
Acceleration of Behavioral Simulation on
 Simulation Specific Machines

Minoru Shoji, Fumiyasu Hirose, Shintaro Shimogori, Satoshi Kowatari, Hiroshi Nagai

CAD group, FUJITSU LIMITED

4-1-1, KAMIKODANAKA NAKAHARA-KU, KAWASAKI, 211 JAPAN

E-mail: shoji@fd.cad.fujitsu.co.jp

Abstract
 Behavioral simulation is faster than gate-level logic simu-

lation, however, the simulation speed is too slow for large

systems. Simulation specific machines accelerated simula-

tion by parallel processing. We developed the method to

extract parallelism from behavioral descriptions for fast

simulation utilizing these machines.

 We evaluated our methods utilizing CAD accelerator

TP5000. By the extraction of the parallelism the simulation

speed is accelerated about 7 times.

1 Introduction

 In order to quickly develop a large and complex digital

system, we need logic verification at as early design stages

possible. Therefore, we describe the design in high-level

behavioral descriptions by languages as VHDL and employ

behavioral simulation. Behavioral simulation is about 10 to

100 times faster than gate level one, however, the simula-

tion speed is still slow for a large scale design.

 For the acceleration of behavioral simulation, we must

employ simulation specific machines composed of a num-

ber of processors that simulate a part of the description in

parallel. These machines accelerate simulation utilizing the

parallelism of gate-level simulation models. If we utilize

these machines for behavioral simulations, the simulation

speed is limited by the parallelism of the description. High-

level behavioral descriptions consist of a number of sequen-

tial statements. The parallelism of those descriptions is not

high as that of the gate-level descriptions. For the speeding

up of simulation by utilizing simulation machines, we must

parallelize those behavioral descriptions.

 It is the purpose of this paper to present methods to

parallelize high-level behavioral descriptions. Experimen-

tal results showed that the simulation speed utilizing a simu-

lation specific machine is accelerated 7 times by our meth-

ods.

2 Simulation model and the problem

 To accelerate logic-simulation, we employed logic simu-

lation specific machines[1][2]. These machines are com-

posed of many processors, simulating gate-level simulation

models in parallel. The speeding-up by these machines was

very high[3][4] when simulating gate-level descriptions. If

we utilize these machines for behavioral simulation, we must

convert behavioral descriptions to the models suitable for

these machines. In this section, we describe the simulation

model for high-level behavioral descriptions, and the prob-

lem of the model for speeding-up of simulation.

2.1 Simulation model

 The simulation models for behavioral descriptions are di-

vided into concurrent models and sequential models. Con-

current signal assignment statements of VHDL are converted

ED&TC ’97 on CD-ROM
Permission to make digital/hard copy of part or all of this work for personal or classroom use if granted without fee provided that copies are not made of distributed for fee or
commercial advantage, the copyright notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.1997 ACM/0-89791-849-5/97/0003/$3.50

to concurrent simulation models. Concurrent simulation

models are equivalent to the gate-level simulation models.

Each sequential model corresponds to a sequence of state-

ments as process statement of VHDL. The models consist

of operators and the controllers that control the execution

order of operators. The operators and controllers consist of

gate-level simulation models. To realize this model, we split

the function of event of event-driven simulation algorithm.

The first one is value delivery. The second one is instruc-

tion to start the evaluations of fan-out gates. We call the

event that has only the first function as “update-only event”,

and the event that has only the second function as “evalu-

ate-only”. Figure 1 shows an example of VHDL sequential

statements and the corresponding simulation models. Each

rectangle shown in figure 1(b) denotes the ‘block’ corre-

sponds to an operator of the statement. Line connecting

blocks denotes connections of events. Each block consists

of an evaluation-part and an evaluation-control-part. When

the evaluation-control-part receives an “evaluate-only

event” from the previous block through a broken line, then

the result of the operation is evaluated by the evaluation-

part. The result is fed to other blocks through dotted lines

by “update-only event”. The blocks labeled ‘if_true’ or

‘if_false’ send an event only if the input value is true or

false respectively.

2.2 Problem

 Simulation specific machines accelerated simulation uti-

lizing a number of processors. Each processor simulates a

part of circuit concurrently. For the gate-level simulation

models, each gate is simulated in parallel in each processor.

If the time to simulate a gate is unit-time, each processor

simulates each part in parallel. It is unnecessary to wait the

end of the simulation by other processors.

 The delta-delay of VHDL is defined as the number of unit-

time between the start of process statements and the end of

simulation of all process statements. For the gate-level de-

scription, a delta-delay is simulated in a unit-time. How-

ever, for the behavioral simulation, the time for simulation

of a delta-delay is determined by the longest process state-

ment that started simulation. For the processor that simu-

lates shorter model, the time after the end of its simulation

is the waste of time. The parallelism factor is reduced to

one for the duration. To utilize the parallelism of simulation

specific machines for the fast simulation, the length of each

process statement model should be minimized.

 Behavioral descriptions consist of many sequential state-

ments because of the ease of writing algorithms or proto-

cols. Therefore, the problem of long process statements

arises during behavioral simulations. In the following sec-

tion, we describe the methods to minimize the length of

statements and extract maximum parallelism from behav-

ioral descriptions.

3 Increasing parallelism factor

 We developed following three methods to increase paral-

lelism factor, (1) extraction of independent parts from de-

scriptions, (2) conversion to concurrent models, (3) extrac-

tion of parallel parts from descriptions.

3.1 Independent parts extraction

 There are descriptions that contain parts that can be simu-

lated independently. The behavioral descriptions written in

VHDL contain many those parts. Figure 2 shows a part of

VHDL process statement. The part A of the example con-

if A > B then
 C := D and E;
else
 G := D or F;
end if;

(a) an example of VHDL description
for sequential statement

(b) simulation model for (a)

Figure 1 simulation model for sequential statements

>

if_false

and

or

A
B

D C

E

F G

start-
event

evaluate-only

update-only

and

evaluation-
control-part

evaluation-part
block

if_true

tains only one conditional branch (if statement) and a num-

ber of signal assignment statements within the conditional

branch. VHDL defines that the values assigned to signals

become valid after delta delay. In this example, the value of

signal assigned in part A becomes valid at the next simula-

tion of the process statement. Therefore, there is no depen-

dencies between part A and part B. This means that we can

simulate part A and part B in parallel. In this example, part

B consists of three statements having no dependencies each

other. These statements can be simulated in parallel.

 The study of real descriptions showed that the longer mod-

els usually contain loop statements. Circuit designers al-

ways use loop statements for the descriptions of operations

between array objects. In most cases, we can determine the

number of loop iterations. We utilized ‘loop-unrolling and

constant propagation’ method to reduce the length of se-

quential simulation models. Figure 3 shows an example of

the application of this method. Figure 3(a) shows a part of a

description with a loop statement. Each rectangle shown in

the figure denotes a block defined as figure 1. Line denotes

the connection of the events. The connections of the values

are omitted in this figure. The simulation of the model shown

in figure 3(b) requires total number of 19 blocks evaluated.

By the application of this method, the length of the model

becomes 19 to 4.

 There are cases where the size of the simulation model

increases by this method. For the object code of conven-

tional computers, large code size increases the probability

of miss hit of instruction cache. This causes the decrease of

execution speed. However, simulation speed of simulation

specific machine is determined by the number of evalua-

tions and the length of

descriptions. This method

reduces the number of

evaluat ions and the

length of the description.

Therefore, the simulation

speed is accelerated.

 Furthermore, in many

cases, the relations be-

tween the statements dis-

appear after the applica-

tion of this method. Fig-

ure 3(c) shows that there are no relations between each state-

ment. Therefore, we can split the description into 4 small

descriptions.

3.2 Conversion to concurrent models

 Because simulation specific machines are designed to ac-

celerate gate-level simulation, the gate-level simulation

models are suitable for those machines. If we can convert

sequential descriptions into gate-level simulation models,

the simulation speed is accelerated.

 If a sequential description satisfies some conditions, we

can convert the corresponding simulation model to a num-

ber of concurrent simulation models. The conditions are

described below.

(1) There is no loop statement or the variable/signal depen-

dency that forms a loop.

(2) The statement has sensitivity list and all the signals read

from the process statement is declared in the sensitivity list.

(3) There is no variable that should be stored after the end

of the simulation of process statement.

 Figure 4 shows an example of VHDL process statement

and the corresponding sequential and concurrent models.

Figure 4(b) shows the blocks and the event connections. In

process
begin
.......
if A = '0' then
 S <= SOLD;
 T <= TOLD;
end if;

U := S and T;
V := S or T;
W := S xor T;
.......
end process;

part A

part B

Figure 2 dependencies of
signals and variables

for I in 0 to 3 loop
 D(I) <= A and B(I);
end loop;

I := 0

D(I) <=
A and B(I)

I := I + 1

I <= 3

if_true if_false

to the next of the
 loop statement

D(0) <= A and B(0)

to the next of the
 loop statement

(a) a VHDL example

(b) original simulation
model

Figure 3 an example of loop-unrolling and
constant propagation

D(1) <= A and B(1)

D(2) <= A and B(2)

D(3) <= A and B(3)

(c) after loop-unrolling and
constant propagation

this case, we can convert this model to the concurrent simu-

lation model shown in figure 4(c). A circle shown in the

figure denotes a concurrent simulation model for each op-

eration This model corresponds the evaluation part of fig-

ure 1(b) except that it starts the evaluation only when any

input values are changed. A line connecting them denotes

the data flow that may start other operations. The original

description is simulated every time when at least one of the

input signals changed the values. If we utilize event-driven

simulation algorithm, we don’t have to simulate the part

whose input values have not changed. Furthermore, con-

current models do not need any evaluation-control-part for

sequential models, which reduces the number of evaluation

for the part. This increases the simulation speed furthermore.

3.3 Extraction of parallel parts

 Figure 5(a) shows another example of VHDL statements.

In this case we must consider the activation and suspension

statements that is ‘wait’ statement of VHDL. Because the

description contains wait statements, we can not utilize the

methods described in previous sections. In this section, we

describe the method that accelerates simulation of those

descriptions.

 If the simulation of the statements reached to the wait state-

ment, the simulation of the process statement is suspended

until the condition written in the wait statement becomes

true. In this case, we must split the process statement to a

number of parts starting from the wait statements. During

the simulation, only one part is simulated. Therefore the

dependencies of variables are removed at each wait state-

ment. In this example, the variable U is assigned new value

in part A, and the value is used in part B. This dependency

is ignored because there is a wait statement between them.

 After this partitioning, we can find dependencies between

statements within each part. The part A of figure 5(a) con-

sists of 3 statements. There is no dependency between the

second and the third statement. Therefore, we can simulate

those statements in parallel. Figure 5(b) shows the

parallelized simulation model for the part A of figure 5(a).

 Furthermore, we can apply algorithms utilized by the com-

pilers for super scalar machines, VLIW machines, or vector

machines[7][10] for the extraction of parts simulated in par-

allel.

4 Experimental results

 We experimented the methods described before using unit-

delay event-driven VHDL simulator running on CAD ac-

celerator TP5000. First we describe the specifications of

TP5000. Next we show the experimental results.

4.1 TP5000

 TP5000 accelerates gate-level simulation at about 100 times

than software simulators. It consists of a number of proces-

sor groups, each of which contains 15 processors. Each pro-

cessor has micro code memory to store the executable code

P1:process(C, S, T)
 variable X : bit;
begin
 T <= S or C;
 X := not T;
 U <= X and S;
end process;

(a) example VHDL
statement

Figure 4 an example of conversion to
concurrent model

U <= X and S

sense (C,S,T)

(b) sequential
simulation model

T <= S or C

X := not T

C
S

T

X

U

(c) concurrent
simulation model

or

not

and

part A

part B

Figure 5 an example of VHDL with wait statement

(a) a part of VHDL description
with wait statements

wait until CLK'event
and CLK='1'

V := D and E U := F or W

to the next statement
of partA

(b) parallelized simulation
model of part A

wait until CLK'event
and CLK = '1';
V := D and E;
U := F or W;

wait until S = '0';
W := U and T;

for the processor. They also have fast memory to store a

part of simulation models. The processor group forms a pipe-

line realizing event-driven unit-delay logic simulator. Each

pipe-line simulates a part of simulation models concurrently.

4.2 Results

 We used the description of two commercial circuit sys-

tems for the experimentation. The first system (circuit sys-

tem A) consists of descriptions of a processor and a number

of pseudo circuit for the simulation. The descriptions con-

sist of 106k VHDL description steps and contain 936 pro-

cess statements. The second system (circuit system B) con-

sists of descriptions of a processor. The descriptions consist

of 40k VHDL description steps and contain 172 process

statements.

 Table 1 shows the number of unit-time spent for each delta-

delay of the descriptions, and the simulation speed ratio of

(a) original descriptions, (b) apply methods described in

section 3.1 and 3.2, and (c) apply all methods. The maxi-

mum number of unit-time is the largest number of unit-time

for a delta-delay during the simulation. The simulation speed

is the ratio to the original description. By the application of

our methods, the average number of unit-time is reduced to

15% of the original. The simulation speed becomes 6.7 times

faster than that of the original descriptions. For the circuit

system B, the average number of unit-time is reduced to

6%. The simulation speed for circuit system B becomes 7.8

times faster. By those results, our method accelerates simu-

lation at about 7 times.

5 Conclusions

 We showed that speeding-up of the behavioral simulation

utilizing simulation specific machines is restricted by the

length of statements. We developed the methods to reduce

the length of each sequential simulation model and to con-

vert sequential simulation models to concurrent simulation

models for maximizing the parallelism of the simulation

machines. The experimental results using real systems de-

scriptions showed that the methods accelerated simulation

at about 7 times.

References

[1] T. Blank, “A survey of hardware accelerators used in computer

aided design,” IEEE Design and Test of Computers, 1, pp.21-39,

1984.

[2] F. Hirose, “Simulation Processor SP,” Proc. of IEEE Interna-

tional Conference on Computer Aided Design, pp. 484-487, 1987.

[3] S.Shimogori, K.Takayama, H.Matsuoka, “TP5000:

Reconfigurable Hardware Accelerator for CAD Applications,”

FUJITSU Sci. Tech. J., 31, 2, pp.152-160, 1995.

[4] F. Hirose, “Performance Evaluation of an Event-Driven Simu-

lation Machine,” Proc. of 29th Design Automation Conference,

pp. 428-431, 1992.

[5] M. Shoji, and F. Hirose, “High-Level VHDL Simulator Run-

ning on Logic Simulation Machines,” Proc. of VHDL International

Users’ Forum Spring 1993, pp. 145-154, 1993.

[6] M. Shoji, F. Hirose, and K. Takayama, “VHDL compiler of

behavioral descriptions for ultrahigh-speed simulation,” Proc. 2nd

Asian Pacific Conference on Hardware Description Languages,

pp.85-88, 1994.

[7] A.V.Aho, R.Sethi, and J.D.Ullman, “Compilers,” Addison-

Wesley Publishers, 1986.

[8] “IEEE Standard VHDL Language Reference Manual,” IEEE

Std. 1076-1987. IEEE, New York, NY, 1988

[9] R.Lipsett, C.Schaefer, and C.Ussery, “VHDL: Hardware De-

scription and Design,” Kluwer Academic Publishers, Norwell, MA,

1989.

[10] J.L.Hennessy and D.A.Patterson, ”Computer Architecture: A

Quantitative Approach,” Morgan Kaufman Publishers, San Mateo,

CA, 1990.

stnemirepxefostluser1elbaT

metsystiucriC A B

forebmuN
.tmtsssecorp

639 271

noitalumiS
ledom

)a()b()c()a()b()c(

forebmun.evA
emit-tinu

4.141 75.04 21.12 4.15 1.3 0.3

forebmun.xaM
emit-tinu

9024 9024 5914 9148 725 68

noitalumiS
deeps

1 5.4 7.6 1 5.7 8.7

	CD-ROM Home Page
	EDTC97
	Front Matter
	Table of Contents
	Session Index
	Author Index

