
ISDL: An Instruction Set Description Language for Retargetability

George Hadjiyiannis Silvina Hanono Srinivas Devadas
Department of EECS, MIT Department of EECS, MIT Department of EECS, MIT

ghi@rle-vlsi.mit.edu silvina@rle-vlsi.mit.edu devadas@rle-vlsi.mit.edu

Abstract— We present the Instruction Set Description Lan-
guage, ISDL, a machine description language used to describe
target architectures to a retargetable compiler. The features
and flexibility of ISDL enable the description of vastly different
architectures, in particular VLIW architectures. ISDL explic-
itly supports constraints that define valid operation groupings
within an instruction, increasing the range of specifiable archi-
tectures. We have written a tool that, given an ISDL descrip-
tion of a processor, automatically generates an assembler for
it. Ongoing work includes the development of an automatic
code-generator generator.

I. INTRODUCTION

A. Embedded Systems

For a variety of reasons, manufacturers profit from integrating an
entire system on a single integrated circuit (IC). As time-to-market
requirements place greater burden on designers for fast design cy-
cles, programmable components are introduced into the system,
and an increasing amount of system functionality is implemented in
software relative to hardware. Systems containing programmable
processors that are employed for applications other than general-
purpose computing are called embedded systems.

B. Hardware–Software Co-Design

Rather than designing the software and hardware components of
an embeddedsystem separately, hardware–softwareco-design (e.g.,
[1]) is more cost effective and results in a shorter time to market.

In this design methodology, designers partition the system func-
tionality into hardware and software. Additionally, a target pro-
cessor is chosen from existing processor designs, or an ASIP (Ap-
plication Specific Instruction-Set Processor) is designed to execute
the software. The hardware, software, and ASIP are implemented
and the resulting system is evaluated using a hardware–software co-
simulator. The partitioning and processor design are repeated until
an acceptable system is developed. Under this methodology, tools
for code generation and hardware–software co-simulation have be-
come essential parts of the designer’s tool-box.

As the complexity of embedded systems grows, programming
in assembly language and optimization by hand are no longer prac-
tical except for time-critical portions of the program that absolutely
require it. Further, hand coding virtually eliminates the possibility
of changing the processor architecture. An automatic code genera-
tion methodology will be most useful if it can be easily adapted to
generating code for different processors. This property, commonly
called retargetability, is discussed in the following section. We ar-
gue that in order to be able to explore the processor design space,
an automatically retargetable compilation strategy is required.

Permission to make digital/hard copy of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title
of the publication and its date appear, and notice is given that copying is by
permission of ACM, Inc. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
DAC 97, Anaheim, California c
1997 ACM 0-89791-920-3/97/06 ..$3.50

ISDL

Designer

Measurements

Source Code

Architecture
Simulator

Resource
Requirements

Assembly
Code

Retargetable
Compiler

Front End

Back End

Simulator
Environment

Architecture
 Synthesis
 System

Custom
Hardware
Simulator

Fig. 1. The design flow for an ASIP

C. A Machine Description Language for Easy Retargetability

A retargetable compiler receives as input the program corre-
sponding to the application as well as the machine description of
the target processor. The machine description includes an instruc-
tion set specification and some architectural information. The code
generator produces code that can run on the target processor opti-
mized for speed and size. By varying the machine description (i.e.,
using an ASIP) and evaluating the resulting object code one can
effectively explore the design space of both hardware and software
components. Our ASIP design methodology is illustrated in Figure
1.

The machine description language is a critical component in the
design flow and is the focus of this paper. Ideally, the machine
description language must be able to perform several functions:

� Specify a wide variety of architectures.
� Explicitly support constraints that define valid operation

groupings within an instruction.
� Be easily understandable and modifiable by a compiler writer

or hardware architect.
� Support the automatic generation of a code generator.
� Support the automatic generation of an assembler.
� Support the automatic generation of an Instruction Level Sim-

ulator (ILS).
� Provide adequate information to allow for code optimizations.
Various proposed machine description languages lack support for

one or more of the above features (see Section II for a review). We
have developed a machine description language, ISDL (Instruction
Set Description Language), which has all of the above features.
We have complete ISDL descriptions for a powerful ASIP VLIW
(Very Long Instruction Word) architecture and the Motorola 56000
(see Section IV). We have also developed a tool that automatically
generates an assembler given any ISDL description, an important
step in an automatically retargetable compilation methodology.

D. Organization of this paper

Section II presents previous work on retargetability and machine
description languages. Section III presents a description of the ISDL
languageand its components. In Section IV, we further illustrate the

language componentsusing portions of the 56000 ISDL description.
Section V describes our assembler generator tool and related issues.
Conclusions and ongoing work on ISDL are presented in Section
VI.

II. RELATED WORK ON MDLS FOR EMBEDDED PROCESSORS

We briefly review three representative research projects in the
area of code generation for embedded systems: MIMOLA [2], CHESS

[3], and FLEXWARE [4]. The proceedings of the Dagstuhl Work-
shop [5] contain a collection of papers documenting several other
contributors’ efforts.

The MIMOLA design system is an environment for hardware–
software co-design and includes a retargetable microcode compiler.
The MIMOLA microcode compiler infers rules for code generation
directly from a structural description (e.g., a net-list) of the target
architecture instead of a behavioral description (e.g., the instruction
set). The advantage of this approach is that it provides a single
machine description for both the synthesis of the target architecture
and the generation of microcode. However, MIMOLA descriptions
are generally very low level, and therefore laborious to write and
modify.

CHESS is a retargetable code generation environment for fixed-
point DSPs and ASIPs; it was developed in the context of the CATHE-
DRAL II high-level synthesis system [6]. The target machine is de-
scribed using the languagenML [7]. The nML language is attractive
because it allows the user to specify the target architecture in a way
that parallels instruction-set descriptions found in a user’s manual.
In contrast to MIMOLA, the machine description contains behavioral
as well as structural information. This enables the code generator
to recognize more optimization opportunities.

FLEXWARE consists of two components: a code generator,
CODESYN [8], and an instruction-set simulator, INSULIN [9]. The
machine description for CODESYN consists of three components:
the instruction set, the available resources and their classification,
and an interconnect graph.

None of the systems mentioned above provide support for ex-
plicit constraints. Without explicit constraints, descriptions for ar-
chitectures with Instruction Level Parallelism become very labori-
ous to write because every legal combination of microinstructions
must be explicitly listed. In addition, deriving a set of constraint
clauses, in a form usable by the compiler, is very difficult.

Also, none of the systems automatically generate assemblers,
although nML provides enough support for doing so.

III. THE INSTRUCTION SET DESCRIPTION LANGUAGE

An ISDL model of the target processor is generated either by
hand or by a high-level CAD tool. The compiler front end receives
a source program written in C or C++. It then parses the source
program and generates an intermediate format description in SUIF 1

[10]. The compiler back end takes the SUIF code as well as the
ISDL description as inputs and produces assembly code specific to,
and optimized for, the target processor. The ISDL description is
also used to create an assembler (see Section V). The automatically
generated assembler transforms the code produced by the compiler
to a binary file that is used as input to the Instruction Level Simulator
(ILS).

The goal of our system is to support a wide variety of architec-
tures. The main focus of ISDL is on VLIW (Very Long Instruction
Word) architectures; however, it also supports standard microcon-
trollers, and custom datapath DSP cores. In particular, it must
support multiple functional units, different interconnect topologies,

1Stanford University Intermediate Format

complex instructions, resource conflicts, pipelining idiosyncrasies,
etc. Our system also supports automatically generated architectures.
Such architectures cannot be guaranteed to have clean instruction
sets (i.e., instruction sets where every operation combination is
valid). In order to accommodate for this, ISDL supports explicit
constraints that define which operation groupings are valid. The
compiler can therefore avoid generating invalid instructions by en-
suring that each instruction meets these constraints. Note that some
commercial architectures also require such constraints (e.g., the
Motorola 56000 cannot perform a Move to the top of the hardware
stack within the last three instructions of a DO loop).

An ISDL description consists of six sections:
� Instruction Word Format
� Global Definitions
� Storage Resources
� Instruction Set
� Constraints
� Optional Architectural Details
Each of these is described below along with their high level

syntax definitions.

A. Instruction Word Format

The Instruction Word Format section defines the hardware in-
struction word. The instruction word is separated into multiple
fields each containing one or more subfields. The bitwidth of each
subfield is also provided. The instruction word is assembled by
concatenating all the subfields in the order specified in this section.

Note that the division into subfields is a convenience to the
designer. The subfield division may be arbitrary; however, careful
subfield division can make later parts of the machine description
easier to write.

B. Global Definitions

The second section of an ISDL description contains a list of
definitions used in the later sections. The definitions consist of
three main types: Tokens,Non-terminals, and Split functions. These
definitions also help create an automatically generated assembler.

Tokens are a symbolic representation of the assembly syntax
within the parser. Tokens are used to represent entities such as
register and memory bank names, immediate constants, etc. In
addition, we allow groupings of syntactically related tokens. In
order to differentiate between the elements in a group, these tokens
return a value identifying the particular element (e.g., register names
such as R0 to R15, can be abbreviated as one token whose value
corresponds to the register number).

Non-terminals have several purposes. First, syntactically un-
related tokens can be grouped together in a non-terminal for con-
venience; allowing a large number of possible alternatives in an
instruction to be factored out into a non-terminal. For example,
suppose that SRC and DEST can each be one of seven different
options. In the following instruction

Move SRC DEST

49 different rules are required to describe all possible syntax combi-
nations. With non-terminals, only three rules are required: one for
the instruction, and one each for the SRC and DEST non-terminals.

Non-Terminals also contain an action field which allows the
inclusion of arbitrary C code to be executed along with every rule.
This is a very powerful feature that permits the inclusion of archi-
tecture specific routines in our generated tools.

Split function definitions are used to automatically create func-
tions that can take a long bitfield (such as a long memory address, or

immediate data) and split it up into existing subfields of the instruc-
tion word. These functions can then be used in non-terminal actions
and bitfield assignment commands (see Section III-D) in order to
assign the correct values to the subfields.

C. Storage Resources

The Storage section lists all storage resources visible to the
programmer. It lists the names and sizes of the memory, register
files, and special registers. This section is used by the compiler to
determine the available resources and how they should be used.

The different storage resource specifications and their parameters
are: (depth in words, width in bits)

� Memory(depth, width)
� RegFile(depth, width)
� Register(width) - Single registers used for data computation.
� CRegister(width) - Control and Status registers that may cause

side effects.
� Stack(depth, width) - Used for hardware stacks only.
� ProgramCounter(width)
� Wire(width) - Interconnect for datapath.

D. Instruction Set

The Instruction Set section is split into Fields corresponding to
the separate operations that can be performed in parallel within a
single instruction. This supports the description of VLIW architec-
tures. Some fields may be optional. A list of all possible operations
is provided for each of these fields.

Each operation description consists of the following elements:
� Operation Name - Assembly mnemonic for each operation.
� Operation Parameters - A list of tokens or non-terminals.
� Bitfield Assignment Commands - A set of commands which

manipulate the bitfields. They may include operation param-
eters as values.

� RTL Description - This describes the effect of the operation on
the storage resources. The compiler uses the RTL description
to make operation selection decisions.

� Costs - Multiple costs are allowed including operation execu-
tion time, code size, costs due to resource conflicts, etc.

� Timing - Information describing when the various effects of
the operation take place (e.g., because of pipelining).

E. Constraints

The Instruction Set section describes a number of fields that can
generally be executed in parallel. However, there are certain com-
binations of operations that may not be executable by the hardware.
The Constraints section is used to make these combinations visible
to the compiler so that the compiler can avoid generating such illegal
operation combinations.

Constraints are described as a set of Boolean rules, all of which
must be satisfied for an instruction to be valid. Constraints can
be time shifted to show conflicts in instructions issued at different
times. Wild cards can be used to simplify the constraint descriptions.
Also, variables are used to enforce any restriction where different
parts of a single constraint must match.

We have identified three types of constraints:
� Datapath Conflicts - Two parallel operations try to use the

same datapath resources (e.g., competition for the bus).
� Bitfield Conflicts - Two parallel operations try to set the same

bitfield in the instruction word.
� Syntactic Constraints - Constraints that do not correspond to

hardware conflicts, but are artifacts of the assembler syntax.

Reg
File

Reg
File

Data
Mem.

Reg
File

Reg
File

Addr
Gen.

Addr
Gen.

ALU MAC
Instr
Mem.

Stack

EIU

DATA BUS

I/O
Data
Mem.

Control

Fig. 2. The ASIP VLIW Architecture

F. Optional Architectural Details

The ISDL description can give the compiler some information
about the hardware architecture in order for the compiler to make
better machine dependent code optimizations. This section is not
necessary for the compiler to generate good code, however, it can
help the compiler find a few more optimizations to generate even
better code. Examples of such optimizations are the use of delay
slot instructions, and branch prediction hints.

IV. AN ISDL EXAMPLE

We have written ISDL descriptions for an aggressive ASIP
VLIW architecture, and for the Motorola 56000 DSP processor.
The Motorola DSP56000 consists of three main processing units
that operate in parallel: an ALU, an Address Generator, and a Pro-
gram Controller. The architecture is capable of performing two
address calculations, two memory transfers, and an ALU operation
within a single instruction.

Figure 2 shows the structure of the ASIP VLIW processor. It con-
sists of five functional units that can operate in parallel: a Controller,
two identical address generators, an ALU, and a floating point MAC
(multiply-accumulate) unit. This processor can perform three data
transfers, two addressing operations, two computation operations,
and a flow control operation within a single instruction.

We provide portions of our ISDL description for the Motorola
DSP56000 processor to illustrate the structure of ISDL, and how it
is used.

Section Format

DBM = OP[8], MODE[8];
Main = OP[8];

This describes a 24 bit instruction word divided into three sub-
fields: DBM.OP, DBM.MODE, and Main.OP. Each subfield is 8
bits long. DBM.OP is the MSB and Main.OP is the LSB.

Non_Terminal ival ALUSRC:
A_D {$$ = 1; } | B_D {$$ = 1; } |
X_D {$$ = 2; } | Y_D {$$ = 3; };

The above line defines a non-terminal. The definition consists
of the keyword Non Terminal, the type of the returned value, a
symbolic name as it appears in the assembly section, and an action
that describes the possible token or non-terminal combinations and
the return value associated with each. Specifically, this line defines
a non-terminal with the symbolic nameALUSRC whose return value
is 1 for A D or B D, 2 for X D, and 3 for Y D.

Section Assembly

Field Main:
ADC XYSRC, ACC

{ Main.OP = 0x21|(ACC<<3)|(XYSRC<<4); }
{ ACC <- ACC + XYSRC + CCR[0]; }
{ cycle = 2 + dbm; size = 1 + dbm; }
{ latency = 1; }

The Field keyword denotes operations that can be per-
formed in parallel. In this example, the ADC operation takes
two parameters. The Main.OP bitfield is set to the result of
0x21|(ACC<<3)|(XYSRC<<4).

The second set of brackets in each operation contain an RTL
description of the effect of the operation. For example, the ADC
operation has the effect of adding the contents of the accumulator
to the source (X or Y) and to the carry bit (CCR[0]), and storing
the result in the accumulator.

The third set of brackets in each operation contain a set of costs.
In the example above, two costs are defined: a cycle count, and
the resulting code size. The ADC operation takes two cycles to
complete and one instruction word, unless it is grouped with a
parallel operation that requires additional cycles and/or words. The
last set of brackets in each operation contains timing information.

Note that if the ADC operation were to assign values to the DBM
bitfields, then a bitfield conflict with DBM operations would result,
and this should be reflected in the Constraints section.

Section Constraints

˜((REP *) & ([1] DO *,*))

This constraint denotes that any DO instruction is illegal when
fetched as the next instruction after a REP instruction. The [1]
indicates a time shift of one instruction fetch for the DO instruction.

See [11] for a more extensive example.

V. AUTOMATIC ASSEMBLER GENERATOR

We required that ISDL be capable of automatically generating
an assembler. This allows us to decouple the development of the
compiler from that of the ILS. The ILS requires a compiled binary as
input. The availability of an assemblerallows assembly programs to
be written and tested on the ILS, even when no compiler is available.
Furthermore, the output of the compiler can be in assembly which
is much more human readable than binary. Thus, some debugging
can be performed without the use of an ILS.

We have designedand implemented an automatic assemblergen-
erator. It receives an ISDL description as input, and produces an
assembler which assembles the compiler’s output to a binary file.

The assembler generator produces Lex and Yacc 2 files which,
when compiled, result in an executable capable of parsing the as-
sembly and generating the instruction words. This parser is a two
pass parser capable of processing symbolic addresses (i.e., labels).

VI. CONCLUSIONS AND ONGOING WORK

Having described the details of ISDL, we now compare it to the
machine description languages referred to in Section II. MIMOLA

is too low level for retargetable compilers, and it does not support
the definition of constraints. CODESYN includes some but not all
of the information provided in an ISDL description. In particular,
it includes an instruction set description, a listing of the available
resources, and an interconnect graph. However, it does not support
constraints. Of all the languages studied,nML is the closest to ISDL.
It provides most of the information included in ISDL, and supports
the description of a very extensive range of architectures. Its one

2Lex is a lexical analyzer generator, and Yacc is a parser generator. They
are the standard Unix utilities used for creating compilers, assemblers, and
similar applications.

shortcoming with respect to ISDL is that it does not support explicit
constraints. Instead, it requires the enumeration of all the valid
instructions related to a conflict. However, even valid instruction
enumeration cannot support time shifted constraints (i.e., constraints
that span more than one instruction).

We are currently developing a code-generator generator which
takes ISDL descriptions as input and produces the corresponding
code-generator. The retargetability of the code-generators allows for
the exploration of the processor design space until an architecture
suitable for the application at hand is found.

Furthermore, we are developing a tool that automatically gener-
ates an ILS for the target architecture using ISDL descriptions.

ACKNOWLEDGMENTS

This research is supported by NSF Contract MIP-9612632.

REFERENCES

[1] R. K. Gupta and G. De Micheli. Hardware–Software Cosyn-
thesis for Digital Systems. IEEE Design & Test of Computers,
pages 29–41, September 1993.

[2] P. Marwedel. The MIMOLA Design System: Tools for the
Design of Digital Processors. In Proceedings of the 21th
Design Automation Conference, pages 587–593, 1984.

[3] D. Lanneer et al. CHESS: Retargetable Code Generation for
Embedded DSP Processors. In Code Generation for Embed-
ded Processors, pages 85–102. Kluwer Academic Publishers,
1995.

[4] P. G. Paulin, C. Liem, T. C. May, and S. Sutarwala. DSP De-
sign Tool Requirements for Embedded Systems: A Telecom-
munications Industrial Perspective. Journal of VLSI Signal
Processing, 9(1/2):23–47, January 1995.

[5] P. Marwedel and G. Goossens, editors. Code Generation for
Embedded Processors. Kluwer Academic Publishers, Boston,
Massachusetts,1995. Proceedings of the 1994 Dagstuhl Work-
shop on Code Generation for Embedded Processors. ISBN
0-7923-9577-8.

[6] G. Goossens et al. Integration of Medium-Throughput Signal
Processing Algorithms on Flexible Instruction-Set Architec-
tures. Journal of VLSI Signal Processing, 9(1):49–65, 1995.

[7] A. Fauth, J. Van Praet, and M. Freericks. Describing In-
struction Sets Using nML (Extended Version). Technical re-
port, Technische Universität Berlin and IMEC, Berlin (Ger-
many)/Leuven (Belgium), 1995.

[8] P. G. Paulin, C. Liem, T. C. May, and S. Sutarwala. CodeSyn:
A Retargetable Code Synthesis System. In Proceedings of
the 7th International High-Level Synthesis Workshop, Spring
1994.

[9] S. Sutarwala, P. G. Paulin, and Y. Kumar. Insulin: An In-
struction Set Simluation Environment. In Proceedings of the
1993 Conference on Hardware Description Languages, pages
355–362, 1993.

[10] Stanford Compiler Group. The SUIF Library, version 1.0
edition, 1994.

[11] G. Hadjiyiannis, S. Hanono, and S. Devadas. ISDL:
An Instruction Set Description Language for Retar-
getability. Technical report, MIT, 1996. (http://rle-
vlsi.mit.edu/spam/pubs/ISDL-TR.html).

	CD-ROM Home Page
	DAC97
	Front Matter
	Table of Contents
	Session Index
	Author Index

	Paper URL

