An Event-Driven Multi-Threading Architecture for Embedded Systems

Reinhard Gerndt', Rolf Ernst?

" IAM FUE-GmbH, Richard-Wagner-Str. 1, D-38106 Braunschweig, Germany
2 Institut fir Datenverarbeitungsanlagen, TU Braunschweig, Hans-Sommer-Str. 66, D-38106
Braunschweig, Germany

Abstract

In this paper we present an event driven multi-threading
architecture and its underlying event flow system model of
computation as a framework for the implementation of
complex reactive and communication systems. Existing
process oriented specification languages can be used to
specify the system and embedded in the model. The target
architecture covers a wide variety of architectures, varying
from small FSMs to large processors, which are
interconnected by a network template which performs
dynamic scheduling and communication for different levels
of process granularity and timing. Interconnect and module
implementation and optimisation is based on an event flow
graph model (EFG). In this paper we present our system
model and the architectural template and show how they
can be applied to an industrial application example.

1 Introduction

Increasing demand on high speed real-time control systems
(fig. 1) and the necessity for an optimal exploitation of the
design space, cause the need for new design methodologies
and new architectures. The major optimization criteria are
speed and costs. One way to control speed and area is to
optimize parallelism over sequential processing. To fully
exploit the design space, a variable granularity of
parallelism within a design approach is needed. It is an
observation, that most control schemes, as current
methodologies and most processors, support only a fixed
granularity of parallelism. Therefore only part of an

Peripheral
processor

! Memory !

Host-Prozessor

Co-Prozessor

Figure 1 Embedded system.

29

0-8186-7895-X/97 $10.00 © 1997 IEEE

embedded system may be implemented optimally. The
limitations may be overcome by an event-driven system,
that allows an arbitrary granularity.

Variables (interface to environment)

Al 4 A
v v

1/0 I/0 I/0
channel 1 channel 2 s channel 16

Scheduler

¢

Processing unit

Figure 2 TPU structure

Examples for event-driven design methodologies and archi-
tectures are Motorolas time processing unit (TPU) [1] (fig.
2) and the PBS-communication controller [2]. The TPU
shows a high amount of parallelism in event detection, but
schedules its processes sequentially. It is supplied with 16
I/O channels, that detect events by monitoring input
variables. As a reaction to an event, the I/O channel issues
a service request to the scheduler and may change an output
variable. The scheduler dynamically activates the
programmable processing unit. The PBS exploits fixed
instruction level and task level parallelism.

This paper is organized as follows: in section 2 we describe
the underlying system model of computation. The
architecture is described in section 3. We then present an
implementation example in section 4 and our conclusions
in section 5.

2 System Model of Computation

In a reactive system, processing is stimulated by possibly
asynchronous external events [3, 4]. The embedded system
processes data from input variables to determine new values
for output variables or internal process states. We propose
an event flow model, which is composed of a set of
processes P, a set of event places E and a set of variables V.
Functions Iyp, Opy, Iy and Ogp define the flow between P,
V and E:

Iyp: V-P*, P¥c P(P): process input variable,
Opy: P-V*, V*c P(V): process output variable,
I V-E¥*, E*c P(E): event detection input,
Og: E-P*, P*c Pe): process activation input.

Input from environment or other processes

The event flow hypergraph EFG (fig. 3) is defined as a 7-
tuple:

EFG = (V, P, E, L3, Opy, Iyg, Ogp).

Hyperedges correspond to multiple copies of variables and
events in the implementation.

A process p € P has at least an activation input, a data input
and a data output. There is no restriction on the maximum
number of inputs and outputs. Functionality of a process
may range from hard-wired mapping functions to complex
sequential operations. Depending on functionality and input
data, the process may not compute a new value for its
output data. The processes are created at compile-time and
are activated by events. A process is executed upon
activation and then terminates. Input data must be available
prior to activation. The process is activated only once by an
event. If a process is controlled by more than one event it is
activated whenever any of them occurs (OR-condition). A
number of processes may be activated by the same event
concurrently.

Event places e € E detect events, which activate the related

L 2
(Variable b’ ? (Variable a’§ (Variable d
A 4
Process B
v v ¥
i Variable ¢’} [Variable d’
Process C

\ AR 4 v

i Qutput to other variables

Figure 3 EFG system model, example, part of [5]

30

processes. An event is defined as a predefined transition of
a variable. For a binary variable this can be a 0-1-transition.
For extended variables more complex transitions can be
defined. If a following event occurs prior to the execution
of a process, the event may be ignored. This may be
avoided by explicitly modeling an event handshake among
processes. An event may control arbitrarily many processes
concurrently.

Variables v € V are used to store data and supply the
interface between modules and to the environment. The set
of vari-ables can be structured into the two subsets of event
variables and data variables. Data variables supply input
data for processes, event variables for event places.
Variables must not be changed by more than one concurrent
process at the same time.

Input
data and event variables

| Event detection

T 2

i, Scheduler. .} Variable
memory

Processing unit 4———!

(described in
C or VHDL)

!

Output
to all other modules

Figure 4 Implementation module structure.

Initially the system is modelled as a set of independent
event trees, each with an input event as root and the
possible output events as leafs. An input event, caused by a
change of an input variable, propagates through the event
tree and will possibly cause a change of either the state (set
of all variables) or of an output signal. This way the event
tree can be analyzed and implemented independently for
each input event. In a second step, resource sharing is
applied by tree merging.

The model has some similarity with colored Petri Nets [6].
However it is better suited to the reactive flow in our target
architecture and leads to more compact descriptions.

The structure of the event flow model will now be illus-
trated with figure 3, showing the main functionality of the
framing module taken from the application example in
chapter 4. The modules basic functionality is to preprocess
telegrams prior to transmission. Process A is activated by
the availability of telegram data in variable a (with copies a’
and a’) via event a. It controls the character sequence count
(variable b) of the telegram. Process B is activated every

time the sequence count (variable b) is changed via event b.
Process B then routes either a single character of the
telegramm data (variable a) or the error check character
(variable d) or a framing character to the sequential output
(variable c). (It serialises the telegram according to the
sequence count (variable b)). Process C computes the error
check character (variable d) from the sequential character
stream (variable ¢). It is activated every time the output
(variable c) is changed via event d.

The individual processes are described in a software or
hardware language such as ‘C’ or VHDL. We can map the
model onto hardware or software using the implementation
module structure as shown in figure 4. Variables are stored
in a local memory. Event variables are evaluated by the
event detection unit. Data processing is performed by the
processing unit. Processes may also be grouped to clusters
to be implemented on the same module in order to control
speed (resource sharing) and costs (local communication).
To resolve concurrent events on a shared processing unit, a
scheduler has to be added. '

Concurrently executing data and control processing and
communication not only offers a large design-space but also
makes the approach potentially suitable for co-synthesis.

3 Target Architecture

Figure 5 shows the general outline of our target
architecture. The processes are clustered on a number of
concurrent processor nodes. This is currently done
manually. A processor node may contain a set of sub-
processors to form a hierarchy of independent processing
units. The processors are interconnected such as to
implement the EFG-edges, thereby preserving the order of
messages. The communication network can be tuned to
different applications, e.g. as a bus, for standard
applications or with a function specific topology.

The detailed target architecture is shown in figure 6. The

<
(4]
=
-
7]

Data/ey

Processor
node 1

VVlT

Processor
node 2

VVl

Processor
node 3

by

Figure 5 Target architecture

31

RBI RBI RBI
\ 4 v A 4
Event Event Event
detection detection detection
Scheduler Scheduler Scheduler
— e mp P
Local . '@ Local . "@ Local i . “@
variable Processing « | variable @7y Processing | yariable (@B Processing
memory unit memory unit memory unit
Bus
Master
(TDMA) 1—.(Multicast Communication Network)

Figure 6 Detailed target architecture.

processing units are interconnected by a multicast
communication network. Access is controlled by a bus
master, e.g. with a TDMA strategy. The messages contain
variable identifiers and values. The receive bus interfaces
(RBI) filter the message stream to suppres irrelevant
messages. The event detection unit evaluates the event
variables for event conditions to possibly issue a request to
the scheduler. Event conditions may be any changes of a
variable or comparison with a given value or other more
complex conditions. This covers the standard peripheral
units in micro-controllers such as edge detection and

rl L3
H H

v

[Word B)(WodA J

. |
| |
l

:Process # |
(Event) :' Select

Write A/BJ|
| [Local Controller l(ne |
e e o — — —
#1: Word A-1 woeeenne Control path
#2: Word B - 1 = Data path

Figure 7 Processing unit example.

32

capture and compare units [7]. The scheduler will then
activate the processing according to the detected event. The
type of processing unit (PU) may range from a small hard-
wired module as shown in the following example to a full
size microprocessor or even a multi-processor system.
When activated, it executes a predefined process (T'1 - Tn)
according to the system model and possibly computes new
values for its output variables. The PU may be capable of
executing a number of different processes as long as
constraints are met under all conditions. Input data is read
from the local variable memory. The output variables are
buffered and transmitted to all other nodes trough the
transfer bus interface (TBI).

An example processing unit, capable of executing two de-
crement processes is given in figure 7 (For clarity we omit-
ted the external data paths to words A and B). Process 1
decrements data word A, process 2 decrements word B.
Both processes may be activated by different events, which
must be mutually exclusive if a shared processing unit is
used. The processing unit may e.g. be used for a cascaded
down-counter. An external event may cause decrementing
word A. Tf word A equals 0 this would be interpreted as an
internal event, causing word B, the high byte, to be
decremented.

4 Implementation results

The system model and architecture have been applied to a
communication hardware controller design [5]. The
functionality of the controller is to preprocess parallel I/O
data and transmit them according to a given protocol [8].
The system was initially modeled using ‘C’, with
independent processes of different granularity. The next
step was to cluster processes with respect to concurrency,
speed and costs. The clusters then where translated to a
VHDL description of independent processor nodes and
synthesised according to the architectural template (fig. 6).

Parallel I/ data

:

o ma Application

= |

De-

framing|€ ! Framing
Receive

- &

Transmit

Serial Input T L Serial Output
Figure 8 Application example

The hardware implementation contains 7 modules, figure 8
is showing the major ones. They are connected with an
application specific topology of explicit communication
channels. The receive-transmit-module monitors time and
serial input data. Received data is transmitted to the de-
framing module and thereby activates processing. De-
framing outputs data and events to the sequencing and the
application module. The application module controls the
parallel output, if activated. In the opposite direction
parallel input data is preprocessed and transmitted
according to the event thread.

The size of the software, including some library functions,
is 35 kbytes of executable code when the ‘C’-sources are
compiled for an Intel personal computer. Supplied with the
necessary resources, like a physical interface, it works as a
real communication controller. Translated to VHDL and
synthesized, the design amounts to 15 k gate equivalents of
a 0.7y gate array technology. The speed ratio of hardware
over software was over 1000.

33

5 Conclusions

In this paper we presented a new event-driven system
model and a target architecture for the co-design of highly
dynamic embedded control systems.The approach allows
the design of architectures with a low control overhead
due to the event-flow concept. An industrial grade
communication controller is given as an example.

References
[1]

Motorola: “TPU - Time Processing Unit Refernce
Manual’, 1990.

[2] R. Gerndt: ‘A Case Study in Co-Design of
Communication Controllers’,International Workshop on
Hardware/Software Codesign, Pittsburgh, Pennsylvania,

1996.
(3]

N. Halbwachs: ‘Synchronous Programming of Reactive
Systems, Kluver Academic Publishers, 1993.

f4] R. Kumar, V K. Garg: ‘Modeling and Control of Logical
Discrete Event Systems’, Kluwer Academic Publishers,

1995.
(51

M. Rudert: ‘Entwicklung einer Entwurfssystematik am
Beispiel der FPGA-Implementierung eines Feldbus-
Moduls’, Diplomarbeit, Fachhochschule Braunschweig-
Wolfenbiittel (‘Application of a Design Method to an
FPGA Implementation of a Fieldbus Module’, Master

Thesis, Fachhochschule Braunschweig-Wolfenbiittel).

[6] J. L.Peterson: ‘Petri Net Theory and the Modeling of
Systems’, Prentice-Hall, 1981.
7

Siemens: ‘Microcomputer Components’, User’s Manual
6.90.

[8]1 EN 50170, European Fieldbus Standard.

	Main Page
	CODES97
	Front Matter
	Table of Contents
	Author Index

