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Abstract

It was shown in [1] that a test set for single stuck-at faults com-
puted by injecting each fault into the fault free circuit and finding
a test to distinguish the faulty circuit from the fault free one may
be invalidated in the presence of faults that are not detected by
the test set. We consider the problem of generating tests for sin-
gle stuck-at faults that remain valid in the presence of undetected
single stuck-at faults. We show that enumeration of all subsets
of faults that may occur in the circuit without being detected may
be too computation intensive, and is not necessary to obtain
high-quality test sets. We present a test generation procedure to
generate tests that remain valid in the presence of undetected
faults. The procedure targets simultaneously multiple subsets of
undetected faults that may be present in the circuit. It thus allows
test generation time to be minimized by allowing the number of
subsets of faults considered explicitly to be minimized. Based on
this test generation procedure, several approximate procedures
are also explored.

1. Introduction

Test generation for single stuck-at faults can be viewed as a pro-
cess of injecting single faults into a fault free circuit to create
faulty circuits, and generating tests to distinguish each faulty cir-
cuit from the fault free circuit. It was observed in [1] that a test
set T generated in this way may be invalidated in the presence of
a single stuck-at fault that is not detected by 7. In other words, a
single stuck-at fault f” detected by T when it is present in the
circuit alone may not be detected by T if the circuit-under-test
contains, in addition to f’, a single stuck-at fault f that is not
detected by T. Our goal in this work is to generate test sets for
single stuck-at faults that are not invalidated in the presence of
undetected single stuck-at faults. To be consistent with our goal
of detecting single faults, we assume that faults occur one at a
time, and that the circuit is tested at least once between every
two occurrences of new faults. This is typical of operation-time
testing (as opposed to manufacturing testing). We assume the
context of operation-time testing in this work. The following
scenario demonstrates the importance of considering the test
invalidation problem. Let a test set T be generated by injecting
single faults into the fault free circuit, and let f; be a fault that
remains undetected by 7. Now suppose that f; occurs in the cir-
cuit, invalidating the tests for a fault f,. Eventually, f; may
occur in the circuit. The two faults f, and f, present in the cir-
cuit may now invalidate the tests for a third fault, f, that would
also go undetected, and so on. By ensuring that the test set
detects f| even if f; is present, we can identify that the circuit is
faulty as soon as f, occurs.
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We point out that two detectable faults present in the cir-
cuit at the same time may also constitute an undetectable double
fault. However, we are interested in the single stuck-at fault
model and the invalidation of tests for single stuck-at faults.
Hence, arbitrary multiple undetectable faults are not considered.
An undetectable fault that becomes detectable in the presence of
another fault will be detected by the proposed procedure.

A single stuck-at fault f may be left undetected by a test
set T because it is undetectable, or because the test generation
procedure aborts on f. Redundancy removal and fault removal
procedures such as [3-5] alleviate the test invalidation problem
partly by eliminating redundant faults and possibly undetectable
faults from the circuit. However, these procedures may not result
in fully testable circuits and do not eliminate aborted faults. Due
to the presence of faults that remain undetected, the problem of
test invalidation observed in [1] deserves attention.

In this work, we describe a test generation procedure that
generates tests for single stuck-at faults that remain valid even in
the presence of the single stuck-at faults that are left undetected.
We divide the procedure into two parts. In the first part of the
procedure, we generate subsets of faults that may be present
without being detected, and may invalidate the tests we generate.
These subsets are defined in Section 2. In the second part of the
procedure, we generate tests that remain valid in the presence of
any subset of faults computed in the first part. In practice, the
two parts can be combined. We keep the two parts separate for
ease of presentation and comment on the possibility of combin-
ing them where appropriate. The second part of the test genera-
tion procedure (the construction of a test set) is divided into three
steps. In the first two steps, every test we generate remains valid
in the presence of as many subsets of faults as possible. We thus
minimize the test generation effort, and allow heuristics to be
developed that do not require explicit consideration of all subsets
of faults. The basic idea is the following. Let F be a set of faults
that may be present in the circuit without being detected. Let G
be the set of lines corresponding to the faults in F, i.e., for every
fault g stuck-at & in F, g is included in G. We assign to the lines
in G unspecified values, and generate tests for as many
detectable target faults as possible. The tests generated in this
way are not invalidated in the presence of the faults in F. In
addition, they are not invalidated in the presence of any subset of
faults that affects only lines included in G. We use this scheme
to generate tests that are not invalidated in the presence of as
many subsets of faults as possible. In the third part of the proce-
dure we use specified faulty values for the faults in F only if
some target faults remain for which we cannot generate tests
when the lines in G are unspecified.

The proposed test generation procedure contains a fault
simulation procedure that can be used to check whether a given
test set may be invalidated by undetected faults. As may be



expected (and demonstrated in Section 3), test invalidation does
not occur often. For the cases where it does not occur, the fault
simulation procedure can be used to verify this fact. When test
invalidation does occur, the proposed test generation procedure
can be used to generate an appropriate test set.

We start by describing a complete procedure that guaran-
tees that every detectable single stuck-at fault would be detected,
independent of the undetected single stuck-at faults present in
the circuit at the same time. The complexity of this procedure is
high due to the number of subsets of faults that may be present
without being detected. We therefore consider heuristics to
reduce its complexity. The proposed procedures are applied to
small synchronous sequential circuits. Consideration of small
circuits allows us to explore the tradeoffs between the number of
subsets considered, the test generation complexity, and the effec-
tiveness of the resulting test sequence. The heuristic procedures
developed in this way are applicable to circuits of any size.

The paper is organized as follows. In Section 2 we
include the definitions and notation we use in this work. In Sec-
tion 3 we describe a complete two-part test generation procedure
and present experimental results. In Section 4 we discuss the
more complex steps of the procedure described in Section 3 and
introduce heuristics to reduce their complexity. Experimental
results are included to demonstrate the effectiveness of the
heuristics. In Section 5 we present a different procedure where
generation of the subsets of faults and generation of tests are
combined. Section 6 concludes the paper.

2. Preliminaries
The single stuck-at fault model is considered in this work. By
"fault” we refer to a single stuck-at fault, unless otherwise stated.
Our goal is to generate test sets that remain valid in the presence
of undetected faults. Since several undetected faults may be pre-
sent in the circuit at the same time, we must consider subsets of
faults (or multiple faults). It is possible to require that the test
set would remain valid in the presence of any undetected fault,
of any multiplicity. However, undetected multiple faults are dif-
ficult to compute. In addition, the test set we compute targets sin-
gle faults, and may not detect some detectable multiple faults.
To be consistent with our goal of detecting single faults, we
assume that faults occur one at a time, and that the circuit is
tested at least once between every two occurrences of new faults
(this is consistent with the context of operation-time testing that
we assume). Under this assumption, a multiple fault needs to be
considered only if the single faults it contains can occur one after
the other, leaving the circuit indistinguishable from the fault free
circuit at all times. The subsets of faults of interest are thus
defined as follows.
Definition 1: The test set of a circuit C has to be valid under a
subset of faults F of C if it is possible to order the faults in F as
(fi» fos- -+ fim), such that faulty circuit C*i obtained by inject-
ing F;={fy, f2--, f;} into C is indistinguishable from C for
i=1,2,---IFL

Given a fault free circuit C, a test set T for single stuck-at
faults can be generated by injecting each fault f into C to obtain
a faulty circuit C, and finding a test to distinguish C from C;.
If a subset of faults F may go undetected by T, it is possible to
generate a test set that is not invalidated in the presence of the
faults in F as follows. A circuit CF is defined, which is the fault
free circuit into which every fault in F is injected. Test genera-
tion is then performed by injecting single faults into C*. When a
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fault f is injected into C*, a faulty circuit C’; is obtained. A test
t must then be found to distinguish Cf from the original fault
free circuit C. If all the faults in F escape detection, and if the
fault f occurs in the circuit in the presence of the faults in F,
then ¢ will distinguish the resulting faulty circuit from the fauit
free circuit C.

To represent a subset of faults F' present in the circuit at
the same time, we define a mask M =[m;m,---my, ], as fol-
lows. M has an entry m; for every circuit line g;. If F contains
the fault g; stuck-at «; (a; € {0,1}), then m; = ¢;. Otherwise,
m; =U. The value U indicates that the line is fault free. We
exclude the presence of two faults on the same line, since a line
can be either stuck-at O or stuck-at 1, but not both. In the fault
free circuit, we have m; = U for every line g;. During test gener-
ation and fault simulation, the value of a line g; is determined as
follows. If m; # U, then g; is set to m;. Otherwise, the conven-
tional logic value implication rules are used to determine the
value of g;. This fault injection method allows us to use the
same test generation procedure regardless of whether the fault
under consideration is injected into the fault free circuit or into a
faulty circuit.

To describe the test generation process, we use $,/S, to
indicate that the fault free circuit is in state S; and that the faulty
circuit is in state S,. We use z,/z, to indicate that the fault free
circuit produces an output z; and that the faulty circuit produces
an output z,. A transition from state S to state P under input x,

producing an output z, is denoted by .S 5 P. A fault g stuck-at

a is denoted g/or.

3. A complete procedure

In this section we describe a complete and accurate two-step pro-
cedure to generate test sets that are not invalidated in the pres-
ence of the faults they leave undetected.

3.1. Background

The following procedures are used in this section. The fault
classification procedure from [2] allows us to classify every fault
as detectable or undetectable. We assume that every undetectable
fault will go undetected, even if a partial test for it exists. The
test generation procedure from [6], modified to allow fault injec-
tion using the mask M defined above, allows us to generate a test
for every detectable fault (the case where aborted faults exist is
treated in a similar way, and it is considered below). Given a
fault, the procedure of [6] generates a test sequence that distin-
guishes every initial state of the fault free circuit from every ini-
tial state of the faulty circuit. For this purpose, it considers sepa-
rately every pair of initial states of the fault free circuit and of
the faulty circuit. Initially, the test sequence T is empty. When
initial state S,/S, is considered, the test sequence T is first simu-
lated starting from S,/5,. If T distinguishes S, from S, the next
pair of initial states is considered. Otherwise, the final state
P,/P, reached when T is applied starting from §,/S, is recorded.
A test sequence T’ is generated starting from the final state
P\/P,, and T’ is concatenated to T. The test sequence 7~ for
P,/ P, is generated by exploring successors of P,/P,. During the
test generation process, if a fault f = gy/a, is considered in the
presence of a subset of faults F = {g,/ay, g./ay,- -, g/, }, then
M is set as follows for the faulty circuit. m; =¢a; for0< j<k
and m; = U for every other line.



If we omit from the test generation procedure described
above the part where an additional test sequence T” is computed
and added to T, we obtain a fault simulation procedure. Given a
test sequence T, the fault simulation procedure considers every
pair of states §,/S,, as above. If, for any initial state $,/8,, it
turns out that T does not distinguish S, from S, and additional
input vectors are needed, fault simulation stops, indicating that
the fault is not detected. If T distinguishes the faulty circuit from
the fault free circuit for every pair of initial states, then f is
detected by T. This observation applies to the test generation
procedure described in Section 3.3 as well. Thus, we can obtain
a fault simulation procedure simply by omitting the step where
an additional test sequence 77 is computed, and instead declaring
that the fault under consideration is not detected by the given
input sequence whenever a sequence 77 is required.

3.2. Generating subsets of undetectable fauits

In the first step of the test generation procedure, we generate the
subsets of faults under which the test set has to be valid (cf. Defi-
nition 1). Procedure 1 shown in Figure 1 is used for this pur-
pose. At an arbitrary stage of the procedure, we have subsets of
faults F'= {Fy, F|, Fy,---, F,}. Initially, we have F= [F,},
where Fy = ¢ (corresponding to the fault free circuit). For every
subset of faults F, € F, Procedure 1 considers the circuit CF
(C into which F; is injected). It finds the undetectable faults in
CP . say { fis for -, Sim; 1. It then defines a new subset of faults
FixU { f;) for every undetectable fault f;, 1 < j < m;. This pro-
cess continues until no additional subsets are created (no addi-
tional undetectable faults are found for any of the subsets of
faults generated).

Procedure 1: Generating subsets of faults by Definition 1

()  Set F={g¢}.
2) If all the subsets included in F have been considered, stop: Fis
the required set of fault subsets.

3) Select a subset F e F that has not been considered yet.

(4) For every fault f = g/o such that g/ € F forany f € {0,1}:
(a) Use the procedure of [2] to determine whether FA_J { [}

is detectable.

(b) If FAU {f} is undetectable, add it to F.

(5 Go to Step 2.

Figure 1: Procedure 1

The number of subsets of faults created by Procedure 1
cannot be determined based on the number of undetectable faults
in the original circuit alone. This is because certain detectable
faults become undetectable in the presence of undetectable
faults, increasing the number of subsets; and certain undetectable
faults become detectable in the presence of other undetectable
faults, reducing the number of subsets. The numbers of subsets
we found in small synchronous sequential circuits are shown in
Table 1. The circuits are MCNC finite-state machine bench-
marks. In the second column of Table 1 we show the number of
collapsed single stuck-at faults. In the third column of Table 1
we show the number of subsets of size one (the undetectable
faults in the original circuit). In the fourth column of Table 1 we
show the total number of subsets of faults that need to be consid-
ered. The total number of subsets includes the empty subset, cor-
responding to the original circuit. In the last column of Table 1
we show the size of the largest subset of faults generated by Pro-
cedure 1.
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Table 1: The number of fault subsets

subsets largest
circuit faults | sizel all subset
beecount 112 2 4 2
dks512 124 2 4 2
ex4 176 5 32 5
lion9 62 9 1476 11
trainll 104 4 100 8

3.3 Test generation

In this section, we describe a test generation procedure that pro-
duces test sets that are not invalidated in the presence of the sub-
sets of faults we computed in Section 3.2.

3.3.1 Preliminaries

The set of target faults for test generation is defined as follows.
Let F , be the set of all (collapsed) single stuck-at faults in the
original circuit. Let F = {Fy, F|,---, F¢} be the set of all sub-
sets of faults produced by Procedure 1. Our goal is to produce a
test set that detects every fault f; € F,,, in the presence of
every subset of faults F; € F,if f; is detectable in the presence
of F;. A target fault of the test generation procedure thus has the
form {f;}\UF;, where f; € F,,, and F; € F. The fault
{fi} U F is excluded from the list of target faults only if (1)
Sfi € F; (in this case, the fault is undetectable), or (2) f; = g/@
and g/ € F; (in this case, {g/a} U F, is undefined).

In the first part of the test generation procedure, we gener-
ate tests that are not invalidated in the presence of any subset of
faults in F. In other words, when we generate a test for a fault £,
the test is valid for every fault {f;}\U F;, where F; € F. In
the second part of the procedure, we generate tests that are not
invalidated in the presence of as many subsets of faults as possi-
ble. In the third part of the procedure, we generate tests for the
remaining target faults. Every part starts with simulation of the
test sequence generated in the previous part, followed by test
generation for the remaining faults. Theorem 2 of [2] guarantees
that it is always possible to extend a given test sequence to detect
a detectable fault. Thus, starting from the test sequence already
generated in previous steps does not limit our ability to detect
new faults. The three parts of the procedure are described next.
We use the following notation. Corresponding to a subset of
faults F; we define a subset of lines G; = {g: g/a € F;}. We also
define G =\ {G;: F; € F}.

3.3.2 Part 1 - using unspecified values on G

We start with an example to demonstrate how a test that is not
invalidated in the presence of any subset of faults in £ can be
generated for a fault f.

Example: Consider the circuit shown in Figure 2 with the set of
faults F, ., = {3/0,3/1,4/0,4/1,5/0,5/1,6/0,6/1}. Line 7 is a
primary output. Line 8 is a next state variable, and line 2 is its
present state variable. Procedure 1 produces the undetectable
subsets of faults shown in Table 2. We have G = {4, 5,6} (recall
that G is the unjon of all the lines included in any subset in F).
In the first part of the test generation process, we set
my = ms =mg = X. Here, X is an unspecified value that can be
either O or 1. During test generation, a line with m; = X is
assigned the value X in the faulty circuit. For illustration, we
generate a test for the fault 3/0 when lines 4, 5 and 6 are unspeci-
fied in the faulty circuit. In this case, M = [UUOXXXUU]. Con-
sidering initial state 0/0, the results of applying the input value 1



are shown in Figure 2(a). The next state is 1/X and the output is
0/0. The results of applying the input value 0 are a next state
0/X and an output value 0/0. Applying input values 0 or 1 in
state 0/X does not take us closer to fault detection. Applying the
input value 1 in state 1/X results in an output value 1/0 as shown
in Figure 2(b), and states 0/0 are distinguished by the input
sequence (1,1). Considering states 0/1, 1/1 and 1/0, it turns out
that the input sequence (1,1) is sufficient to distinguish these
states as well. Since we set all the lines in G to X, we ensure that
the test (1,1) for the fault 3/0 is not invalidated in the presence of
any of the fault subsets in F. O
Table 2: The fault subsets of the circuit of Figure 2

¢ {4/0} {4/0, 5/1} {4/1, 6/1}) {4/0, 5/1, 6/0})
{4/1} {4/0, 6/1} {5/1, 6/0} {4/0, 5/1, 6/1}
{5/1} {4/1,5/1} {5/1,6/1} {4/1, 5/1, 6/0}
{6/1} {4/1, 6/0} {4/1, 5/1, 6/1}

11/1 31/0
70/0
50/X |ANDl——
4 1/X
R 1/X
200 | 60/X | OR —
(a) Input value 1 in state 0/0
1Yl 310
7 1/0
51/X [ANDI——
U 1/X
R 1/X
21/X | 6 /X | OR f——

(b) Input value 1 in state 1/X

Figure 2: Test generation using unspecified values

In general, in Part 1 of the test generation procedure we
perform test generation for every fault f; = g//e; € F;, such
that g; €G. We use for this purpose a mask where m; = a;,
m; = X for every g; € G, and m, = U for every other line. A
line with m; = X is assigned an unspecified value X in the faulty
circuit, regardless of the value it would have assumed if we had
used conventional logic simulation to determine its value. If a
test for f; is found, we mark every target fault {f;}\U F;, for
every F; € F, as detected.

The numbers of target faults, the numbers of target faults
detected in Part 1 and the test length after Part 1 of the test gen-
eration procedure are shown in Table 3 under columns "target"
and "Part 1" subcolumns "det" and "len", respectively. The cir-
cuits are the ones considered in Table 1. It can be seen that large
numbers of faults are detected in Part 1. For example, for lion9,
59,040 target faults are detected by explicitly considering only
IF, =62 faults.

§.5.4a

Table 3: Test generation results for the circuits of Table 1

Part 1 Part 2 Part 3
circuit target det len det len det len
beecount 440 416 48 428 51 440 51
dks512 488 144 27 236 74 488 74
ex4 5472 1952 62 2275 157 5472 157
lion9 74904 | 59040 19 | 62727 24 | 74904 27
trainl1 9680 4500 21 5050 52 9680 52
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3.3.3 Part 2 - using unspecified values on {G}

A fault f may not be detected in Part | because of the large set
of unspecified values we fix in the faulty circuit. In Part 2, we
use smaller subsets of unspecified values. We consider only tar-
get faults that were left undetected after Part 1.

We consider individual subsets F;. To generate tests
which are valid in the presence of as many subsets of faults as
possible, we assign to the lines in G; unspecified values in the
faulty circuit. To generate a test for a fault f; = g;/a;, we use the
following mask for the faulty circuit. m; = a;, m; = X for every
gx € G;, and m, = U for every other line. The fault f; is first
simulated under the test sequence already generated in Part 1,
using this mask. It is possible that the fault is detected, however,
this was not observed before because of the unspecified values
used in Part 1. If the fault is not detected, an attempt is made to
extend the test sequence to detect it. If f; is detected, then the
target faults {f;}\U F, are detected for every k such that
G, < G;. For example, let us consider the subset of faults F; =
{5/1, 6/1} in Table 2 and the fault 3/0. The corresponding mask
is M =[UUOUXXUU]. If a test is generated for the fault 3/0
under F;, then the same test detects the fault 3/0 under the sub-
sets {5/1, 6/0}, {5/1,6/1}, {5/1} and {6/1}.

To maximize the number of target faults detected by each
test, we start with the largest sets G;, and consider a smaller sub-
set G, only if there exist target faults involving F that are not
detected yet.

The results of applying Part 1 followed by Part 2 to the
circuits of Table 1 are shown in Table 3 under column "Part 2"

3.3.4 Part 3 - using specified values

In Part 3 of the test generation procedure we consider individual
subsets F; and use the faulty values for each subset of faults sep-
arately. As before, we consider only target faults that were left
undetected after Parts 1 and 2.

To generate tests which are valid in the presence of Fj,
we assign to the lines in G; their faulty values in the faulty cir-
cuit. To generate a test for a fault f; = g;/@;, we use the follow-
ing mask. m; = a;, m; =, for every gi /e, € G, and m; =U
for every other line. For example, let us consider the subset of
faults F; = {4/1, 5/1, 6/1} in Table 2 and the fault 3/0. The cor-
responding mask is M = [UUO111UU]. The fault f; is first sim-
ulated under the test sequence already generated, using this
mask. It is possible that the fault is detected, however, this was
not observed before because of the unspecified values used. If
the fault is not detected, an attempt is made to extend the test
sequence to detect f;. If f; is detected, then only the target fault
{f;}\U F, is detected. The results of applying Part 3 following
Parts 1 and 2 are shown in Table 3 under column "Part 3".

3.3.5 Experimental results

The complete test generation procedure is given in Figure 3 as
Procedure 2. The results of applying Procedure 2 to the circuits
of Table 1 are shown in Table 3. Many of the faults are detected
in Part 1, by tests which are valid in the presence of any unde-
tectable subset of faults. In many cases, simulation is sufficient
in Parts 2 and 3 to show that a fault is detected by the test
sequence already generated in Part 1. Only a small number of
faults require test generation in Parts 2 and 3. The fault coverage
after Part 3 is always 100%.



Procedure 2: Test generation
(€3 Apply Procedure I to generate the subsets of undetectable faults.
) Apply Part 1 of the test generation procedure.

3) Apply Part 2 of the test generation procedure starting from the
test sequence generated in Part 1.
4 Apply Part 3 of the test generation procedure starting from the
test sequence generated in Part 2.
Figure 3: Procedure 2
3.3.6 Extension

As an intermediate step between Parts 2 and 3 of the procedure,
it is possible to consider multiple subsets, as follows. Consider
two subsets of faults F,={g/a,, g/as, -, g/} and
Fy={g/a;, glas, -, g /e, } such that m < k. Suppose we
can generate a test for a target fault {f}\ U F,, where
Gl = Oopats 82 = Apyns -+ 8 = & 1n the fault free circuit at
all time units. Then the same test detects the target fault
{f} U F,. The reason for this is that by setting g,,,;,- -+, g in
the fault free circuit to their faulty values, we ensure that the
faults in F, — F, are never activated. Under this condition, the
test that detects f in the presence of F also detects f in the
presence of F,.

This observation is most effective in detecting a large
number of target faults when F, is large and F, is small. If
F, = ¢, then the test is valid in the presence of any subset of F.
A procedure to take advantage of this observation should there-
fore consider subsets F, in decreasing order of size and their
subsets F, in increasing order of size.

4. Heuristics

The main limitation of Procedure 2 is that the number of subsets
of faults that need to be considered is, in the worst case, expo-
nential in the number of faults. When the number of undetectable
faults is large, the number of subsets of faults that need to be
considered may prevent the application of the procedure. We
propose in this section several approximations to reduce the
number of subsets that need to be considered. We first study
them separately, and then use them together.

We first reduce the number of subsets generated by Proce-
dure 1 by imposing an upper bound on the sizes of the subsets it
generates. The rationale for this approximation is as follows. As
discussed above, our model accommodates multiple faults only
if they can occur one after the other without being detected. Con-
sider a sequence of single stuck-at faults occurring in a circuit
one after the other. If a fault detected by our test set ever occurs,
then according to our assumptions, it will be detected when the
test set is applied next. Given that most of the target faults are
detectable, the likelihood of a large number of undetectable
faults occurring in sequence, without a detectable fault ever
occurring in between, goes to zero as the number of faults in the
sequence increases. A test set that remains valid in the presence
of a small number of undetectable faults may thus be sufficient
to overcome the test invalidation problem in practice. To demon-
strate the effects of limiting the subset size, we applied Proce-
dure 1 with an upper bound of 2 on the sizes of the fault subsets.
We then applied Procedure 2 to the resulting subsets. The results
are shown in Table 4. In the second column of the table we show
the number of fault subsets of size < 2 generated by Procedure 1.
In the third column we show the number of target faults based on
the subsets generated. In the following columns we show the
number of target faults detected and the test length after each
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part of Procedure 2 is applied using only subsets of size < 2. In
the last column of the table we give the coverage of the test
sequences described in the table, when all subsets of faults, of
all sizes, are considered. In parentheses we repeat the number of
target faults detected in Table 3, when all subsets are considered.
It can be seen that test invalidation may occur if more than two
undetected faults are present. This happens for lion9, where
74,868 of 74,904 target faults are detected when test sequences
that were generated for bounded subsets of faults are applied to
all subsets of faults. However, subsets of size three or more are
not likely to occur.
Table 4: Test generation with bounded subset sizes < 2

Part 1 Part 2 Part 3 coverage
circuit |subs targ | det len| det len| det len| all subsets
beecount| 4 440 416 48| 428 51| 440 51| 440 (440)
dk512 4 A488| 144 27| 236 74| 488 74| 488  (488)
ex4 16 2736 976 62| 1279 157 2736 157| 5472 (5472)
lion9 48 2511] 1920 19] 2310 24| 2511 24|74868 (74904)
trainll 15 1476 675 21| 990 52| 1476 52| 9680 (9680)

Observing that most of the faults are detected by the test
sequence generated in Part 1 of the test generation procedure, we
propose next an approximation that does not use the subsets of
faults produced by Procedure 1 at all during test generation. Pro-
cedure 3 shown in Figure 4 is used, as explained below.

Procedure 3: An approximate test generation procedure
n Find the set of undetectable faults in the original circuit. Let this

setbe Fper-

2) Generate a test sequence T by applying Part 1 of Procedure 2, us-
ing Gund?t-

3) Starting from T, apply Part 3 of Procedure 2, injecting single

stuck-at faults only into the fault free circuit.

Figure 4: Procedure 3

In Procedure 3, we replace G by G,,.,. Part 1 of Proce-
dure 2 is applied only to G,,,,,. If new faults become unde-
tectable as faults from F,,,,, are injected, they are ignored in
Procedure 3. The resulting test sequence is then complemented
in Step 3 by considering the original circuit and generating tests
for the remaining single faults.

To check the effectiveness of Procedure 3, we applied it to
the circuits of Table 1. We then simulated the resulting test
sequences on the complete sets of target faults that take into
account all the sets of undetectable faults produced by Procedure
1 (with unlimited sizes). The results are given in Table 3, as fol-
lows. Under column "accurate” of Table 5 we repeat the number
of detected target faults and the test length from Table 3. Under
column "approximate" we give the number of faults detected
using Procedure 3 and the corresponding test length. It can be
seen that some loss of fault coverage occurs for lion9, where
74,868 of 74,904 target faults are detected, and for trainll,
where 9,670 of 9,680 target faults are detected. This can be over-
come by performing test generation for the remaining target
faults after fault simulation. Note also that the test length for the
other circuits never increased by Procedure 3, and even
decreased in the case of ex4.

Combining the information derived from the experiments
above, we propose the following procedure. Due to the low
probability of a long sequence of undetectable faults occurring in
the circuit, we limit the subset sizes to two. In addition to the low
probability of having subsets of size larger than two, Table 4
shows that the loss of fault coverage compared to consideration



Table 5: Test generation results by Procedure 3

accurate approximate
circuit det len det len
beecount 440 51 440 51
dk512 488 74 488 74
ex4 5472 157 5472 149
lion9 74904 27 | 74868 23
trainl 1 9680 52 9670 40

of all subsets of faults is low, and does not justify the high com-
plexity of deriving all subsets of faults. We generate a test
sequence using Procedure 3 that was shown to achieve high fault
coverage without considering a large number of subsets. In this
case, Procedure 3 is applied only to subsets of size < 2. We then
simulate the test sequence using all target faults based on subsets
of size < 2. The results are reported in Table 6 for the circuits
considered above and for additional circuits. In column "faults”
of Table 6 we show the total number of single stuck-at faults and
the number of undetectable faults. The number of target faults is
given next. In Phase 1, test generation is done with the lines in
G unaes DEing unspecified. In Phase 2, test generation is done only
for the fault free circuit into which each single stuck-at fault is
injected. In addition, each target fault is simulated in the pres-
ence of each subset of undetectable faults of size < 2 using speci-
fied faulty values. It can be seen that the fault coverage after
Phase 2 is 100% in 7 of the 11 circuits considered. When the
fault coverage achieved by Procedure 3 is significantly lower
than 100%, it is possible to generate tests for the remaining tar-
get faults, using the test generation procedure described in Sec-
tion 3, which is guaranteed to achieve 100% fault coverage.
Table 6: Procedure 3 with subsets of size <2

faults Phase | Phase 2
circuit total  undet target det len det len
bbara 130 8 5300 2592 81 5262 129
bbsse 235 3 1414 1284 120 1410 199
beecount 110 2 440 416 48 440 51
cse 355 2 1772 1304 240 1772 266
dk512 122 2 488 144 27 488 74
ex4 171 S 2736 976 62 2736 149
ex$ 138 14 14490 | 14490 63 | 14490 63
ex7 149 il 11347 792 13 | 11326 72
lion9 53 9 2511 1800 19 2511 23
mark] 197 7 7201 2117 70 7201 107
trainil 100 4 1476 495 21 1473 40

Finally, in this work, the test generation procedure of [6]
is used. To apply Procedure 3 to large circuits, it is possible to
use the procedure of [8], or to use any test generation procedure
such as [9] that uses three-value logic under the single observa-
tion time approach [2].

5. A combined procedure

Until now, we kept the generation of the fault subsets and the
generation of test sequences separate. This required that the
faults that remain undetected would be determined in a prepro-
cessing step. In practice, undetected faults may be found during
test generation. Procedure 4 given in Figure 5 combines subset
generation with test sequence generation.

6. Concluding remarks

We considered the problem of generating tests that remain valid
in the presence of undetected faults. We presented a procedure
to enumerate all the relevant subsets of faults that may occur in a

25

Procedure 4: Combined fault subset and test generation
(1)  Set F={¢}), Fipy = (#}, and T =9. Let F,,, contain all col-
lapsed single stuck-at faults.

(2)  Forevery F € Fuyy:
(a) For every fault f =g/a € F,, such that g/f &€F for
B € {0,1}:
1) Extend T to detect f in the presence of F.
(i) If f cannot be detected, add FUJ {f} to F and
to Fmrg‘
(b) Remove F from Fg,.
3) If Fyype = ¢ or the sizes of the sets in Fury exceed a predeter-
mined bound, stop: T is the required test sequence.
4) Let F,, contain all collapsed single stuck-at faults.
5) Set G,,,,g ={g: gla € F for some a and some F € [7,(,,&, }
(6) For every fault f = g/a € F,,suchthat g é(;‘,(,,g:
(a) Extend T to detect f when the lines in G,‘,,g are set to
X.
(b) If f is detected, remove it from F g ,.
(€3] Go to Step 2.

Figure 5: Procedure 4

circuit without being detected. We then presented a test genera-
tion procedure to generate tests that remain valid in the presence
of these subsets of undetected faults. In the first two parts of the
procedure, multiple subsets of undetectable faults were consid-
ered simultaneously. The faults that remained undetected were
then targeted individually. Several approximate procedures were
also explored, and resulted in a procedure where only bounded
subsets of faults are considered. Direct test generation was ini-
tially done only for two subsets of faults, complemented by test
generation for the remaining faults.
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