
Formal Verification of Content Addressable Memories using Symbolic Trajectory
Evaluation�

Manish Pandey1 Richard Raimi2 Randal E. Bryant1 Magdy S. Abadir2

1School of Computer Science, Carnegie Mellon University Pittsburgh, PA 15213
2Motorola Inc., 6501 William Cannon Drive West, Austin, TX 78735.

Abstract

In this paper we report on new techniques for verifying content
addressable memories (CAMs), and demonstrate that these techniques
work well for large industrial designs. It was shown in [6], that the
formal verification technique of symbolic trajectory evaluation (STE)
could be used successfully on memory arrays. We have extended that
work to verify what are perhaps the most combinatorially difficult
class of memory arrays, CAMs. We use new Boolean encodings to
verify CAMs, and show that these techniques scale well, in that space
requirements increase linearly, or sub-linearly, with the various CAM
size parameters.

In this paper, we describe the verification of two CAMs from a recent
PowerPCTM microprocessor design, a Block Address Translation unit
(BAT), and a Branch Target Address Cache unit (BTAC). The BAT
is a complex CAM, with variable length bit masks. The BTAC is a
64-entry, 64-bits per entry, fully associative CAM and is part of the
speculative instruction fetch mechanism of the microprocessor. We
believe that ours is the first work on formally verifying CAMs, and we
believe our techniques make it feasible to efficiently verify the variety
of CAMs found on modern processors.

1. Introduction

Content Addressable Memories (CAMs) play an important role in
many modern digital systems. CAMs are widely used wherever fast
parallel search operations are required. Some examples of CAMs
found on modern processors are translation-lookaside buffers (TLBs),
branch prediction buffers, branch target buffers and cache tags. CAMs
have also been used in such applications as data compression,data-base
accelerators, and network routers.

CAMs in microprocessors are usually custom designed at the tran-
sistor level, as these circuits are often in the critical path of a chip and
it is necessary to optimize area and performance. These circuits often
include self timed components and other complex forms of circuitry,
and they typically have complex internal timing.For these reasons it
becomes necessary to verify such designs at the transistor level. All
the designs in this paper have been verified at the transistor level using
a switch-level model.

�This research is sponsored by the WrightLaboratory,Aeronautical Systems Center,Air
Force Materiel Command, USAF, and the Advanced Research Projects Agency (ARPA)
under grant number F33615-93-1-1330 and by a grant from Motorola.

0

Permission to make digital/hard copy of all or part of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or
commercialadvantage, the copyrightnotice, thetitle of thepublication and its date appear,
and notice is given that copying is by permission of ACM, Inc. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific permission
and /or a fee.
DAC 97, Anaheim, California
c 1997 ACM 0-89791-920-3/97/06 ..$3.50

While work on verification of memory arrays has been reported in
[2], [6], and [3], there has been littlepublished on the particular needs
of CAMs. In [2, pp. 102], Bryant comments on the difficulty of CAM
verification as follows: “...Other classes of memory designs can also
be verified by simulating a linear, or nearly-linear number of patterns.
... On the other hand, content-addressable memories do not seem to fit
into this class, since it is not easy to identify where a particular datum
will be stored.”

In this paper, we describe how we leveraged the formal verification
technique of symbolic trajectory evaluation (STE), along with new
Boolean encoding techniques, to verify CAMs. The new encodings
were needed to contain the exponential growth in the space require-
ments with increasing CAM sizes, which could occur with a naive use
of variables in STE. Our work shows that we were able to solve this
problem and formally verify these types of circuits, with very modest
space and time requirements.

In the remainder of this paper we discuss background material on
STE and CAMs (Section 2), and we then describe experiments done
on small, generic CAMs in which we perfected the needed Boolean
encodings (Section 3). Finally, we describe how we used our tech-
niques, with success, on two complex CAMs (Sections 4 and 5)
from a recent PowerPC processor. This verification was carried out at
the joint Motorola-IBM PowerPC design center, Somerset, located in
Austin, Texas. In our work, we utilized the Voss STE system [8].

2. Background

2.1. Symbolic trajectory evaluation
STE [7] is a ternary symbolic simulation based tech-

nique for verifying behaviors of a system over bounded, fi-
nite time intervals. Specifications aretrajectory assertionsof
the form [Antecedent)Consequent], where Antecedent and
Consequent aretrajectory formulae. Intuitively, the antecedent de-
fines an initial setting and a stimulus pattern for the circuitnodes, while
the consequent defines the expected response.

The basic element of a trajectory formula (TF) is a simple predicate,
e.g., (nodei is 0), which states thatnodei of a circuit contains the value
0 at the present time. Using conjunction, case restriction and a next-
time operator, trajectory formulas can be constructed from the simple
predicates. IfG1 andG2 are TFs, then their conjunctionG1^G2 is also
a TF. IfG is a TF, thenNG is a TF, whereN is the next-time temporal
operator, andNG means thatG holds in the next time step. Finally, if
G is a TF, andE is a Boolean expression, then(when (E) G) is a TF,
wherewhen is the domain restriction operator.(when (E) G)means
thatG must hold whenE is true. This simple logic is sufficient to
verify the class of systems, such as arrays, for which functionality can
be partitioned into a set of operationseach of which update the system

1

state in a deterministic manner. Given an assertion[A) C], the
circuit is simulated with ternary symbolic simulation patterns derived
from the antecedentA. During simulation, at each time step the
circuit state is checked against the expected response specified inC.
The ternary symbolic values generated in the process are represented
by pairs of Ordered Binary Decision Diagrams (OBDDs).

The temporal logic of STE is quite restricted as compared to the
temporal logics of model checkers like SMV [4]. However, the use of
such a logic obviates the need to represent a system’s transition relation
and calculate its reachable state set, two very expensive operations.
Because of this, STE excels in the verification of large, data intensive
systems, such as memory arrays, having tens of thousands of state
holding elements.

Recently a methodology for application of STE was developed [1]
and we have adapted this for verification of CAMs. In this methodol-
ogy, the desired system behavior is specified as a set of assertions over
abstracted system space. Each abstract assertion, which is of the form

[A
LEADSTO
=) C] describes how the system operations transform the ab-

stract system space. Intuitively, the abstract assertion’s antecedent,A,
specifies the current abstract state and inputs, and the consequent,C,
specifies the abstract state and outputs after a system operation. In
addition to the abstract assertions, the user provides animplementa-
tion mapping, giving the correspondence of the abstract state to the
nodes in the transistor-level circuit, and giving the timing of signal
transitions. Given this mapping, the abstract specification is mapped
into a set of trajectory assertions, to be checked by the STE decision
procedure. For details on this methodology, the reader is referred to
Beatty’s thesis [1].

The abstract assertions shown in this paper use a pseudo-code no-
tation. The actual assertions were written in the FL language, which
is the functional language front-end to the Voss verifier.

2.2. An Illustration of the Methodology
To illustrate the methodology described above, consider the abstract

assertion below. It describes a tag write operation for the CAM circuit
in section 2.3.
(op = tag write) ^ (Tadr = adr) ^ (Tagin = newtag) ^ (T [i] = tag)

LEADSTO
=)

(when(i 6= adr)(T [i] = tag))^ (when(i = adr)(T [i] = newtag))

The antecedent(from left to right) states that a tag write operation
is being done to addressadr with valuenewtag, and in the initial
state of the verification, theith tag entry contains the symbolic value
tag. The consequent specifies that the addressed tag entry is changed
to newtag, and all other tag entries are unchanged.

The implementation mapping relates the abstract state of each
“phrase” in the abstract assertion to concrete signal timing and val-
uations on actual circuit nodes. It captures implementation details
such as that two phase clocking is used, and that theTwrite signal
is asserted, and the tag data and addresses provided, with appropriate
setup and hold times, whenPh1 is high. For an example of such
details, see [6, pp. 651].

Note that the variablesi andj in the abstract assertion above are
used as array indices. The implementation mapping represents each of
them in binary form as a vector of symbolic Boolean variables. From
the phrase,(T [i] = tag), in the antecedent of the abstract assertion,
the implementation mapping will initializeeach tag storage nodek in

DATA

D[]

t

T[0]

T[1]

T[2]

n-1T[]

D[0]

D[1]

D[2]

n-1

n

match[n-1]

match[2]

match[1]

match[0]

Match[n-1..0]

Ph1

Ph2

Tagin[t-1..0]

d

Din[d-1..0]

Dataout[d-1..0]

Assoc Read

Tadr[log(n)-1..0]
logn

logn

n

t d

d

HIT

Dadr[log(n)-1..0]

Dwrite

Twrite

TAGS

Figure 1: Content Addressable Memory: Tag size = t, Number of
entries = n, Data size = d

the CAM with a symbolic ternary function,fk(i; tag), which returns
tag, wheni = k, andX otherwise (X represents the “unknown” or
“don’t care” value of switch-level simulation). This technique, called
symbolic indexing, is critical to the efficiency of STE on memory-based
circuits[1]. It is responsible for reducing the number of variables in
an STE verification to a number logarithmic in the number of array
locations.

2.3. A CAM design
Generally, CAMs employ as an identifier a bit field called atag,

each tag identifying a particular data entry stored in the array. CAMs
vary depending upon data and tag size, techniques to read and write
contents and mark contents as valid, tag masking fields, etc. In spite
of all this diversity, CAMs all have in common theassociative read
capability 1. The associative read operation consists of searching, in
parallel, all tags in the CAM to determine if there is a match to a
particular tag of interest, and then sending the associated data entry to
an appropriate read port of the memory.

The high-level design shown in Figure 1 is a very basic CAM. We
implemented this design as an experimental vehicle for finding better
Boolean encodings for CAM verification (see Section 3). This design
hasn tag entries,T [0]; T [1]; :::; T [n� 1]. Corresponding to each tag
entry,T [i], there is a data entryD[i]. The most distinctive operation of
this circuit is theassociative readoperation. In this operationTagin
is compared in parallel with all theT [] tag entries, and if there is
a match on theith tag entry, thenHIT rises, andD[i] appears at
Dataout. If there is no match toTagin, i.e., amiss, HIT remains
low (and, the surrounding circuitry would ignoreDataout). We have
implemented this design as a transistor-level netlist using a tool called
cmu-netlist. Eachn-bit tag consists ofn tag cells. Each tag cell
contains 9 transistors and its design is based on the one in [9, pp.590].

It is an assumption that, among valid tag entries there would beat
most onetag that would matchTagin. This property, theat most one
tag match propertyis an important system invariant. However, it is
usually not enforced in hardware. Rather, CAMs generally depend
upon surrounding circuitry, or the software manipulating the entire
chip, to maintain this invariant. For example in the PowerPC BAT array
[5], the responsibility of maintaining the invariant is with the operating
system. In Section 3, we show how we used this invariant to efficiently
verify a CAM. Even when the circuit design is enhanced to handle
multiple matches, we can verify CAMs efficiently using techniques

1In some instances CAMs also have anassociative write capability . The PowerPC
Branch Target Address Cache circuit is one such example and it is described in Section 4.

based on those outlined here. However, due to space limitations, we
will not discuss that in this paper.

3. CAM properties and CAM encodings

Below we show how a well chosen encoding can dramatically reduce
the number of variables, and therefore the number of OBDD nodes,
required for the verification.

3.1. CAM Encodings
We will discuss the CAM encoding problem in the context of ver-

ifying the associative read operation of CAMs. We will refer to a
generic CAM modeled after that of Figure 1, in Section 2.3.

The most obvious approach to verifying the associative read opera-
tion is to introduce a Boolean variable for each bit of state in theT [i]
andD[i] tag and data entries. We illustrate this below with an example
trajectory assertion. Assume the number of CAM entries,n, equals 3.
Let ~tin; ~t0; ~t1 and~t2 be vectors of Boolean variables of sizet, the width
of theT [i] entries. Let~d0; ~d1 and~d2 be vectors of Boolean variables of
sized, the width of theD[i] entries. The following assertion specifies
the associative read operation under these conditions2.

(op = assocread) ^ (Tagin = ~tin) ^

(T [0] = ~t0)^ (T [1] = ~t1) ^ (T [2] = ~t2) ^

(D[0] = ~d0) ^ (D[1] = ~d1)^ (D[2] = ~d2)

LEADSTO
=)

(when(nomatch)((HIT = 0)))^

(when(matchonly0)((HIT = 1)^ (Dataout = ~d0)) ^

(when(matchonly1)((HIT = 1)^ (Dataout = ~d1)))^

(when(matchonly2)((HIT = 1) ^ (Dataout = ~d2)))

The first line of the antecedent specifies that an associative
read is being done and the input data is~tin. The second line
specifies that the three tag registers initially contain~t0, ~t1, and
~t2. The three data registers are specified as initially containing
~d0, ~d1, and ~d2. To simplify the consequent, we use the fol-
lowing Boolean functions,match0 = (~tin = ~t0), match1 =
(~tin = ~t1), match2 = (~tin = ~t2), nomatch = :(match0 _
match1 _ match2), matchonly0 = match0 ^ :match1 ^
:match2, matchonly1 = :match0 ^ match1 ^ :match2, and
matchonly2 = :match0^ :match1^match2. The first line in
the consequent checks that there are no matching entries in the CAM.
The second line checks forHIT andDataout when only the first
entry matches. Note that we do not check for conditions inconsistent
with theat most one tag matchsystem invariant. For example, we do
not check for what happens if(~tin = ~t0) and(~tin = ~t1) are both true.
A total of (t+d)n+ tBoolean variables are needed for this assertion.
We call this encoding,where every circuit state bit has a corresponding
Boolean variable, thefull encoding.

We can reduce the variable count, however, by using symbolic
indexing. At this point we will use it just for the data entries. To effect
this, the antecedent should be changed to contain(D[~i] = ~data)

instead of(D[0] = ~d0) ^ (D[1] = ~d1) ^ (D[2] = ~d2). ~data is a
vector of Boolean variablesd bits wide, and~i is a vector of Boolean
variablesdlog2ne bits wide. The consequent is also changed. Line 2
of the consequent is changed to (lines 3 and 4 are changed similarly):

2Some parts of the assertion necessary for verification thoroughness, e.g. that the tag
and data bits are unchanged on a read, have been omitted.

(when(match0^ :match1^ :match2^ (~i = 0))((HIT = 1) ^
(Dataout = ~data)).

This encoding needsonly(n+1)�t+d+dlog2neBoolean variables.
We call this theplain encoding. For identical data and tag sizes,
the number of variables goes down by half, as compared to thefull
encoding. However, as later results will show, with increasingn,
memory requirements can still grow rapidly with the plain encoding
scheme. So we must improve on it.

We can reduce the number of variables further, by taking ad-
vantage of theat most one tag matchsystem invariant. Let
Tagin be ~tin = htint�1; tint�2; :::; tin0i. In order that the tag
entry T [0] not match ~tin, it should be one of the followingt
ternary vectors: h:tint�1;X; :::;Xi, hX;:tint�2;X; :::;Xi, ...,
hX;X; :::;X;:tin0i. The position at which the tag inT [0] is un-
equal can be encoded by,p, a vector ofdlog2te variables. So the
condition thatT [0] is not equal to~tin can be written as

(when(p = 0)(T [0][0] = :tin0))^

(when(p = 1)(T [0][1] = :tin1))^

:::^

(when(p = (t� 1))(T [0][t� 1] = :tint�1))

We abbreviate this as9~p:T [0][~p] = :tin~p, i.e. there exists a~p such
that at thepth bit position there is a mismatch between~tin and the tag
entryT [0].

We now verify the associative read operation in two parts. First, we
verify the case where no CAM entries match the input tag, and then
we verify the case where theith entry does match the input tag. For
the case where no hit occurs the new assertion is:

(op = assocread) ^ (Tagin = ~tin)^

(9p1:T [0][p1] = :tinp1)^

(9p2:T [1][p2] = :tinp2)^

(9p3:T [2][p3] = :tinp3)

LEADSTO
=)

(HIT = 0)

wherep1; p2 andp3 are encoded by vectors of variables, indicating the
position at which the mismatch with~tin occurs. For the case where
one entry matches the input tag, we write:

(op = assocread) ^ (datain = ~tin) ^ (D[i] = ~data)^

(when(i = 0)(T [0] = ~tin))^ (when(i 6= 0)(9p1:T [0][p1] = :tinp1))^

(when(i = 1)(T [1] = ~tin))^ (when(i 6= 1)(9p2:T [1][p2] = :tinp2))^

(when(i = 2)(T [2] = ~tin)) ^ (when(i 6= 2)(9p3:T [2][p3] = :tinp3))

LEADSTO
=)

(HIT = 1)^ (match[k] = (k = i))^ (output = data)

This encoding requires only(log2n + n � log2t+ t + d) Boolean
variables, a substantial savings over the two earlier encodings. We
refer to this encoding as theCAM encoding. As will be seen in section
3.3, verification of even moderate sized CAMs would be intractable
without an encoding at least as efficient as the CAM encoding.

It is instructive to compare the number of Boolean variables re-
quired for the three different encodings, with the number required for
representing a transition relation. For a 16 entry CAM, with 16 bit tag
and data sizes, the number of Boolean variables required for the full,
plain and CAM encodings are 528, 292, and 100 respectively. For the
transition relation the required number of Boolean variables is over
1024, which is double the number of state elements.

50
60
70
80
90

100

200

300

400

500
600
700
800
900

1000

2000

3000

4000

5000

2 4 8 16 32 64 128 256

M
em

or
y

B
D

D
 (

K
B

)

Number of CAM entries (tag size=4, data size = 4)

CAM encoding
Plain encoding

Figure 2: CAM: number of tag entries vs. OBDD sizes

3.2. Experimental Results and Discussion

In Figures 2 and 3 we have plotted the results from verification of
different size CAMs, using the CAM encoding and the plain encoding.
The full encoding is not included here, as it usually performs much
worse than the other two encodings. We have plotted the memory taken
by the OBDDs generated when verifying the associative read operation.
All other verified CAM operations take less space, and have not been
included here. The OBDD variable ordering for the experiments was
carefully chosen, so that, as much as possible, we would avoid unfair
comparisons between the two encodings. For each encoding, we chose
an initial variable ordering that, from ourunderstanding of the circuit
function, would result in small OBDDs. Upon running STE with the
initial variable ordering, the OBDD packagedynamically reordered
some of the variables. We used this reordering information to improve
our understanding of the variable interaction and further tuned the
variable ordering to minimize the OBDD sizes before running STE
again.

Figure 2 shows how the OBDD sizes for the plain and CAM en-
coding vary for CAMs with varying associativities (tag and data sizes
are constant). As the graph shows, there is a dramatic difference in
the space taken by the two encoding approaches. As the number of
tag entries increases, the plain encoding requires substantially more
memory than the CAM encoding. Many TLBs are highly associative,
and for such circuits the plain encoding approachwill clearly not work.
These results motivated us to use CAM encodings in all our further
CAM verifications (Sections 4 and 5).

In Figure 3, we have shown the OBDD size trends for the two
encodings when the tag size changes (others parameters remaining
constant). The space savings with the CAM encoding are similar to
that in Figure 3. Although these results are not as dramatic as those
of Figure 2, they show that use of the CAM encoding still results in
at least an order of magnitude space savings, as compared to the plain
encoding.

We can explain the trends in these results in terms of circuit struc-
ture, and the interactions of the circuit Boolean functions. Consider
the 3-entry CAM described in Section 3.1, and let the tag size bek.
In this design theith match line,match[i] contains the result of a
match between the tag input and theith tag entry. When the plain
encoding is used, theith match line contains the result of the match

50
60
70
80
90

100

200

300

400

500
600
700
800
900

1000

2000

3000

4000

5000

2 4 8 16 32 64 128 256

M
em

or
y

B
D

D
 (

K
B

)

Tag size in bits (CAM entries = 4, data size = 4)

CAM encoding
Plain encoding

Figure 3: OBDD trends with varying tag size.

between the input tag ~tagin and theith tag entry ~tag
i
. After the com-

pare, the Boolean function associated withmatch[i] is fmatch[i] =
:((tagin[k � 1]� tagi[k� 1]) _ : : : _ (tagin[0]� tagi[0])) The
value on each dataout line,Dataout[j], is a function of all the func-
tions on all the match lines, bitd[j] (used in the associative read
assertion), and~i. So, potentially there are interactions among all the
Boolean variables associated with the tag and data entries and the tag
input.

When the CAM encoding is used, the antecedent fragment (Sec-
tion 3.1) specifying the 0th tag entry is given by(when(~i = 0)(T [0] =
~tin))^ (when(~i 6= 0)(9p1:T [0][p1] = :tinp1)). When the tag input

is tin, then the 0th tag entry matches only if~i = i1i0 = 0. This
is the information conveyed by the Boolean function onmatch[0].
Therefore,fmatch[0] = i1 � i0. So, the functions on the dataout lines
depend only on the Boolean variables in~d, and~i. Thus, the use of
CAM encoding minimizes the variable interaction and this results in
substantial space savings, especially when the number of entries is
large. We have not shown the running times of the assertions here,
most of which finish in a few seconds on a RS/6000TM model 250
workstation.

4. PowerPC Branch Target Address Cache Array

The Branch Target Address Cache (BTAC) array is part of the
speculative instruction fetch mechanismon some PowerPC processors.
The particular BTAC we verified, from a recent PowerPC processor,
was a 64 entry content addressable memory, where each entry consists
of a 30-bit tag and a 32-bit data part (Figure 4). The branch address
is used to access the BTAC array, which contains the target address of
previously executed branch instructions that are predicted to be taken.

The primary task of this unit is an associative read operation, i.e.,
given a branch instruction address presented at therd0 fadr input,
to determine if there is a matching tag entry, and if so give out the
corresponding data entry, which is the branch target address. The
verification of this operation is similar to that of the CAM associative
read operation of Section 3. There are also a number of other operations
this unit performs, including reset, and initialization of its round-robin
register. Our discussion, however, will focus on thereplace, or CAM
write operation.

SCAN_OUT SCAN_IN

TAG[0]

30

DATA[0]

30 32

FETCH ADDRESS TARGET ADDRESS

TAG[63] DATA[63]

TAG[1] DATA[1]

TAG[2] DATA[2]

TAG[62] DATA[62]

DETECTOR

HIT

HIT0 HIT1 SHIFT_RR

WRITE

DRIVER

REGISTER

ROUND

ROBIN

REGISTER

FLUSH RD0_FADR RD1_FADR BTAC_DATA_OUT

WR_FADR BTAC_DATA_IN

WRITE_EN

31 31
32

32

Figure 4: Branch Target Address Cache unit.

4.1. BTAC Replace operation

In the replace operation, a TAG-DATA pair is updated with new
values. The selection of an entry for updating is not necessarily based
on the address of the entry, rather, it can also be based on a round-
robin replacement policy. This operation is essentially a CAM write
operation.

The first step in this operation is to select the entry to be replaced.
An associative read is done on a tag value presented at read port 1,
i.e., rd1 fadr. This input tag is compared to all the stored tags in
parallel, and if there is a match,hit1 rises and the matching entry is
updated with the new values atwr fadr (the new tag) andbtac data in
(the new data). If there is no match, then a round-robin replacement
policy is enforced. This replacement policy is implemented with a
64-bit round-robin register (right side of Figure 4) which is a one-hot
encoded ring counter. The bit position in the ring counter which is 1
points to the BTAC entry to be replaced in the case of a miss on the
address atrd1 fadr. Irrespective of the value onhit1, all entries which
are not replaced remain unchanged.

Verification of the replace operation, required verifying a number of
different cases, many of these similar to the memory write operation.
One of the more interesting cases is that outlined above, when there
is no hit onrd1 fadr, and the TAG-DATA entry pointed to by the
round-robin register is written to (and all other TAG-DATA entries are
unchanged). This case is discussed below.

To verify this case, we encoded the TAG value to be unequal to
the symbolic valuetag. In order to do this, we could use a CAM
encoding where theith bit position of a TAG[] entry equalstag[i], and
all other bit positions of the TAG[] entry are X. The problem with this
is that if we have to show that TAG[] remains unchanged, then it is not
sufficient to show that it still has its earlier value which is of the form
<X,X,X,...,tag[i],...X>. The bit positions which are X can change,
and we would not be able to detect it, since X denotes an absence
of information. Therefore, in the assertion below, we have a vector
of symbolic values calledval, which we use to encode a value of the
form <val[0],val[1],...,val[i-1],tag[i],val[i+1],...,val[n-1]>. This value
is unequal totag; but, we can also detect whether the value of TAG[]
remains unchanged in an operation, since none of the bit positions
contain X. In this manner, we verified that only the tag entry pointed
to by the round-robin register was updated, and the rest remained
unchanged.

1 0

1 0

UPPER BAT REGISTERS

BEPI 0000 BL Vsp

BEPI 0000 BL Vsp

BEPI 0000 BL Vsp

BEPI 0000 BL Vsp

LOWER BAT REGISTERS

0x0

0x0

0x0

0x0

BRPN 0WIMG PP

BRPN

SPROP

0WIMG PP

BRPN 0WIMG PP

BRPN 0WIMG PP

1 0

EA(15:19)

EA(0:19)

EA(0:14)

EA(19)

EACA(19)

TLBRPN(19)

TRANSLATE

RPN_STAT(19)HIT STATUS(0:5)SPROP

SPROP

WRCLK

RDCLK

PHI2

PHI1

PR

RID(0:2)

RPN(0:14)DOUT(0:31)

0x0

RPN_LS(0:19)

Figure 5: DBAT organization

4.2. Results
The most complex BTAC assertion takes 40MB of memory and 5

minutes to run, on a RS/6000 model 350 workstation. Of this 40MB,
24 MB is taken up by the OBDDs, and the remaining space is taken up
by other run-time data structures. The total run time for all assertions
was 20 minutes. All the BTAC assertions passed, and no bugs were
uncovered in this circuit. If a more naive Boolean encoding had been
used for the BTAC verification, the OBDD growth trends of Figures 2
and 3 predict that a memory of several GB, and a 32-bit address space,
would not have been sufficient for this verification!

5. PowerPC Block Address Translation array

The PowerPC architecture includes a block address translation
(BAT) mechanism which maps ranges of effective addresses larger
than a single page into contiguous areas of physical memory [5]. Such
areas are used for data not subject to normal virtual memory handling.
such as a memory-mapped display buffer. This translation mechanism
is implemented as an array consisting of software controlled registers.

The DBAT array implements the BAT translation mechanism for
data memory references. It is a CAM containing 4 tag entries and 4
data entries. Each tag-data entry pair is organized as a pair of registers
called the Upper DBAT Register and the Lower DBAT register (Figure
5). The two operations this array performs are the SPR (“special
purpose register”) operation, and the non-SPR operation. In the SPR
operation, this array behaves like a register file where in a single
clock cycle reads and writes are done on the Special Purpose Registers
(SPRs) constituting theupper and lower DBAT registers.

In the non-SPR mode of operation, the DBAT array behaves like a
CAM and it translates the 9 to 15 most significant bits of the logical
address (bit 0 is the MSB) into the physicaladdress. The remaining bits
pass unchanged. In Figure 5, the incoming logical address (top 15 bits,
i.e. EA(0:14)) is compared to the block effective page index (BEPI)
entry. The block length field (BL) contains a 11-bit mask, used to
determine which bits are to be compared. If the mask is all 0’s, then
all 15 bits are compared, and the corresponding 15-bit data entry, the
Block Real Page Number (BRPN), is sent out as the upper 15 bits of
the physicaladdress. If the mask entry is all 1’s, then only the top most
4 bits are compared, and on a match only the top most 4 bits of the

BRPN are put out, as bits 0 to 3 of the physical address. In this case,
bits 4 to 14 of the physical address are copied from the logical address.
The mask has a unary-style encoding. The 12 possible legal values for
the mask for each tag-data entry are 00000000000, 00000000001,...,
01111111111 and 11111111111. The lower 11 bits of the BEPI and
BRPN entries should be 0 in positions where the mask value is 1.
Every register pair has a valid bit, Vsp. This bit, when 0, indicates that
the BEPI-BRPN-BL entry is invalid, and there can be no match on this
entry. The system invariant specified in the PowerPC programming
environment manual [5] is that at most one DBAT entry should match
the incoming logical address. More details on this complex unit can
be found in [5]. While we have verified all the DBAT operations, here
we describe only the verification of some aspects of the interesting
“non-SPR” mode of operation.

5.1. DBAT non-SPR operation
In section 3.1 we described a way of encoding that a regis-

ter T [0] was not equal to a value~tin. We abbreviated this by
9p:T [0][p] = :tinp. This encoding does not work directly for ex-
pressing a mismatch on an upper DBAT register because comparison
can be disabled on some selected register bits by the mask field. Fur-
thermore, the bits masked out can be different for all four of the upper
DBAT registers. In order to express that a register contains a data value
that doesnotmatch the incoming data, we needed to take into account
the (12) legal values the mask bits can hold.

Using 4 symbolic Booleanvariables,~m = m3m2m1m0, we created
a symbolic vector,~M , to encode the 12 legal mask values. Given a
vector of symbolic Boolean variables,~u[0�14], all legal BEPI entries
may be expressed symbolically as~u[0� 3] jj ~u[4� 14]&: ~M, where
jj is the bitvector concatenation operator. The position of 1’s in a
mask indicates the BEPI bit positions which are not compared to
an incoming tag,~tin. Therefore, if the mask is 00000000111, the
comparison is done over bits 0 through 11, and the mismatch can be
over any of these 12 bit positions. This mismatch is expressed as
9p:(0 � p � 11)^T [0][p] = :tinp Combining such information for
all the 12 legal mask values covers all possible casesof a tag mismatch.
Since every register pair can have a different mask, we need a separate
set of Boolean variables,~m, for encoding the mask value for each pair.
Also, for each register pair we need a distinct Boolean variable,v, to
indicate whether this entry is valid. Using this encoding, verification
of the associative read can be done in a mannersimilar to that described
earlier.

5.2. Results
We wrote two assertions for verifying the DBAT circuit, one for

SPR operation, and the other for non-SPR operation. On a RS/6000
model 350 workstation, peak memory requirements for running all
the assertions was 16.1 MB, and the total time was 15 minutes. We
also wrote an assertion for the non-SPR operation using the plain
encoding, to compare against these results. This encoding did not
work well. Even with many control signals set to non-symbolic values,
the memory required was over 100 MB!

We discovered two bugs in this circuit, both in the SPR mode
of operation. The first bug was that the signal, rpnls, should have
been all 0’s, and was not. The second bug involved an incorrect
implementation of the signal, rpnstatus19. It is significant that these
bugs were discovered by running just one assertion specifying the SPR
operation. This is in contrast to the commonly accepted practice of

running a huge number of (non-symbolic) simulation vectors, often
for days, with no certainty that such corner cases will be brought out.

6. Conclusion

We have reported on new techniques to verify CAMs. It is based
on symbolic trajectory evaluation and new Boolean encoding tech-
niques. We have shown that our techniques avoid the OBDD space
explosion problem for CAMs, and the OBDD space scales linearly or
sub-linearly with increasing in various CAM parameters. Using these
techniques we have verified complex CAMs from a recent PowerPC
microprocessor. This work opens the way to the efficient verification
of numerous on-chip CAMs such as TLBs, cache tags and branch
target buffers.

References

[1] D. L. Beatty,A Methodology for Formal Hardware Verification
with Application to Microprocessors, Ph.D. Thesis, published as
Technical report CMU–CS–93–190, School of Computer Sci-
ence, Carnegie Mellon University, August 1993.

[2] R. E. Bryant, “Formal Verification of Memory Circuits by
Switch-Level Simulation,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, Vol.10, no.1,
Jan. 1991; pp. 94-102.

[3] N. Ganguly, M. Abadir, M. Pandey “PowerPC Array Verification
Methodology using Formal Techniques,” inProceedings of the
International Test Conference, 1996.

[4] K. L. McMillan. “Symbolic model checking - an approach to
the state explosion problem,” PhD thesis, SCS, Carnegie Mellon
University, 1992.

[5] “PowerPCTM Microprocessor Family: The Programming Envi-
ronments,” Motorola Inc., 1994.

[6] M. Pandey, R. Raimi, D. Beatty, R. Bryant, “Formal verification
of PowerPC(TM) arrays using symbolic trajectory evaluation,”
Proc. 33rd ACM/IEEE DAC, 1996.

[7] C. J. H. Seger, R. E. Bryant, “Formal verification by symbolic
evaluation of partially-ordered trajectories,”Formal Methods in
System Design,6:147–189 (1995).

[8] C. J. H. Seger, “Voss—a formal hardware verification system:
user’s guide,” Technical Report 93-45, Department of Computer
Science, University of British Columbia,1993.

[9] N. Weste, K. Eshraghian,Principles of CMOS VLSI design, A
systems Perspective, Second Edition, Addison Wesley, 1994.

PowerPC and RS/6000 are trademarks of the International Business Ma-
chines Corporation used under license therefrom.

	CD-ROM Home Page
	DAC97
	Front Matter
	Table of Contents
	Session Index
	Author Index

	Paper URL

