
“Permission to make digital/hard copy of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage, the copyright
notice, the title of the publication and its date appear, and notice is given
that copying is by permission of ACM, Inc. To copy otherwise, to repub-
lish, to post on servers or to redistribute to lists, requires prior specific per-
mission and/or a fee.”

DAC 97, Anaheim, California
(c) 1997 ACM 0-89791-920-3/97/06 ..$3.50

ABSTRACT - The important step towards a comprehensive
CAD framework is the development of a suitable, complete
design model on which the design system’s components are
based. To date, we generally find “island” solutions for differ-
ent aspects as data and process management, but in future, we
need more and more integrated solutions. Only the integration
gives us the traceability we need for design planning, to gener-
ate parts of the design tool’s code automatically, etc.

This paper describes how a suitable Design Task Model can
be used to link the Product and Flow Models which are cur-
rently separated in most frameworks. Using the PLAYOUT
Design Model as an example, we show how the Product, the
Task, and the Flow Models may fit together, and we describe a
modeling environment that guarantees the development of
consistent, integrated models.

I. INTRODUCTION

While early design environments were built-up of a more or
less large set of stand-alone tools, today’s ECAD research is
increasingly involved in solving the problems of design tool inte-
gration and managing design processes. Important topics of CAD
framework research are data and process management (e.g. [4],
[5], [10], [11]) as well as the support of implementing the software
of new design tools more easily [2].

The basis for solving all these problems is an adequate design
model describing all design aspects. Based on such a model, we
can develop a CAD framework including data and process man-
agement components which are completely integrated.

An overview of a comprehensive design model can be found in
[4] and [9]. The second paper describes a model that is partitioned
into following partial models:

TheProduct Model describes all design objects which are gen-
erated during the design process or during design planning.

TheProcess Model describes all dynamic aspects of the design
including everything from planning the overall design process
down to controlling the individual tools. Process management is
typically divided into flow management and task management,
described by two submodels. TheFlow Model describes all possi-
ble sequences of design steps/activities for a given design method-
ology. It is the basis of planning the design process. TheTask
Model describes all information necessary to automatically start

design tools. It considers input and output data, the path names of
the tools’ object code, necessary environment variables, format
conversions, etc.

The Environment Model describes the design infrastructure.
This includes the description of designers and design teams as well
as the available hardware and software resources.

We can find more or less promising approaches for all these par-
tial models in the literature (e.g. [4], [5], [6], [11], 14]). Although
many approaches consider either data management or flow man-
agement in detail and neglect the other aspects, the partial models
are not independent. Two of the few CAD frameworks which con-
sider data and process management equally are the NELSIS and
the PLAYOUT frameworks [1], [18].

There are several reasons, why it is necessary to keep all partial
models consistent and why they have to be integrated. One reason
is design planning which is based on both, the Flow and the Prod-
uct Model. Another reason are software generators which are able
to automatically generate the software of the design tools from the
design model to a large extend [2]. Section IV describes the impor-
tance of an integrated design model for both examples in more
detail. However, there exist many more reasons for the model inte-
gration.

In this paper, we focus on the derivation of a Task Model from a
given Product Model and of a Flow Model from that Task Model.
The automatic derivation guarantees the consistency of all models.
The Task Model, often neglected in the past, is the link between
the two other models and will be described in more detail.

The remainder of this paper is partitioned as follows. Section II
gives a short overview of the partial models of the PLAYOUT
design model and some related approaches. Section III then
describes how we integrate these partial models to guarantee the
necessary traceability. Finally, Section IV states the advantages of
the model integration, and Section V concludes the paper.

II. A COMPREHENSIVE DESIGN MODEL

This section gives a short overview of the modeling notations
used by the PLAYOUT framework as well as of some related
approaches from literature. Of course, since there exist so many
approaches, the list cannot be complete.

For data management we developed an object-oriented Product
Model [14], [15] that was extensively tested by performing many
designs. For modeling the design flow, we favor an extended, hier-
archical Petri net model. The design tools and tasks are described
by an own, set-oriented notation which will be explained below.
The Environment Model will not be considered in this paper
because of two reasons: first, these aspects are not fully covered by
the PLAYOUT framework until now, and second, the Environment
Model would not add new aspects to this paper. With respect to the
model integration, it can be regarded similarly as the Task Model.
Nevertheless, the Environment Model is still an important and
interesting research topic.

Modeling Design Tasks and Tools
- The Link between Product and Flow Model -

Bernd Schürmann Joachim Altmeyer
University of Kaiserslautern

D-67653 Kaiserslautern, Germany

A. Product Model

Beginning with developing the first data exchange formats,
much work has already been done for modeling the design objects
(e.g. [5], [10], [18], [19]). These include micro data like pins and
netlists as well as meta data which have to cover aspects like the
decomposition hierarchy, type and version concept, configuration,
requirement formulation, and design traces. Here, we do not want
to describe any Product Model in detail because we are interested
only in the model notation. Since the Product Model describes the
structural relationships among the various data object, a graphical
representation of these relationships is suitable. This approach is
used in all cases we know.

We use an Extended Entity-Relationship (EER) model which -
as we believe - describes the design objects and their relations
best. Figure 1 shows an example of such an EER model. In addi-
tion, the figure also shows our graphical model editor. Besides the
elements of the standard ER model, our editor supports inheritance
(by an is-a relation) and aggregation (by a part-of relation). It was
our goal to keep the number of basic modeling elements as small
as possible without reducing the expressiveness of the model.
Using the few elements shown in figure 1, we are able to describe
all of our design data.

B. Process Model

Two different approaches exist for controlling the design pro-
cess. The first approach, which was generally implemented with
the early design systems, istool-based. Here, the designer is com-
pletely responsible for his design without having computer support
for supervising the design process. This approach is not suitable
for complex designs. With increasing design complexity, com-
puter-aided design process management became necessary which
led totask-based systems (e.g. [1], [7], [11], [17]).

Figure 2 gives an overview of the task-based approach. The ker-
nel of a design system is a computer-aided process management
component. To date, it is common sense to divide the process man-
agement into a flow management component (planning and super-
vising the overall design process without considering the
individual design steps in detail) and into a task management com-
ponent (supervising the individual tasks or tools).

The flow management receives the data determining the current
design state from the design database. For a new design step it sig-
nals the task management which supervises each design step indi-
vidually.

Currently, the best solution for describing all necessary parame-
ters for executing a design tool (path name, environment variables,

Fig. 1. EER schema editor

etc.) is any kind of template. Providing the tools with design data
needs to describe the necessary input and output data. Obviously,
this aspect of the Task Model has to be consistent with the Product
Model used by the framework. Although it seems to be reasonable
to extend the EER model by further information, we favor a data-
base approach similar to SQL as we will show below. Before that
we present typical process management approaches.
• DECOL is the description language of the OASIS1 process man-

agement [13]. Similar to a UNIXmake file, a DECOL file con-
sists of a set of rules which are used for controlling individual
design steps. The file is interpreted by the process manager. The
major disadvantage of the OASIS framework is the missing
Product Model.

• The task management ofUlysses [7] is integrated into a real
CAD framework. The Task Model is interpreted by a blackboard
architecture instead of a fixed inference mechanism. Each design
step is represented by a template that is similar to a DECOL tem-
plate. However, the design management is more sophisticated.
Unfortunately, there exists no explicit Product Model, too.

• TheNelsis framework belongs to the most advanced framework
approaches. It is based on a central, object-oriented database
[18] and on a flow management that uses a dataflow graph as
Flow Model. The advantage of such a graph is its good overview
of the overall design process. Although there is a tight relation-
ship between the dataflow graph and the data model in Nelsis,
both models are set up independently.

• The PLAYOUT framework is based on separate Task and Flow
Models which are highly interrelated among themselves and
with the Product Model. These interrelations are the main topic
of this paper and will be described in detail below.

C. Task Model

Task management interprets a task frame for starting the tool.
Depending on the type of the task, it also controls the input and
output of the design data from and to the database. Further features
of the task management are load balancing, name resolution, con-
sistency enforcement, format translation, run logging, etc. To per-
form all these jobs automatically, the task management needs
comprehensive knowledge of the design tools which is modeled by
the Task Model.

For describing the tool execution, a template approach as
described above seems to be best. Modeling the tool’s input/output
data, on the other hand, is different. The information has strong
relation to the Product Model so that it seems obvious to extend
the schema editor as shown in figure 1. These extensions have to
describe how to retrieve the data objects for the given tools from a
database. The retrieval engine needs to know which relation of the
Product Model must be exploited to find the necessary tool input
data. Set operations are necessary for each retrieval. The same is
true for checking the tool’s output data for consistency with the
Product Model.

One possible way to extend the Product Model with informa-
tion of the design tools might be inserting meta edges into the
model. These meta edges describe the sequence of traversing the
relations of the Product Model to reach objects whose data should

1. OASIS is a VLSI design system that has been developed at the
Microelectronics Institute of North Carolina (MCNC).

Flow
Management

Task
Management

Data
Management

Tool

Process Management

Fig. 2. Task-based design process management

be retrieved. Additional annotations describe required attributes of
retrieved objects and operations on the elements of the relations
(mostly set selection operations).

However, we think that such a graphical approach is not suit-
able for the Task Model. There are two main reasons:
• the graphical representation of all retrieval and validation state-

ments together would be too difficult to survey
• in some cases the sequence of executing the retrieval statements

may be of interest which is difficult to describe graphically.
In the PLAYOUT framework we use an approach that is similar

to the SQL approach but our retrieval notation, addressed in the
following section, is simpler than SQL.

PLAYOUT task management
The task model describes the data objects which are needed for

starting a tool and which are expected to be the output of the tool.
With that the task description has references to the object types of
the Product Model. However, many Task Models are weak in ref-
erencing these object types. Using these references, the task and
flow management need not have copies of the data stored in the
database. E.g., the PLAYOUT Task Model is implemented on top
of the design database so that some aspects of the task manage-
ment could be delegated to the database retrieval engine and trans-
action management. The task and the data management are tightly
coupled.

The PLAYOUT design database is an object-oriented, prototype
database implementation written in Smalltalk. The underlying data
schema has automatically been generated from the Product Model
by a software generator, called MOOSE [2]. The database inter-
face provides set-oriented access methods for each object type and
each relation of the Product Model [16]. These access methods are
named identically to the elements of the data model. With that,
retrieval code mainly consists of concatenations of the database
relation names only.

EXAMPLE

• Cells cells realizations derivations
Cells represents a variable that holds a set with all instances of
the object typeCell (see Figure 1). The methodcells is
applied to this variable and returns a set with all cell objects. The
methodrealizations (implementing a relation of the Product
Model) is applied to each element of this set which results in a
new set with all realization (i.e. version) objects of all cells.
Finally, the methodderivations is applied to the new set.

• ((Cells cell: 5) realization: 3) parts
returns all subcells of the realization version3 of cell 5. Here,
we have two further access methods,cell: and realiza-
tion: , which are also generated automatically by MOOSE.
These methods do not return a set with all members of the corre-
sponding relation but only a set with at most the one element that
has the specified key. For instance, the termCells cell: 5 is
equivalent to the statement:Cells cells select:
[eachElement cellKey == 5] . ❑
Besides the select statement and the set of access methods cor-

responding to the elements of the Product Model, the retrieval lan-
guage provides additional constructs for set manipulations (union,
intersection, difference, iteration) and logical operators for writing
more complex expressions. However, the most interesting aspect
of our retrieval language are the methods provided by the software
generators which implement the relations of the data model in the
most easy way. Browsing the data model for the data retrieval is
expressed by a simple concatenation of the relation names.

The retrieval code is implemented by Smalltalk methods. A
method header contains a parameter representing the root object
for the retrieval, and a parameter representing the retrieval stream.
The method name and the root object description will be passed to
the design tool as a task description. Figure 3 shows a simplified

retrieval code for the design toolFloorplanner.
After running a design step, the database has to check for the

consistency of the generated data. In contrast to standard database
systems, a CAD database cannot check the complete semantic cor-
rectness of all data. The correctness of the micro data is validated
by special verification and simulation tools, e.g. design rule check-
ers.

In the PLAYOUT CAD framework the transaction management
validates the output data with respect to the Product Model and the
Task Model. The consistency of the output data is modeled by
methods which are very similar as for the data retrieval. These
methods contain statements which compare the newly generated
data objects with a set of data objects expected to be the tool’s out-
put.

D. Flow Model

The flow management has to plan and to supervise the overall
design process [4], [6], [11]. It communicates with the data man-
agement that provides informations about the current design state
and with the task management that controls individual design steps
(see figure 2). The basis for the flow management is a suitable
Flow Model. It describes all possible sequences of design steps. In
many cases the graph of all possible sequences is restricted to a
certain design methodology. For instance, top-down design steps
during the physical design phase may be forbidden. The corre-
sponding elements of the Flow Model must then be removed. It is
also possible to favor particular design tools if alternative tools are
applicable in the same design state.

Existing Flow Models
The development of different Flow Models was influenced by

research topics like system and net theory, databases, and artificial
intelligence. Currently, existing Flow Models can be grouped into
three classes:

Procedural models.Design processes are controlled by shell
scripts and procedural programs which are relatively rigid.

Knowledge-based models. Control flow is described locally by
pre- and postconditions of single design steps which are inter-
preted by a central inference mechanism. While these process
models are very flexible, their local view of the design process
makes it difficult to understand the overall control flow. Examples
of this class are UNIXmake, Ulysses, and DECOL.

Net-based models. Systems are described by directed graphs
with active elements as nodes. The edges of the graphs represent
the relationships between the active elements (in our case data
constraints among design tools). Net-based process models com-
bine the advantages of the other two model classes: flexibility and
global view. For describing design flows, we currently find three
net models:finite state machines (e.g. ADAM Design Planning
Engine [12]), dataflow model (e.g. Nelsis’ Flow Model), and
(extended) Petri nets.

generateFloorplanFromNetlist: aFrame on: aRetrievalStream
| currentVersion |
currentVersion := aFrame derivedFrom.
“ retrieve the structure data ”

“ retrieve the structure interface data of the subcells ”
aRetrievalStream add: (currentVersion parts association attributes: #(cellname porttypes)).
.

“ retrieve all subcell frame data ”
currentVersion parts association do:

[eachElement attributes: #(frame pins) notEmpty
ifTrue: [aRetrievalStream add: (eachElement attributes: #(frame pins))]
ifFalse: [aRetrievalStream add: (eachElement allVersions attributes: #(frame pins))].

.

Fig. 3. Floorplanner retrieval code

Figure 5 shows a PrT net for the physical design phase which
was abstracted by a single transition in figure 4. This net also con-
tains a further hierarchical transition that abstracts from chip plan-
ning and cell synthesis. The different types of arcs and the labels
of the arcs are described in the figure. The term CUD represents a
variable describing the current design object and the other labels
are shortcuts for the set-oriented expressions of the Task Model.❑

The input arcs of a transition correspond to a retrieval method
as shown in Figure 3. The annotations of the output arcs and the
validation statements describe the same aspect, but in a different
way. In both cases, the output data of a design step are addressed.
However, the arc annotations describe these data in a constructive
manner (they describe which new tokens will be generated) while
the validation statements describe the data in a destructive manner
(they declare which objects have to be removed from the list of
input objects).

III. COMBINING DATA AND PROCESS MANAGEMENT
PROVIDES TRACEABILITY

Section II.A describes the Product Model that represents the
static design aspects and sections II.C and II.D describe the Task
and the Flow Models which represent the dynamic aspects. The
three models are not independent of each other. The basis for mod-
eling design processes must be a suitable data model. Otherwise, if
we do not regard the design data while talking about the design

layout

floorplan

frame

estimation

frame

Cell
Assembly

layout

Convert
ML-Lib

Chip

me-lib

SFG

whole
circuit

Planning
or

Cell
Synthesis

Padframe
Editor

CUD

CUD

CUD

CUD

CUD

CUD CUD

CUD
CUD

CUD

CUD

CUD

fps

mls

pa
rts

 a
ss

oc
ia

tio
n

parts

mls

fps

CUD

Fig. 5. PrT net of the physical design phase

mls ::= CUD parts association select: [eachElement domain == masklayout]
fps ::= CUD parts association select: [eachElement domain == floorplan]
parts ::= CUD parts

Physical
Design

standard input arc - token will be consumed

‘reading’ input arc - token will not be consumed

versioning output arc - a new version of the token will be gener-
ated

mandatory arc - identified token must be available or generated

optional arc - identified token need not be available or generated
within a design step

simple arc - at most one token will be consumed or may be gen-
erated

arc describing a set - several tokens will be used/generated at
once

The PLAYOUT Flow Model
The PLAYOUT design flow is mod-

eled by predicate-transition nets (PrT
nets) which are extended Petri nets. Petri
nets are bipartite, directed graphs with
transitions (representing the active sys-
tem elements, e.g. design tools), places
(representing the passive elements, e.g.
design object types), and tokens on the
places (e.g. representing design objects).
Extensions are annotated transitions,
places, and arcs (as well as global anno-
tations). The annotations of places define
the types of tokens stored on the places.
Input arcs are annotated by terms identi-
fying tokens which must be available on
the input places for enabling the corre-
sponding transition. Annotations of out-
put arcs describe the newly generated
tokens after firing the transition. Transi-
tions are annotated by rules which extend the precondition (e.g. for
implementing the design methodology). The formal definition of
PrT nets can be found in [8].

Hierarchical net model
Hierarchical net models are very important for an adequate

design process abstraction. The Flow Model, i.e. the PrT net need
only be as precise as it is necessary for the current process state. At
the beginning of a circuit design we are interested in global steps
like behavioral and geometrical design phases (figure 4). Later,
when we have more design knowledge, it becomes necessary to
refine the Flow Model (figure 5). The firing of a transition at an
upper hierarchy level causes the activation of a subnet [6].

Figure 4 shows a simple top-level Flow Model of the VLSI
design. Shaded rectangles describe hierarchical transitions which
represent more or less complex subgraphs. This example shows
two hierarchical transitions and one design step (Repartitioning).
The first phase in the design for a new cell is the generation of the
structure description which needs library information (s-lib) only.
The hierarchy of the whole circuit may or may not be repartitioned
before the physical design phase takes place.

The PrT net model is strongly related to the Task Model pre-
sented above. Since each transition with its input and output places
models a single design step, such a section of the Flow Model is
equivalent to the corresponding section of the Task Model. The
precondition of a transition corresponds to the retrieval method
and the postcondition corresponds to the validation method of the
related task.

The extended PrT nets use set-based terms in their arc annota-
tions (see figure 5). The function symbols in the terms are conform
with the function symbols of the Task Model. These are mainly the
relation names of the Product Model, set operators, and operators
of the boolean algebra. Places are annotated by attribute names
which are consistent with the Product Model.

Generate
Structure

Physical
Design

Repar-
titioning

whole

newCell s-lib me-lib

layoutcircuit

Fig. 4. Simplified top-level PrT net of the VLSI design process.
The semantics of the arcs is depicted in figure 5.

xx

process, we neglect the data dependencies which may cause con-
flicts in the Flow Model. A Flow Model that is not based on the
Product Model results in a duplication of the data model or in
incorrect process management in worse case.

The PLAYOUT framework approach avoids these problems by
exploiting the interrelations of the models. Since the Product
Model is the basis of all other modeling efforts, that model has to
be set-up first. This step may be done independently of any knowl-
edge of the design flow or the design tools. For instance, we may
take the standardized VHDL data model that has been defined
independently of any particular design system. However, for opti-
mizing the data management in a CAD framework, requirements
of the design tools should be taken into account.

A. Verifying the Task Model

In PLAYOUT, the input/output behavior of the design tools
(tasks) are modeled textually. An example has been given above
(figure 3). Since the relation names and their sequence depend
very much on the Product Model, we propose to use a syntax-ori-
ented editor for writing the retrieval and validation code.

The grammar which is the basis of the editor basically defines
the object-oriented retrieval methods containing set-oriented
expressions only. The part of the grammar that describes all
allowed relation names will be generated automatically from the
Product Model and included into the grammar. In addition, the
allowed sequences of concatenating the relation names in the
retrieval methods are extracted from the Product Model, too, and
imported into the semantic analysis of the editor. Since it is possi-
ble to only set-up retrieval and validation methods which meet the
specified grammar, the syntax-oriented editor may guarantee the
consistency of the Task Model with the Product Model. The Task
Model editor avoids writing database access code that is incompat-
ible with the Product Model.

B. Generating the Flow Model

The Flow Model has to be generated on top of the Task Model,
i.e. the Task Model must be available before setting up the Flow
Model. Both models are closely related since each task modeled
by the Task Model is an active element in the Flow Model - a tran-
sition in the case of extended PrT nets. The design object attributes
which are the elements of the database access correspond to the
tokens and places of the PrT-net-based Flow Model. With that, the
PrT net that describes all possible sequences of design tasks can
automatically be generated from the Task Model.

Each pair of retrieval and validation methods described in sec-
tion II.C is translated into a subnet with one transition (represent-
ing the corresponding design task) and into the input and output
places of the transition. An attribute addressed by the retrieval
method is translated into an input place, and a retrieval statement
is translated into an input arc annotation. Similarly, attributes and
remove statements of the validation method are translated into out-
put places and output arc annotations. After translating all task
descriptions into basic PrT nets, these nets are combined to
achieve the overall Flow Model. This is done by combining all
places into a single place which represents the same attribute. This
step makes all variable names unique for the whole net, too. The
result is an automatically generated Flow Model which describes
all possible sequences of design tasks and which is consistent with
the Task Model (and hence with the Product Model, too). It is the
lowest level of a hierarchical Flow Model. The PrT net can then be
partitioned into abstract design steps of higher levels, and it can be
restricted to a particular design methodology by adding additional
rules to the transitions.

Since the semantics of the retrieval statements is identical to the
semantics of the input arc annotations (both describe the required

data which must be available to start a design step), the corre-
sponding translation step is straightforward. A little more compli-
cate is the translation of a validation method into output arc
annotations because the semantics is different. While the state-
ments of the validation method describe the removal of data (from
the list of input objects), the arc annotations describe the genera-
tion of new data (tokens). On the other hand, the addressed data
(attributes) are the same in both cases. The translation step can be
simplified by using a slightly different intermediate format for the
Task Model editor from which both, the validation method and the
output arc annotations can be generated easily.

C. Overall model development process

Figure 6 depicts an overview of all generation steps described
above. These steps enable us to generate the Product, the Task, and
the Flow Models in a consistent manner.

The figure clearly shows that the Product Model is the basis for
the Task Model and that the Task Model is used for generating the
Flow Model. After analyzing the ECAD domain we use our graph-
ical model editor to set-up a suitable Product Model from which
software generators can automatically generate the data manage-
ment components of our design tools [2]. From this Product
Model, one of the software generators can generate the variant part
of the Syntax on which the syntax-oriented editor, needed for writ-
ing the Task Model (retrieval and validation methods), is based.

graphical
EER editor

domain knowledge
(e.g. ECAD)

Product Model
(EER model)

syntax-oriented
editor

Task Model
(retrieval- and

knowledge about
design tools

Task Model
(intermediate format)transform.

validation methods)

transformation

comprehensive Flow Model
(extended PrT net)

net partitioning
anddesign

methodology

hierarchical Flow Model
(extended PrT net)

data management

task management

flow management

additional guards
(editor)

Fig. 6. Model generation process

variant part of the
language syntax

generator

An intermediate format of this Task Model is then used for gener-
ating the final Task Model that is used by the database retrieval
engine as well as for generating a comprehensive Flow Model.
Including some additional guards into the Flow Model and per-
forming some partitioning steps, we get a hierarchical Flow Model
(PrT net) that is adapted to a given design methodology.

IV. A DVANTAGES OF A COMPREHENSIVE, INTEGRATED
DESIGN MODEL

Besides the fact that an integrated, comprehensive design model
is the basis of all good design environments, we would like to
address two further advantages. The first one is the incorporation
of the database into the design planning phase and the second one
is the automatic generation of software from the design model.
Due to space limitations, we will address these topics very briefly.
Further information can be found in [2].

A. Process planning using the database

The Flow Model is the basis for controllingand planning the
design process. While it is obvious that controlling an actual
design process needs an intense interaction between process and
data management, this is also the case for the process planning
phase of our approach. In contrast to other PrT net approaches
which support stand-alone flow management (e.g. [6]), our PrT
nets need not have auxiliary places which store tupels representing
important relations of the Product Model, e.g. the part-of relation.
This information is provided by the database even during the pro-
cess planning phase.

During the planning phase the task and data managementsimu-
late design steps and the generation of new design objects. For
each simulated design step, the database stores the corresponding
output data objects with special tags. These design objects need
not have micro data. However, for a good planning strategy, it is
sensible to replace the design tools by suitable estimation tools
which also generate (estimated) design data which can be
exploited by further planning steps.

B. Software generation

An important part of a CAD software development environment
are software generators. To improve the implementation time and
the correctness of software, we try to automatically generate parts
of the implementation code of our design tools and of our central
database.

Using our software generation environment called MOOSE
(Model-based Object-Oriented Software generation Environment
[2], [3]) we are already able to generate the data management code
of the design tools and the data model implementation of the
design database automatically from the Product Model. The data-
base transaction and retrieval engine is generated from the Task
Model. The integrated model development approach described
above guarantees that the retrieval code of the database will fit to
the underlying data model.

A big advantage of our generator approach compared to using
fixed software libraries is that our generators are able to react on
the various needs of the design tools and to generate highly tool-
specific code [2]. This can be achieved by specifying optimization
requirements for a specific tool which will be - in combination
with the Design Model - the input of the code generator. The
model integration also ensures that the Flow Model (PrT net) and
with that the design planning component is consistent with the
“automatically generated database”.

V. CONCLUSIONS

This paper proposes an integrated, comprehensive design
model. We have addressed all modeling aspects which have to be
considered by a CAD framework. The main part of the paper
describes how we can use the Task Model (describing the I/O
behavior of design tools) as a link between the Product Model and
the Flow Model. The main focus was to guarantee the consistency
between the partial models of the overall design model.

REFERENCES

[1] Altmeyer, J., Schürmann, B., Schütze, M.. “The Framework of the
PLAYOUT VLSI Design System”. In “Proc. GI/ITG/GMA-Fachta-
gung “Rechnergestützter Entwurf und Architektur mikroelektronis-
cher Systeme“”, Oberwiesenthal, 1994.

[2] Altmeyer, J., Schürmann, B., Schütze, M.. “Generating ECAD Frame-
work Code from Abstract Models”. In “Proc. 32nd Design Automa-
tion Conference (DAC)”, San Francisco, June 1995.

[3] Altmeyer, J., Schürmann, B., Schütze, M.. “A Generator-Based ECAD
Framework Approach”. SFB 124 report No. 06/95. University of Kai-
serslautern, 1995.

[4] Barnes, T.J., Harrison, D., Newton, A.R., Spickelmier, R.L.. “Elec-
tronic CAD Frameworks”. Kluwer Academic Publishers, Norwell,
MA, 1992.

[5] Brielmann, M., Kupitz, E.. “Representing the Hardware Design Pro-
cess by a Common Data Schema”. In “Proc. Int. European Design
Automation Conference (EURO-DAC)”, Hamburg, 1992.

[6] Bretschneider, F.. “A Process Model for Design Flow Management
and Planning”. In “VDI-Fortschrittsberichte, Volume 9, No. 157”.
VDI-Verlag, 1993.

[7] Bushnell, M.L., Director, S.W.. “VLSI CAD Tool Integration Using
the Ulysses Environment”. In “Proc. 23rd Design Automation Confer-
ence (DAC)”, 1986.

[8] Genrich, H.. “Predicate / Transition Nets”. In “Petri-Nets: Central
Models and their Properties, LNCS 254”, W. Brauer, W. Reisig, G.
Rozenberg, editor. Springer-Verlag, 1986.

[9] Hübel, C., Ruland, D., Siepmann, E.. “On Modeling Integrated Design
Environments”. In “Proc. 1st European Design Automation Confer-
ence (EURO-DAC)”, Hamburg, 1992.

[10]Katz, R.H.. “Toward a Unified Framework for Version Modeling in
Engineering Databases”. Journal ACM Computing Surveys, Decem-
ber 1990.

[11] Kleinfeldt, S., Guiney, M., Miller, J.K., Barnes, M.. “Design Method-
ology Management”. in Proceedings of the IEEE, 1994

[12]Knapp, D.W., Parker, A.C.. “A Design Utility Manager: The ADAM
Planning Engine”. In “Proc. 23rd Design Automation Conference
(DAC)”, 1986.

[13]N.N.. “OASIS Users Guide and Reference Manual”. MCNC, Research
Triangle Park, NC, 1992.

[14]Schürmann, B., Altmeyer, J., Schütze, M.. “An Improved Data Model
for Top-Down Design”. In “Proc. Int. Conference on Computer-Aided
Design (ICCAD)”, San Jose, CA, 1994.

[15]Siepmann, E., Zimmermann, G.. “An Object-Oriented Datamodel for
the VLSI Design System PLAYOUT”. In “Proc. 26th Design Automa-
tion Conference (DAC)”, pages 814-817, Las Vegas, 1989.

[16]Schürmann, B.. “Modeling Design Data and Design Processes in the
PLAYOUT CAD Framework”. Journal Current Issues in Electronic
Modeling (CIEM), Vol. 6, June 1996.

[17] van der Wolf, P., Bingley, P., Dewilde, P.. “On the Architecture of a
CAD Framework: The NELSIS Approach”. In “Proc. 1st European
Design Automation Conference (EDAC)”, 1990.

[18] van der Wolf, P., Sloof, G.W., Bingley, P., Dewilde, P.. “Meta Data
Management in the NELSIS CAD Framework”. In “Proc. 27th Design
Automation Conference (DAC)”, 1990.

[19]Wagner, F.R., Viegas de Lima, A.H.. “Design Version Management in
the GARDEN Framework”. In “Proc. 28th Design Automation Con-
ference (DAC)”, 1991.

	CD-ROM Home Page
	DAC97
	Front Matter
	Table of Contents
	Session Index
	Author Index

