing full generalized
matching on the reduced search space.

The resulting matching function is then pruned using tim-
ing constraints: in function timing_constr all solutions violat-

ing the constraint are eliminated. Finally, the cost function
is applied and the subset of the ON-set of M(c) containing
minimum-cost solutions is obtained. The matching algorithm
then “decodes” one of the minimum solutions and returns the
cells and the input assignments for replacement. NIL is returned
if there are no solutions improving the current mapping of the
cluster.

Several performance-enhancing features complicate the al-
gorithm. What is shown in Figure 9 is a simplified version.
For example, caching of previous ADD and BDD computations
is heavily exploited (not only the simple caching mechanisms
provided by BDD packages), an advanced algorithm has been
implemented for the compression of M (c) after bounding and
several corner conditions are flagged to speedup the computa-
tion of trivial cases.

4 Results

We have implemented a post-mapping optimization tool based
on generalized matching. The tool reads a mapped circuit de-
scribed in blif (or slif) and a library file, and runs the opti-
mization. Several user-controlled parameters can be specified.
The depth of the neighborhood can range from 0 to infinity.
Specifying a depth of 0 reduces the neighborhood to the clus-
ter, while depth of infinity means that the entire logic network
is taken as neighborhood. The latter choice is of course only
conceivable for small circuits.

The number of outputs of a cluster can be also controlled.
We made experiments with up to four outputs. The number of
inputs i of a cluster can be controlled as well. Usually they are
assumed to be the inputs of the cells implementing the cluster in
the original mapped netlist. However, additional input can be
added taken from nodes in the neighborhood. With this simple
modification, we can exploit the power of generalized matching
to perform local re-wiring.

We can also change the cluster selection algorithm to select
arbitrary sets of nodes as clusters. Experimentally, we observed
that this is much less effective than starting from multiple fanout
points, mainly because traditional logic optimization is already
effective on fanout-free cones.

A generic cost function has to be a function returning an
ADD which support are the control variables and leaves are
the cost values. Of course, a new bounding function may be
integrated with the new cost function. All the experimental
statements in this paper rely on the fact that we can easily tune
cost functions and bounds.

Memory optimization is the primary concern in the imple-
mentation. The tools uses the Cudd BDD package [14] which
provides a rich set of operators on BDDs and ADDs and pow-
erful memory management and caching features. We set up a
memory limit of 1,000,000 BDD and ADD nodes. When this
limit is reached, the matching function exits with the value NIL
and the traversal continues. When the BDDs exceed the mem-
ory limit the program simply frees the memory and moves on.

Extensive tests demonstrated that bounding is necessary
and effective. Without any bounding, the memory threshold is
often reached when the number of inputs of the cluster is greater
than 8. With bounding, we are below the threshold for up to
12 inputs. The compression of the matching functions using
single-output matching as a conservative bound is probably the
most useful algorithmic optimization. The size of the uncom-
pressed quotient functions makes very difficult even to match
two-output clusters, but the algorithm using separate matching
and compression greatly increases the percentage of matchings

that can be successfully carried out.

By using the aforementioned optimization, two-output match-
ing can always be carried out, whereas three-output and four-
output matching succeed in 60% and 40% of the cases respec-
tively. For clusters with four or more outputs, memory blowup
is too frequent to be acceptable. In order to improve the chances
of success for for three or four outputs, we implemented tighter
bounds that allow further compression of the quotient functions,
but imply the loss of some potentially advantageous matches.
We do not describe the implementation of such aggressive bounds
for space limitations.

The BDD variable ordering has been set after extensive ex-
perimentation. We use a fixed variable order that minimizes the
BDD peak size, regardless the intermediate results size. The
order is the following. The control variables of the input multi-
plexers in the quotient function pin are at the bottom, preceded
by the input variables, the output variables and the library se-
lection variables. Different orders lead to BDD blowup with
high probability. For this reason automatic reordering is not a
good solution, because it can destroy the good ordering to re-
duce the size of intermediate results and it often cannot recover
it when the peak is reached.

We have experimented our tool with a set of combinational
MCNC benchmarks [15] including all larger ones. The bench-
marks were first optimized with SIS [5] for minimum delay with
area recovery, with script script.delay followed by the map-
ping command map -n 1 -AFG.

Our tool was run with the same parameter settings on all
benchmarks, in an effort to demonstrate robustness and gener-
ality. We ran the matching algorithm on clusters of two outputs,
with the neighborhood search limited to a depth of 3. We used
a library based on an industrial technology file, with 75 cells,
with up to five inputs. The number of inputs of the cluster was
limited to 10.

We show in Table 1 the results on all the MCNC bench-
marks for speed, area and power optimization. The starting
point was the same for all optimizations, namely, the circuits
mapped by SIS. The table gives for each benchmark the num-
ber of instances, the percentage gain and the run time in min-
utes (on SPARC20 with 256 Mb of memory) for each kind of
optimization. The last line gives the average gain for each opti-
mization. In the average, the gain is weighted by the size of the
circuit.

We observe an average gain of 6% in speed, 13.7% in area
and more than 22.3% in power. For area and power optimiza-
tion, the critical path of the circuit has been constrained to
remain the same as the original circuit: no trade off has been
allowed between the delay constraint and the (area/power) cost
function.

When looking at the results on a benchmark-by-benchmark
basis, we observe that the quality of the optimization achieved is
consistent when the cost function is changed. This phenomenon
can be explained by the fact that some benchmarks have many
MFPs and reconvergent fanout cones. Both these characteristics
increase the effectiveness of our optimization tool. Notice also
that very good improvements are obtained for the larger bench-
marks. We conjecture that the global optimization of SIS is less
efficient for large benchmarks, and re-mapping can recover a big
fraction of the optimality loss.

The run times of the re-mapping tool are shorter (but of the
same order) than those spent by SIS in technology independent
and technology dependent optimization. Most of the time is
spent in building the matching function and in universal quan-
tification of the variables. The average time of a single match

is in the order of the tenth of a second with this machine con-
figuration. The percentage of successful matches, i.e., matches
that find a better solution, range from 5% to 10%.

Table 2 provides detailed information on the trade-off in-
volved in the optimization process. The first column contains
the benchmark name. The second and the third columns give
the percentage change (positive if gain, negative if loss) in area
and power respectively when doing unconstrained delay opti-
mization. The fourth column gives the percentage change in
power for area optimization (no change is allowed in speed).
The last column gives the change in area doing power optimiza-
tion (again, speed is the constraint and no tradeoff are allowed
with it).

We observe that delay optimization leaves area and power
almost unchanged. This result is intuitive, since delay optimiza-
tion focuses only on the critical path, which is a usually a small
fraction of the entire circuits. Only few benchmarks have an
increase in area or power, and for these two benchmarks the de-
lay is only marginally reduced. We observe also that, in general
area in not traded off for power and vice versa. In general area
decreases when doing power optimization, and power decreases
when doing area optimization. This is expected, since power is
in first approximation the product between area and switching
activity, hence it is related to area.

Bench timing opt area opt power opt
power area power area
z4ml 2.22 3.30 11.50 0.40
b9 3.28 4.57 5.38 4.01
term1 0.14 0.51 5.28 2.08
C432 0.71 -0.48 -5.46 2.89
9symml -0.84 0.40 10.48 5.04
alu2 1.35 2.69 9.63 6.27
x4 -0.09 0.00 11.66 2.27
C499 5.85 13.59 12.81 12.68
C880 0.60 1.06 -7.25 2.74
C1908 0.54 3.57 -5.67 3.34
C1355 4.06 5.06 12.14 10.78
toolarge 0.18 0.41 3.91 1.03
x3 0.07 0.07 0.34 1.14
rot 0.27 0.35 1.72 3.90
apex6 0.35 0.17 1.68 0.62
alu4 1.36 2.39 6.29 4.74
frg2 0.87 1.28 17.18 4.41
vda 0.65 2.15 25.39 12.22
t481 0.76 2.40 10.15 5.03
C2670 0.39 0.36 -1.82 3.76
dalu 0.14 0.12 9.22 2.36
k2 0.40 1.55 -1.95 -2.00
C3540 1.50 2.38 6.35 4.54
pair 0.30 0.84 2.32 1.22
C5315 0.37 0.69 -9.80 0.92
des 0.29 1.02 4.98 2.20
C7552 0.69 0.94 27.67 20.19
C6288 6.70 7.27 17.53 14.73
Total 1.60 2.32 9.70 7.05

Table 2: Trade offs in optimizations.

mization is effective as well (more than 6% average speed im-
provement is achieved). The optimization is performed starting
from mapped circuits that have been optimized using traditional
technology-independent and technology-dependent techniques.

Bench gates speed area power
% CPU % CPU % CPU
z4ml 48 1.97 2 4.35 1 13.24 1
b9 110 7.04 5 6.95 7 15.50 5
term1 179 0.47 12 8.42 27 14.12 26
C432 181 2.69 11 6.60 14 13.35 27
9symml 204 3.72 17 9.18 18 21.80 12
alu2 347 4.15 31 11.68 29 18.96 87
x4 364 1.36 5 4.29 10 15.98 10
C499 365 20.76 31 25.96 69 32.04 10
C880 377 6.34 45 6.59 29 12.42 64
C1908 508 5.48 46 14.68 88 15.88 54
C1355 524 6.48 89 16.97 15 15.77 53
toolarge 573 1.22 21 5.31 37 16.03 27
x3 639 1.04 11 5.39 20 12.53 23
rot 671 2.18 30 7.81 31 14.22 22
apex6 691 3.84 33 4.19 24 13.63 30
alu4 697 6.66 72 8.58 45 16.15 149
frg2 774 5.78 24 8.47 25 21.53 29
vda 781 10.59 41 21.25 104 34.78 108
t481 863 4.39 40 10.42 64 22.75 51
C2670 943 1.39 46 10.85 111 14.69 40
dalu 966 1.96 24 7.30 76 20.28 75
k2 1212 4.88 45 6.04 117 10.33 142
C3540 1344 5.54 92 11.15 142 19.20 156
pair 1480 3.70 64 5.88 96 18.48 74
C5315 2039 9.61 218 8.74 271 13.43 187
des 3621 5.06 241 5.05 289 12.54 495
C7552 3716 9.45 306 29.55 417 38.14 268
C6288 4373 9.23 341 24.79 557 31.85 279
Total 6.05 13.71 22.39

Table 1: Results on MCNC benchmarks.

5 Conclusions

In this paper we proposed a re-mapping approach that exploits
the power of Boolean relations to optimize a mapped netlist
under tight constraints. Our main objective is to build a pow-
erful, robust and efficient optimization tool that can be applied
to large circuits. We have presented the theoretical foundation
of our approach and several algorithmic improvements that are
needed to achieve the targeted robustness and speed. We tested
the effectiveness of our approach on a large set of benchmarks.
The results show that our optimization tool can reduce the area
by more than 13.7% in average or reduce power by more than
22.3% without any speed penalty. Unconstrained speed opti-

Hence, our tool has general applicability.

References

F. Somenzi et al., “Minimization of Boolean relations,” in IS-
CAS, pp. 738473, 1989.

R. Brayton et al., “Multilevel logic synthesis,” IEEE Proceed-
ings, vol. 78, pp. 264-300, 1990.

H. Savoj et al,, “Extracting local don’t cares for network
optimization,” in ICCAD, pp. 514-517,1991.
L. Benini et al., ‘A survey of Boolean matching techniques for
library binding,” TODAES, vol. 2, n. 3, 1997.

E. Sentovich et al., “Sequential Circuits Design Using Synthesis
and Optimization,” in ICCD, pp. 328-333, 1992.

G. De Micheli. Synthesis and optimization of digital circuits.
McGraw-Hill, 1994.

K. Cheng et al., “Multi-level logic optimization by redundancy
addition and removal,” in Euro-DAC, pp. 373-377,1993.

W. Kunz et al., “Multi-level logic optimization by implication
analysis,” in JCCAD, pp. 6-13, 1994.

B. Rohfleisch et al., “Logic clause analysis for
optimization,” in DAC, pp. 668-672, 1995.

delay

[10] S. Chang et al., “Fast Boolean optimization by rewiring,” in
ICCAD, pp. 262-269, 1996.

[11] K. Keutzer, “DAGON: technology binding and local
optimization by DAG matching,” in DAC, pp. 341-347, 1987.

[12] Y. Watanabe et al., “Permissible functions for multioutput
components in combinational logic optimization,” I[IEEE
TCAD ICAS, vol. 15, no. 7, pp. 734-744, 1996.

[13] R. Bahar et al., “Algebraic Decision Diagrams and their
Applications,” in ICCAD, pp. 188-191, 1993.

[14] F. Somenzi. The CUDD package User’s guide. Version 1.0.5
1995.

[15] S. Yang, “Logic Synthesis and Optimization Benchmarks User
Guide Version 3.0,” Tech. Rep. MCNC, 1991.

[16] P. Vuillod et al., “Re-mapping for low power under tight timing

constraints,” ISLPED, 1997.

	CD-ROM Home Page
	ICCAD97
	Front Matter
	Table of Contents
	Session Index
	Author Index

