A New Method for Asynchronous Pipeline Control

Sam S. Appleton, Shannon V. Morton & Michael J. Liebelt

Department of Electrical & Electronic Engineering,
University of Adelaide, Australia.

Abstract

We explore the potential for enhanced performance
mn asynchronous pipelines by the elimination of unnec-
cessary swgnalling from the critical path, thus making

the common case fast. An improvement of 15% over

an optimal two-phase signalling approach for both static
and dynamic logic control is demonstrated. We describe
extensions to the approach that add functionality with
no cycle time overhead.

1 Introduction

Asynchronous system design is a well-known alterna-
tive approach to the synchronous design paradigm/[1].
However, asynchronous systems can suffer severe per-
formance degradation due to the implementation of lo-
cal signalling, which tends to place gates which imple-
ment control functions in the critical path.

We developed an approach that eliminates the perfor-
mance bottleneck that is inherent in the asynchronous
method by taking the control out of the critical path
during normal operation. This approach, which we
have termed Flow Controlled Asynchronous (FOCA),
operates at the maximal rate permitted by the logic
blocks during normal operation, and can be halted
when long-latency or problematic conditions are de-
tected in the pipeline. In this paper, we demonstrate

cycle time improvements of approximately 15% over
optimal two-phase asynchronous pipelines.

2 FOCA Approach

A well-known asynchronous approach is the

micropipeline[2]. A micropipeline models the datapath
delay in each stage with a delay element, and uses a
two-phase NRZ protocol to implement signalling func-
tions between stages. Such an asynchronous pipeline,
which uses delay elements to model the computation
delay, is shown in Figure 1. The controller uses
two-phase NRZ signals to transfer control information,
and we use the 9 symbol to separate two-phase lines

1066-1395/97 $10.00 © 1997 IEEE

100

from data lines[3]. The Control Element (CE), can be
speed-independent (vis. the micropipeline) or can rely
on bounded delays. The use of bounded delays models
leads to significant improvements in performance in
two-phase asynchronous systems[3]. However, even
this approach cannot totally mitigate the performance
penalty of asynchronous signalling, because the i**
stage must wait for the i + 1" stage to accept data
before it can reset and accept new data. If we are
assuming a bounded-delay model, then the delays of
all control and datapath components are known to a
good approximation.

Therefore, to eliminate the performance bottleneck, we
eliminate the signal which causes the control to be on
the critical path - the back-propogating acknowledge
signal Qack. This results in the pipeline structure of
Figure 2. The 0Go signals propagate from one stage
to the next, without inter-stage interaction to deter-
mine whether the next stage has completed operation.
To ensure the pipeline operates correctly, the rate at
which operands are issued into the pipeline is con-
trolled. This method for pipeline control without the
asynchronous acknowledge is termed Flow Controlled
Asynchronous (FOCA). This approach makes the com-
mon case fast, when the pipeline is operating normally
without halts or with extended latency operands, and
leaves in functions to handle the rare cases without de-
tracting from the operating speed of the system.

Stage 1 Stage 2 Stage N

Oacky — acky _M_d;u S 7 10
—_ ICE Delay | . :]
Oreq Ored, reqy G100,

g & ‘ g

E] § S 3
- : : :

: IH i 5

O o O

Figure 1. Asynchronous Pipeline
2.1 Two-Phase Signalling Gates

The pipelines described in this paper use two-phase
signalling, based upon the Ewvent Controlled Systems

8Goy

Figure 2: FOCA Pipeline

methodology[3]. The four gates used in this paper are
shown in Figure 3.

oin .
Jout
contro

(a) Send Gate

din :>60ut

(¢) Delay Gate (d) Latch Gate

Figure 3: Two-Phase ECS Gates

The Send gate, shown in Fig. 3(a), sends an input event
din through to the output, Jout, when the control con-
dition, control, is high. When control is low, any in-
put event waits until control becomes high. The Until
gate, shown in Fig. 3(b), sets a boolean variable, out,
true when the input event dset occurs, ‘until’ the event
Oreset occurs, which sets out low. The Delay gate,
shown in Fig. 3(c), simply delays the input event din
from propagating to the output event dout for a time
T,. The Latch gate, shown in Fig. 3(d), latches in to
out when Lt is high, and holds out when Lt is low. The
implementation of this latch is based on a fast CMOS
single-phase latch design[9].

2.2 Pipeline Control

The elimination of the acknowledge places a constraint
on the issuing stage which sends operands into the
pipeline. If the latencies of the delay elements of Fig-
ure 2 are T; Vi € [1...N], then the time between
request events into the first stage, Tissue, must be

Tissuc Z Tn(l:l'(Tl + Tr 1y TZ + Tr2, S ,TN + Tr N) +

Tissue margin

GOy

101

where Tissye margin 15 any delay that might be added as
margin for safe operation due to element, temperature
or process variation mismatch, which slows down the
issuing stage of the pipeline. The delays T,; are the
recovery times for each stage — after sending an output
OGo event, some stages will need recovery time before a
new OGo can arrive at the input e.g. precharge delays.
The delay elements T; are designed such that

T, = Tpl - Tdnt,apat,h it Tlocal margin

where T}y is the propagation delay of the latches,
Tuatapathi 18 the datapath propagation time, and
Tiocal margin 15 any added safety margin required at the
local level. Note that this ensures the forward latency
of the control path is the same as (or greater than) the
datapath, which is required for asynchronous pipelines
to operate correctly.

The choice of the block which controls the inter-stage
latches depends on a number of different factors. Two
possible circuits are shown in Figure 4.

aG()i” ' GGO(,M
| Td
Lt

=
X <

2 S >
3 &
[=}

(a) Input-Side Controller

GGO() ut

DATAPATH

To+Tee = T;

(b) Input-Output-Side
Controller

Figure 4: FOCA pipeline control circuits

The Input-Side (IS) controller only relies on the input

signal, 8Go;,, to control the latch line, Lt. When a
new request event arrives, the controller simply pulses
the latch line Lt to latch the data. The output event,
OG0, 18 issued to the next stage via the delay el-
ement. The Input-Output-Side (I0S) controller uses
both input and output events to control the latch line.
An arriving input event, 0Go;,, sets the latch line low,
and it is set high again T, after the 0Go;,, event. The
Tyo delay is required to ensure the forward latency of
the pipeline matches Ty + T} i.c.

Trll + ﬂlB - pl + T(ia{aputh i+ ﬂ()zﬁalnmrgin

The IOS controller is more directly suitable for use with
dynamic logic and requires fewer control elements, how-
ever, the design of the Ty, and Ty» elements depends
on the expected rate of operation of the pipeline. The
IS controller can be safely overclocked without changing
any component values, but requires a few extra com-
ponents to add the control required for dynamic logic.

Another problem than can impact upon the choice of
latch controller and the design of the delay elements is
that of delay skew. The series of delay elements shown
in Figure 5 is the control signal path in the FOCA
pipeline. Each element has a rising edge delay 7,.; and
afalling edge delay T, (the delay elements are assumed
to be non-inverting).

TY‘-_)
T/

Trn
Tfn

Rising Delay Tr
Falling Delay T f,

Figure 5: Control Path in FOCA pipelines

Each element will have a small difference between
rising and falling delay times, which we termn ‘delay
skew’(even though it may be extremely small in each
element with careful circuit design), and is defined as

Tasi = Ty =Ty
i.e. the delay skew, Tys,, is positive if a rising edge
is slower than a falling edge. As the edge propogates
through the delay elements, these delay skews add up,
and thus a control circuit for the it* stage sees a total
delay skew of

J<i

Ttrlsz = Z Tdsj
J=1

ie. the i'" stage sces a difference between rising and
falling edges, Ti45:, at the input that is the sum of the
delay skews of all previous stages. The response of the
control circuit to skew buildups can vary. Even though

102

each stage’s delay element ensures that data is ready a
set time after the input event, the time between input
events varies, which may cause problems with the data-
path or the controller. When using the I0S controller,
an event arriving early can cause failure because the
latch line Lt has not had time to reset. However, the
problem can be minimised when using identical delay
elements in each stage by inverting the output of each
delay, thus inverting the sign of the delay skew in each
stage, making the total input delay skew to each stage
acceptably small. Even if the delay elements are not
equal, the delay skew sign can be controlled in each
stage (by using inversions), and thus we can minimise
delay skew in any one stage to be below an acceptable
value.

3 Static Logic Pipelines

The maximum date rate of three asynchronous ap-
proaches was determined using HSPICE simulations
of extracted layouts in a 0.8um CMOS process, and
compared against a similarly determined performance
figure for a FOCA pipeline. We used a Level 13 model
with nominal parameters, at 75°C with a 5V sup-
ply. A logic delay of 15ns was assumed for each stage,
and a five-stage pipeline was constructed. Single-phase
latches were used as inter-stage registers[9]. The results
are shown in Table 1.

Table 1: Static Logic Pipeline Performance

uPipe[2] | AMUI[5] | ECS{3] | FOCA
Parameter 2¢ SI 4¢ BD | 2¢ BD | 2¢ BD
Cycle Time | 30.8ns 26.0ns 19.4ns | 16.5ns
Latency 102.6ns | 85.4ns 83.6ns | 79.9ns
Py - Teyere | 403 504 235 226

The pPipe is the micropipeline, a two-phase speed-
independent controller modified to use single-phase
latches[4]. The AMU pipeline[5] is a four-phase con-
troller which uses delay elements to model the com-
putation delays. The ECS pipeline[3] is an optimal
two-phase controller that uses a bounded-delay model.

The FOCA pipeline improves cycle time by 15%, 37%,
and 46% compared to two-phase (ECS), four-phase
(AMU), and micropipeline approaches, respectively.
The relative performance increase will improve as logic
depth is decreased, as FOCA thoughput scales with
processing latency without added control overhead.

4 Dynamic Logic Pipelines

Dynamic logic is frequently employed in CMOS VLSI
to improve power, area and time performance. How-
ever, dynamic gates typically require an activation sig-
nal to separate the precharge and evaluation phases
of the logic. The maximum data rates of two asyn-
chronous controllers designed for dynamic logic control,
and of a FOCA pipeline using an [0S controller, were
determined using HSPICE simulation on extracted
0.8um CMOS layouts (with the same parameters as
for the static pipelines case). The results are shown in
Table 2 for evaluation and precharge delays of 15ns and
3ns, respectively.

Table 2: Dynamic Logic Simulation Results

Measured FOCA MPP Amulet-2
Parameter 26 BD | 2¢ BD[3] | 4¢ BD[5]

Cycle Time 19.2ns | 22.8ns 32.1ns

Latency 83.0ns | 92.9ns 93.0ns

The MPP is a fast two-phase dynamic logic pipeline
structure using ECS[3]. The Amulet-2 is a four-phase
controller modified to use dynamic logic([5].

The cycle time improvement is 15% and 40% over two
and four phase approaches, respectively. The design of
the FOCA controller was deliberately conservative, and
improvements could be gained by being more aggressive
with the design of interaction between the control and
datapath.

5 Implementing Haltability

The ability to halt FOCA pipelines is required because
at certain times errors or long-latency operands will
enter the pipeline. We assume that the stage which
will cause the problem can detect it and assert a signal,
called HaltDetect. All previous stages must then stop
and wait for the error condition to be resolved. One
method of doing this would be to drive the HaltDetect
signal back up the pipeline, and have this signal stop
any new events propagating between stages. However,
the pipeline is still essentially asynchronous, and this
global halt signal may cause metastability failures in
earlier components. Another method, more preferable
but more complex, is to propagate the halt back to the
previous stage when the current stage becomes busy,
and the halt condition is active. A dynamic logic circuit
for this function is shown in Figure 6.

An arriving halt signal, Haltn, only causes this stage
to halt when the stage is busy i.e. is processing an

103

RestartOut

-
HaltOut —0@

StopOut

M~

Tpre halt i post halt

Y

aG()i I BGOOUt

Control Path
Stage Delay Ti = Tpre halti T Tsend + Tpost halt 4

Figure 6: FOCA dynamic halting circuit

operand. This signal then propagates to the previ-
ous stage. The delay T4 is an asymmetric delay el-
ement that propagates the Restart condition back up
the pipeline when the halt is removed, and is required
in the general case to ensure the pipeline operates cor-
rectly when exiting the halted state. The Restart signal
is generated by the stage that generated the halt to in-
dicate that the condition has been resolved and the
pipeline can start moving again. If the stage delay T3
is such that,

Ti Z T'L'ssue - Tqula delay

then this delay element, T, can be omitted.

To determine whether a pipeline can be safely halted,
we must ensure that the latest the StopOut signal can
be asserted is earlier than the arrival of the input event
to the Send gate which halts the stage. For a N-stage
pipeline, the time difference T}, ; in each stage must
be positive in order to halt, where

,
Fhmi

where Tyocki

prehaltt ™ (Tb(u:ki + Tcontrol "“ Tsm)
7hp + 77la517(7busy7 Cl‘l)mrlc i+1 —
Tissuc’ + Ti,a Th,(l i)

max(Tyusy, Than) + Thp

.
il

and Tpack N

where Tigone 18 the issuing rate of the pipeline, Teontrot
is the margin required between an input event to a Send
gate and a change in control input, Ty, is the delay
between HaltOut and StopOut in the halt circuit, T,
is the delay of the halt generation circuit, Ty is the

time taken to generate the busy signal from the arrival
of the event 8Go;,, and T},y4; is the time taken to detect
a halt condition in the i*" stage (set to zero if the 5th
stage does not generate a halt signal).

For a pipeline where all the delays are equal (i.e. T; =
Tissue V1), and the maximum time to detect a halting
condition in any stage is & 5ns, then Np ., the number
of pipeline stages which can be halted safely, is

Nhalt

(Tissue - Thd)/Thp
10

~
~

i.e. for a pipeline with a 15ns computation delay and a
gate delay of ~ Ins, a 10-stage pipeline can be halted
safely. Note that if the issuing rate is modified such
that

Tissue 2 Thp + 7”(117(Tl B T27 S 7TN)

then an arbitrary length pipeline can be halted safely.
In a pipeline which uses dynamic logic, this condition
is automatically satisfied because the precharge time is
typically longer than the latch delay. This precharge
time must be added to the issuing rate as a recovery
time, satisfying the above constraint and making the
halting of an arbitrary length dynamic pipeline possi-
ble.

6 Conclusion

The FOCA method eliminates the asynchronous ac-
knowledge signal from the critical communication path
in an asynchronous pipeline. This eliminates the per-
formance bottleneck, resulting in cycle time improve-
ments of 15% over an optimal two-phase bounded-delay
asynchronous method when using both static and dy-
namic logic. The design of the controllers was delib-
erately conservative, and more aggressive design will
improve performance.

We are currently extending the FOCA approach to
variable delay stages and multi-rate pipelines, and ap-
plying the method to the design of digital filters, inter-
chip signalling components for asynchronous systems,
and a RISC microprocessor. The work proceeds in
parallel with our work on the two-phase bounded-
delay asynchronous approach Event Controlled Sys-
tems, which by itself significantly improves the per-
formance level of asynchronous components, as can be
seen from the performance figures quoted in this paper.

We would like to thank Dr. D.A. Pucknell for his pio-
neering contributions and Andrew Beaumont-Smith for
comments, and the financial support of the Australian
Research Council and the Frank Perry Scholarship.

104

References

[1] Hauck, S., “Asynchronous Design Methodologies : An
Overview”, Proceedings of the IEEE, Vol. 83, No. 1, Jan-
uary 1995.

Sutherland, L.E., “Micropipelines”, Communications of the
ACM, pp.720-738, June 1989.

Appleton, S.5., Morton, S.V., & Liebelt, M.J., “High Per-
formance Two-Phase Asynchronous Pipelines”, to appear
in IEICE ED Journal, March 1997.

Day, Paul, & Woods, J. Viv, “Investigation into Mi-
cropipeline Latch Design Styles”, IEFE Transactions on
VLSI Systems, Vol. 3, No. 2, June 1995.

Furber, S.B., & Day, P., “Four-Phase Micropipeline Latch
Control Circuits”, IEEE Transactions on VLSI Systems,
Vol. 4, No. 2, June 1996.

Purber, S.B., & Liu, J., “Dynamic Logic in Four-Phase
Micropipelines”, Second Inin’l Symposium on Adv. Re-
search in Async. Circuits & Systems, March 1996, Aizu-
Wakamatsu, Japan.

Weste, N., & Eshragian, K., “Prinnciples of CMOS VLSI
Design”, Second Edition, Addison-Wesley.

Morton, S.V., Appleton, S.S., & Liebelt, M.J., “An Event
Controlled Reconfigurable Multi-Chip FFT”, Intnl Sym-
posium on Adv. Research in Async. Circuits and Systems,
Salt Lake City, Utah, November 1994.

Svensson, Christer, & Yuan, Jiren, “High-Speed CMOS
circuit technique”, IEEE Journal of Solid-State Circuits,
27(3):382-388, March 1992.

=

	Main Page
	GLSVLSI97
	Front Matter
	Table of Contents
	Author Index

