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Abstract

The Micro-Grain Array Processor (MGAP) is a family
of massively parallel SIMD arrays of fine grain processing
elements powerful enough to perform complex signal and
image processing algorithms in real time. The MGAP was
also designed to be compact enough to conveniently fit as
an add-on board to a standard workstation at a fraction
of the development cost of other comparable parallel ma-
chines. In this paper we update the status of the MGAP-2,
which became operational in October 1996, and present a
comparison of the MGAP-1 and the MGAP-2. We also give
performance comparisons of the two designs through three
popular image/video compression algorithms. the Discrete
Cosine Transform, Motion Estimation, and Fractal Com-
pression.

1. Introduction

Most image compression and image processing algo-
rithms feature large degrees of data-parallelism that can lead
to tremendous algorithmic optimizations. The problem is
that conventional pipelined SISD computers can not fully
take advantage of this data-parallelism due to their inherent
sequential architecture. However, SIMD architectures, such
as the Massively Parallel Processor [ 1] and the CLIP [3], are
very well suited for data-parallel algorithms due to their abil-
ity to support large numbers of processors without the need
for complex control logic. Many SIMD computers are also
fine-grain (or micro-grain), meaning that the processors are
relatively small. At most, the processors contain a small
amount of local RAM, a few dedicated registers, and some
minimal circuitry for bit-level arithmetic and logic. This
leads to an important area tradeoff decision on how fine-
grain to make the PEs, whether it is better to have more
simple processors or fewer complex processors.
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Figure 1. MGAP array structure and Processing El-
ement (PE) structure.

The Micro-Grain Array Processor architecture, intro-
duced in [5], is a massively paraliel 2-D SIMD mesh of
nearest neighbor connected fine-grain processing elements
(PEs)(Figure 1). The key architectural advantage that the
MGAP has over other SIMD computers is that each PE
has connection autonomy. Connection autonomy allows
each processor to independently select a direction in which
to receive data. This ability allows the MGAP to group
PEs into larger “virtual” processors called digit processors.
Figure 2 shows four possible configurations for digit pro-
cessors. Digit processors solves the area tradeoff issue be-
cause MGAP digit processors can be made larger for al-
gorithms with higher point-computation needs, and can be
made smaller for algorithms that require higher parallelism.
Connection autonomy also provides added flexibility to al-
gorithm design by allowing for arbitrary data flow and mixed
precision arithmetic.

In this paper we will present a comparison of the MGAP
family of processor arrays. Section 2 with give a detailed
description of the MGAP architecture at both the chip and
board levels, and also describe the MGAP programming
environment. Section 3 will present the MGAP-1I"s design
improvements over the MGAP-1. Section 4 will describe
image compression applications that have been performed
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Figure 3. A magic file of a pair of processing elements (metal-2 removed for clarity). Each PE consists
of a RAM, sense amp(SA), left function mux(LM), right function mux(RM), configuration mux and regis-

ter(CONFIG), and enable and link registers.
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Figure 2. Various PE connections into digit pro-
cessors: (a) horizontal; (b) vertical; (c) snake; (d)
circular.
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on the MGAP and section 5 will conclude this paper.

2. The MGAP Architecture

The three primary features of the MGAP architecture
are (1) a PE design that allows for connection autonomy;
(2) a low-cost board design allowing the MGAP to act as a
coprocessor board; and (3) *C++, a high level programming
language for the MGAP array. In this section, each of these
features will be discussed in detail.

2.1. Processing Element Architecture

Figure 3 shows a block diagram and layout of a pair of
PEs. Each PE forms a shape of an *L’ and is paired to
the other along its memory cells. This pairing is used to
optimize the area required for the global address lines. Each
PE consist of three components: a local RAM, bit registers,
and functional muxes. The RAM is a multi-ported memory
unit that is capable of reading two bits and writing one
bit each cycle. The read and write addresses are provided
through global address lines, thus every enabled PE will read
from/write to the same data addresses relative to its local
memory. Each PE contains a configuration area (CONFIG)
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that has a 7-to-1 mux controlled by a three bit configuration
register. The configuration mux selects one of seven bit
inputs (north, south, east, or west neighbor’s link, local link,
or true or false) that will be sent to both the right and left
functional muxes. Both the right function mux (RM) and the
left function mux (LM) are 3-to-1 muxes that receive two
bits from the local RAM and one bit from the configuration
mux. These mux structures are each controlled by 8 global
function lines (F and G function lines) that represent the
truth table lines of a three input function, so any possible
three input boolean function can be performed by selecting
the appropriate global function lines. The output bit of the
left function mux is returned to the RAM where it will be
written. The output of the right function mux is sent to the
link register. The link register represents the connection to
a PEs nearest neighbors and so is fed into each neighbor’s
configuration mux. The last bitregister is the Enable register
(ENB), which determines if the PE is active or not. If the
PE is disabled, writing to the RAM and to the configuration
register are disabled.

There are three basic commands for controlling the PEs:
enable, control, and mgap. The enable command is used to
enable/disable individual processors based on values stored
in each PE’s local memory. During the enable command, a
processor is enabled if its link register (the output of the right
function mux) is one, and disabled if it is zero. The control
command controls the values stored in the configuration
registers. With this command, if the link register contains
a zero, the three bit configuration register will be written
with values stored on selected F function lines. The mgap
command performs a full calculation within each enabled
processor, with inputs determined by global address lines
and the local configuration mux.

This design allows for connection autonomy through the
selective use of the control and enable commands. More
specifically, within each PE, a few memory bits will be allo-



cated to be mark bits. The mark bits determine the data flow
direction for that PE. The mark bits need to be initialized
by loading bit planes containing the initial PE configuration
directions onto the array. Each PE is configured by selec-
tively enabling based on the mark bits and using the control
command to write the correct direction to the configuration
register.

2.2. MGAP Board Structure

The design for the MGAP system is that of a coproces-
sor board connected to a workstation via a VME or similar
bus. The workstation is assumed to be part of a network of
such computers, allowing broad access to the array. On the
board itself sits the array as well as PLDs and/or field pro-
grammable gate arrays which implement the control logic.
These programmable devices link signals going across the
bus with the array and an on-board memory used for local
storage data storage. The board also contains dedicated pro-
gram memory and a buffering mechanism for data moving
between the array and the on-board memory. Finally, pro-
grammable ROMS are used to hold startup configuration
programs. Figure 4 shows the board level designs for the
MGAP family.

2.3. The MGAP Programming Environment

Programming SIMD machines can be a daunting task,
often requiring the programmer to use assembly language
calls to operate the machine efficiently. To solve this prob-
lem, a programming language, *C++, was created that com-
bines the notion of digit processor shape (see figure 2) and
MGAP specific library function with C++ to create a very
good development platform for writing complex parallel ap-
plications. Figure 5 gives an example of a *C++ program
that performs signed-digitarray additions on the MGAP.

3. Improvements in the MGAP Family

In this section we will first describe specific design de-
cisions of the MGAP-1 architecture and the limitations that
resulted from these decisions. We will then describe the de-
sign aspects of the MGAP-2 and show how these improved
upon the limitations of the MGAP-1.

3.1. The MGAP-1 Architecture

The MGAP-1 was completed and fully operational in
fall of 1993. Its primary purpose was to illustrate the micro-
grained approach to SIMD computing. It contained 16,384
processing elements housed across 32 chips. All of the array
chips and the necessary control and I/O logic for the array
were placed on a single 9Ux400 mm board. This allowed
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private : class word val{128][128];
public :
class array operator+(class array a, b) {
array z;

int i, j;

for(1=0;1<128; 1++)
for(j=0;j< 128 j++)
zvallil[j] = a.val(illj] + b.vallilljl;
return( z );

b

main(}{
class array A.B.C:

C=A+B;

Figure 5. *C++ addition example.

for an extremely compact and cost effective parallel com-
puting engine when compared with other image processing
platforms. The board’s operating frequency was 25 MHz.
The chips were fabricated using 1.2 pm single-poly, double
metal CMOS technology. Fach PE contained 16 bits of lo-
cal memory using an eight transistor memory cell capable
of three simultaneous operations: two reads and one write.
The entire system has a theoretical peak performance of 0.8
teraops. The host system was a SUN-4 workstation on the
local network in Penn State’s Computer Science and Engi-
neering Department, allowing students and researchers easy
access to the MGAP-1.

To simplify the construction processes, the processing
array’s control logic was completely programmable, pro-
viding a high degree of flexibility of which we have taken
advantage. The control logic contained an instruction RAM,
I/O memories leading to the processor array, and a separate
scalar ALU unit. PLDs were extensively used as “glue”
Jogic for instruction and address decoding. These PLDs in-
puts are rich enough for us to change the instruction set and
even the instruction format a fair degree.

Several signal processing algorithms were successfully
developed and implemented on the MGAP-1, including edge
detection, discrete wavelet transform, dynamic space warp-
ing, and a cellular automaton model of lattice gases.

3.2. Limitations of the MGAP-1

The experience running signal and tmage processing
primitives on the MGAP-1 has provided many valuable in-
sights into the requirements of these target applications. It
was realized that increasing each processor’s local RAM
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Figure 4. System architecture for (a) the MGAP-1 (b) the MGAP-2.

would significantly reduce the number of cycles required
for moving data between the array and the external memo-
ries, and would reduce the need of reserving PEs for storage
purposes only. As expected, many applications required
the use of many more PEs that were available, thus forc-
ing applications to work on only portions of the data and
waste time swapping data into and out of the array. This
was especially true for image processing applications where
only small portions of images could be loaded onto the ar-
ray. Another problem with the MGAP-1 design was that
the extensive use of PLDs in the control logic resulted in
control pipelines being of different lengths. This resulted
in lost cycles due to bubbles in the pipeline at the start and
end of longer computations. The control logic was also
designed with the anticipation that most communication be-
tween the I/O memory and the processor array would involve
simultaneous input and output for systolic algorithms. We
also conjectured that a corner-turning/transpose movement
would be important. These predictions led to a design with
an extremely complex I/O topology. We found that the
transpose movement was not needed for most applications,
and that for several of our applications, especially those
involving filtering operations, there was a requirement for
constant [/O. These applications either do not use the 1/0
memories, instead buffering data through the FIFOs, or only
briefly use the I/O memories, resulting in heavy 1/O across
the host system’s VME bus. The MGAP-1 board used a
simple slave interface which guickly became a bottleneck
for many ot these applications.

108

3.3. The MGAP-II Architecture

The MGAP-2 project started in the summer of 1994, and
in October of 1996 it became fully operational. Though the
MGAP-2 is architecturally similar to the MGAP-1, there
have been several major enhancements to the MGAP-1 de-
sign to overcome some of its noted limitations. First, the
chips were fabricated in a more aggressive 0.8m single-
poly, double-metal CMOS technology. This allowed us to
triple the number of PEs to 49,152 while still maintaining a
32 chip array on a 9U x 400 mm board. The board speed was
also doubled to 50 MHZ. To help alleviate the PE memory
limitation, the local memory of each PE was also doubled
to 32 bits. The PE's memory cells were reduced from eight
to six transistor by separating the read and write operations
within each cycle, which eliminating the ability of concur-
rent reads and writes, but allowing us to double the memory
with only a minimal area penalty for each PE.

The control logic was also dramatically altered to en-
hance the design. Most of the decoding PLDs have be incor-
porated into two FPGAs, allowing for a much more flexible
and programmable environment. This has also allowed the
equalization of the control pipelines, thus both reducing lost
pipeline cycles and making programming much easier. The
MGAP-2 also transfers data between the host and itself more
efficiently by utilizing a VME bus master requester with
block transfer capability. This essentially gives the system
DMA capability, greatly reducing the overhead associated
with single word transfers. The /O memory communica-
tion structure has also been significantly improved by using
a much simpler bi-directional FIFO approach. The bus orga-



nization was also altered to better fit the needs demonstrated
by the target applications, together with the operational char-
acteristics of the processor array. The processor array must
be capable of performing I/O to/from any of its four compass
directions. There is no need for a having an I/O memory
capable of simultaneous reads and writes, because the array
doesn’t perform input and output concurrently. The FIFO
has been aided for providing buffering for filter-like appli-
cations.

4. Applications for the MGAP Family

The MGAP is a prime architecture for applications that
are highly parallel and require fast data movement, such
as in signal and image processing. The MGAP-2 contains
three times more processors than the MGAP-1, and runs at
twice the clock frequency, thus a six-fold time improvement
can immediated be expected in the MGAP-2. But for many
applications, a much better improvement is attained due to
the fact that larger portions of the data can be worked on at
a time, saving significant data swap time. In this section,
we compare the performance of the MGAP-1 and MGAP-
2 for three popular image/video compression algorithms:
Discrete Cosine Transform, Motion Estimation, and Fractal
Compression.

4.1. Discrete Cosine Transform

The 2-D Discrete Cosine Transform is a very popular
image compression scheme used in both JPEG and MPEG
compression standards. The small-n algorithms, with slight
modification, can be used to compute the discrete Hartley
transform (DHT), which in turn can be used to compute the
1-D and 2-D DCT [2]. The following equations show this
process of calculating the 1-D and 2-D DCT:

DCTyp(x) = ASC'"T Pz
DCTyp(X) = (ASC'TP(ASC'TP X))

where z is a sequence of length N, P is a permutation
matrix, 7" and S contain elements from -1,0,1, C” is diago-
nal, and A embodies the relationship between the DHT and
DCT. This algorithm was mapped to the MGAP architec-
ture in [6] and figure 6 summarizes the eight computation
stages required for each DCT block along with the data flow
withinthe MGAP subarray. Table 1 shows the timingresults
for image sizes 256x256 and 512x512 using both 8x8 and
16x16 sized block. The results show that the MGAP-2is 9
times faster for the 8x8 block size and the MGAP-2 is 31
times faster for the 16x16 block size. The results also shows
that the MGAP-2 can compute the DCT of reasonably sized
images in real-time.
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Figure 6. 2-D DCT data flow on the MGAP.

Table 1. 2-D DCT on MGAP-1 and MGAP-2.

DCT size | 256x256 image | 512x512 image
MGAP-1 8x8 34.55 msec {38.19 msec
16x16 202.22 msec 808.88 msec
MGAP-2 8x8 3.52 msec 14.08 msec
16x16 6.50 msec 26.0 msec
MGAP-2 8x8 9.81 9.81
Speedup [6x16 31.1 31.1

4.2. Motion Estimation

Motion estimate is a very powerful video compression
technique used in many compression schemes include the
MPEG standard. Motion estimate is based on Block Match-
ing Algorithms (BMA), such as full-search BMA, where a
template pixel block from the current video frame is com-
pared to candidate pixel blocks within some predefined dis-
tance d of the template block in the previous video frame.
The idea is to determine pixel block motion by finding a
candidate block that best matches the template block. The
goodness of the match is determined by a distance metric.
The most commonly used distance metric is the Mean Ab-
solute Difference (MAD), given in the following equation,
where pixel blocks = and y of size nxn are compared.

MAD(x,y) =327 320 1e(i, ) = y(i, )]

The MAD is often used because of its relative accuracy
and inexpensive calculation. This algorithm was mapped
to the MGAP architecture in [7] using both a broadcasting
and a non-broadcasting algorithm. In the broadcasting ap-
proach, the PE’s contain the search area and the template
block is broadcast to all PEs within the search area. The dis-
tance between the template block and the search area blocks
are calculated in parallel. In the non-broadcast scheme, the
search area and the template blocks are stored in separate bit-
planes on the array. The minimum distance is systolically
calculated by shifting the template plane over the search area
plane. Table 2 gives the relative results for a block matching
algorithm for the MPEG SIF video format (352x240 pixels)



with the template block size of 16x16. There is little time
gain in the broadcasting method because broadcasting re-
duces the data-parallelism and therefore inefficiently uses
the array.

Table 2. Motion Estimation (16x16 template)

d | broadcasting | non-broadcasting
MGAP-T | 16 | 117.2 msec 3747

32 | 325.4 msec 740.52
MGAP-2 | 16 44 .4 msec 22.72

32 | 65.21 msec 99.6
MGAP-2 | 16 2.63 16.5
Speedup | 32 5.0 7.43

4.3. Fractal Image Compression

Fractal image compression is not as popular as DCT
or motion estimation due to its expensive compression al-
gorithm, but recent algorithmic improvements along with
advancing hardware are making fractal compression a vi-
able compression technique [4]. Fractal image compression
uses redundancy of scale and the fractal behavior of most
images to create highly compressed images with very good
fidelity. Fractal compression also has a very high degree of
data-parallelism, which will map very well to the MGAP
architecture.

The basic fractal compression algorithm consists of first
dividing the image into non-overlapping blocks, called
Range blocks, and also dividing the image into possibly
overlapping blocks called Domain blocks. The Domain
blocks need to be larger in area than the Range blocks, and
the Domain blocks will be contracted down through pixel
averaging to the size of the Range blocks. For each Range
block, a “good” Domain match must be found. This is
accomplished by compare each Range with a subset of the
Domains, using a distant metric such as Mean Square Error
(MSE), and allowing for pixel parameters such as a bright-
ness scale factor and contrast offset factor. The following
equations calculate the MSE between a Domain block d,
and a Range block r, each containing n pixels. s is the
brightness scale factor, o is the contrast offset factor, and
M SE is the distance between the blocks.

[ - ]
- (D )]

8§ =

MSE = Z (sdi + 0 — 7,7:)3

In the algorithm we mapped to the MGAP, the Range
blocks are of a fixed 4x4 pixel size, and Domain blocks are
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8x8 pixels overlapped with a step size of two. Table 3 show
the timing results. The MGAP-2 shows a large improvement
over the MGAP-1 due to the excessive swapping of data
required by the MGAP-1.

Table 3. Fractal Compression

256x256 | 512x512
MGAP-1 | 37.12 sec | 593.92 sec
MGAP-2 | 0.29 sec 4.64 sec
Speedup 128 128

5. Conclusion

In this paper, we have presented an updated status of the
MGAP-2. We compared the designs of the MGAP-1 and
the MGAP-2 with emphasis on the design improvements
in the MGAP-2 that helped overcome the limitations of the
MGAP-1. We have also shown how our experience design-
ing applications on the MGAP-1 motivated the architectural
changes realized in the MGAP-2. Finally we presented
comparison of image compression algorithms between the
MGAP-1 and MGAP-2 and showed that the reduction in
data swapping produced large gains in performance.
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