
Memory Organization for Improved Data Cache Performance in Embedded
Processors�

Preeti Ranjan Panda, Nikil D. Dutt, and Alexandru Nicolau
Department of Information and Computer Science

University of California, Irvine, CA 92697-3425, USA

Abstract

Code generation for embedded processors creates op-
portunities for several performance optimizations not ap-
plicable for traditional compilers. We present techniques
for improving data cache performance by organizing vari-
ables declared in embedded code into memory, using spe-
cific parameters of the data cache. Our approach clusters
variables to minimize compulsory cache misses, and solves
the memory assignment problem to minimize conflict cache
misses. Our experiments demonstrate significant improve-
ment in data cache performance (average 46% in hit ratios)
by the application of our memory organization technique
using code kernels from DSP and other domains on the LSI
Logic CW4001 embedded processor.

1. Introduction

Embedded microprocessors are a common feature in
modern electronic systems due to the advantages they of-
fer in terms of flexibility, reduction in design time and
full-custom layout quality [11]. These processors are of-
ten available in the form ofcores, which can be instanti-
ated as part of a larger system on a chip. This is feasible
in current technology due to the relatively small area occu-
pied by the processor cores, making the rest of the on-chip
die area available for RAM, ROM, coprocessors, and other
modules. A core-based design methodology is driven by
demands for design reuse that ultimately results in reduced
development time. Apart from the processors in the Digital
Signal Processing domain (such as the TMS320 series from
Texas Instruments), we also find microprocessors with rela-
tively general purpose architectures available as embedded
processors. An example of such a general purpose embed-
ded processor is LSI Logic’s CW4001 [2], which is based
on the MIPS family of processors.

Generation of efficient code for embedded processors has
been the subject of recent investigation [1, 5, 13]. Optimiza-

�This work was partially supported by grants from NSF(CDA-
9422095) and ONR(N00014-93-1-1348).

tion techniques that improve the performance of application
programs by exploiting the irregular architectures of embed-
ded processors have been reported [5, 9, 10, 14].

An important determinant of performance in embedded
systems is the interaction between the processor and exter-
nal memory. General purpose embedded processors such
as the CW4001 are equipped with on-chip instruction and
data caches, which interface with larger off-chip memories.
Since off-chip memory accesses usually stall the CPU exe-
cution for significant durations (each access could take 10-
20 processor cycles, depending on the relative processor and
memory access speeds), it is important to design the inter-
face between cache and main memory carefully.

Cache misses can be classified into three categories:
compulsorymisses,capacitymisses, andconflictmisses [7].
In the computer architecture and compiler domains, many
techniques for achieving cache miss reduction involve ad-
ditional hardware assistance [6, 17, 3], which can often be
expensive in terms of additional on-chip area. A well known
compiler optimization technique calledblockingcombines
strip mining and loop permutation to maximize temporal lo-
cality of reused data [16]. This technique helps in reducing
capacity misses in data caches, but fails to take advantage
of data placement strategies to reduce conflict misses.

In the embedded processors domain, code placement
methods based on program traces for improvement of in-
struction cache performance have been reported [15]. A
technique for estimation of instruction cache performance
has also been reported [8]. However, no published litera-
ture exists on the improvement of data cache performance
in embedded systems.

Embedded system design is characterized by certain fea-
tures that traditional compilers typically do not consider in
their optimizations. For example, compilers seldom take
into account the specific cache parameters such as cache
line size in their optimizations, because fast compilation
speed requirements preclude the complex analysis proce-
dures. However, in embedded systems, code generation can
be tuned to the specific cache configuration to be used (or the
specific configuration that is being currently explored). Fur-

ther, the typical execution of only a single program and the
absence of virtual addresses permits the compiler to asign
the exact memory location occupied by the data. In this
work, we exploit this situation to organize data in memory
in order to minimize data cache misses.

2. Problem Description

Consider a direct-mapped cache of sizeC (C = 2m)
words, with a cache line sizeL words, i.e.,L consecutive
words are fetched from memory on a cache read miss. In our
formulation, we assume awrite-backcache with afetch-on-
misspolicy [7], though the technique remains identical for
other write policies, and is equally effective.

b

b[i]

NN N

C

Data CacheMemory

a[i]

a

c[i]

c

end for

int a[N], b[N], c[N]

c[i] = a[i] + b[i]

. . .
for i in 0 to N−1

Figure 1. a[i]; b[i] and c[i] map into the same cache line

We use a small example to illustrate the problem and our
approach. Suppose the code fragment in Figure 1 is exe-
cuted on a processor with the above cache configuration,
whereN is an exact power of 2, andN > C. Assuming
one array element per memory word, let arraya begin at
memory location 0,b atN , andc at 2N . Let f(x) denote
the cache line to which the program variablex is mapped.
In a direct-mapped cache, the cache line containing a word
located at memory addressM , is given by:(M modC)=L.
In the above example, array elementa[i] is located at mem-
ory address:i. Similarly, we haveb[i]: N + i andc[i]:
2N+i. We find that the corresponding cache lines to which
each of them will be mapped are:f(a[i]) = (i modC)=L;
f(b[i]) = ((N + i) modC)=L = (i modC)=L (since
N is divisible byC); f(c[i]) = ((2N + i) modC)=L =

(i modC)=L. In other words,a[i]; b[i], andc[i] are mapped
onto the same cache line (Figure 1).

Thus, the sequence of events that take place in one loop
iteration is: a cache miss occurs while accessinga[i]; the
linef(a[i]) is filled; accessingb[i] now causes a miss, since,
even if it was present in cache before, it was displaced by
the last access toa[i] (sincef(a[i]) = f(b[i])); f(a[i]) is
now filled by the line fromb; the write toc[i] also causes a
miss, sincef(c[i]) = f(b[i]); in a fetch-on-miss cache, this
causes the same cache line to be displaced by elements of
arrayc. The same cycle repeats in other iterations. In other
words,every memory access results in a cache miss!Such
memory access patterns are known to result in extremely in-
efficient cache utilization, especially because many applica-
tions deal with arrays whose dimensions are a perfect power
of two [17]. In such situations, simply increasing the cache

size does not present an efficient solution, because the cache
misses are not caused due to lack of capacity. The conflict-
misses can be avoided if the cache sizeC is made greater
than 3N , but this is often infeasible whenN is large, and
where feasible, there is an associated area and access time
penalty incurred when cache size is increased. Reorganiza-
tion of the data in memory results in a more elegant solution,
while keeping the cache size relatively small.

One way of preventing the thrashing caused by excessive
cache conflicts for this simple example is to padL dummy
memory words between two consecutive arrays that are ac-
cessed in an identical pattern in the loops. For this example,
if arraya begins at 0, arrayb begins at location:N +L (in-
stead ofN) and arrayc begins at: 2N+2L (instead of 2N).
We have:
f(a[i]) = (i modC)=L

f(b[i]) = ((N + L+ i) modC)=L = (i modC)=L+ 1
f(c[i]) = ((2N + 2L+ i) modC)=L = (i modC)=L+ 2

This ensures thata[i]; b[i], andc[i] are always mapped
into different cache lines, and their accesses do not interfere
with each other in the data cache. We extend this basic idea
to organize scalars (Section 3) and arrays (Section 4).

3. Memory Organization of Scalar Variables

We assume that the scheduling and register allocation of
the code has already been performed, and the sequence of
accesses to variables is fixed.

3.1. Constructing the Closeness Graph

We first generate an Access Sequence, which is a
graph representing memory references (loads and stores are
treated alike) in the code. Figure 2(a) shows an example
Access Sequence. The label 3 on edgee ! a represents a
loop with bound = 3. We then construct aCloseness Graph
of the variables, which represents the degree of desirability
for keeping sets of variables in the same vicinity in mem-
ory. E.g., ifL words accessed successively from memory
are placed in consecutive locations, a single memory access
could fetch them all into cache, thereby reducing uptoL�1
extra memory accesses caused due tocompulsorymisses.

We define thedistancebetween two nodesu andv in
the access sequence as:distance(u; v) = number ofdistinct
variable nodes encountered on a path fromu to v, or v to
u (includingu andv). The Closeness GraphCG(V,E) is
constructed from the Access Sequence by first creating a
nodev 2 V for every variable inA, and initializing all
edge weightse(u; v) = 0. For all occurrencesu0 of vari-
able u during traversal of the Access Sequence, we ex-
amine a window of widthM preceding and followingu0.
For all node instancesv0 (of variablev) in this window
(wheredistance(u0; v0) � M), we update the edge weight
e(u; v) = e(u; v) + k, wherek is the number of times con-

trol is expected to flow betweenu0 andv0 1.

(a) (b)

a b c d ex y f g

3
g 1

1
1

1

1

1

1

1

2

3

3
3

3

3

3

3

2 2

y

b

c

d

f

xae

Figure 2. (a) Access Sequence (b) Closeness Graph

Figure 2(b) shows the Closeness Graph derived from the
Access Sequence in Figure 2(a), withM = 3.

3.2. Grouping of Variables into Clusters

The next step is to group the variables into clusters ofM

words, whereM is the number of words in a data cache line.
Intuitively, a higher edge weight between two variablesu

andv in the Closeness Graph represents a reduction in the
number of memory accesses, if the two variables are stored
in the same cache line. I.e., we can reduce cache misses by
clustering variables with higher edge weights into the same
cache line. We formulate the problem of maximizing the
sharing of the cache lines by closely correlated variables as
follows: Partition the nodes of the Closeness GraphCG
(i.e., the set of n variables) into clusters of sizeM , so that
the total weight of edges in all the clusters is maximized.
Since an exact solution to the above problem has a com-
putational complexity ofO(nM), we employ the following
greedy heuristic, with complexityO(Mn2).

ProcedurePerformClustering
Input: CG(V; E): Closeness Graph;M : Cache Line Size
Output: SetF : Set of clusters of sizeM

For eachu in V , findS(u) =
P

v2V
e(u; v)

LetX = vertex setV andF = �

��X keeps track of variables not yet assigned to clusters
while (X 6= �) do

Let u = vertexv 2 X with maximumS(v) (i)
Create new clusterC = fug

while (size of clusterC 6= M) and (X 6= �) do
Let x be the variable2 X with maximumT , (ii)
whereT =

P
u2C;v2X�C

e(u; v) �� x has max
�� sum of edge weights with nodes already inC

C = C [fxg �� add x to cluster C
X = X � fxg �� remove x from X

Sete(u; v) = 0 for all (u 2 C) or (v 2 C)
�� delete all edges to nodes in clusterC just formed
UpdateS(v) for all v 2 X;F = F [fCg

When procedurePerformClusteringis applied on the
graph in Figure 2(b), nodeb is selected first (line i). Next,

1The required values ofk in case of conditionals and loops could be
obtained by using profiling information. However, in this work, we use
the often-used simplifying assumption that branch probability is 0.5 for an
if-statement, and that the loop bounds are always known at compile time.

line (ii) causes nodesc andd to be selected into the first
clusterC1. When we have equalT values for multiple
nodes, we select one at random. Nodesb; c; d, and all con-
necting edges are now deleted. From the resulting graph,
a; e; andg form the next clusterC2. The final clustering is:
C1 : [b; c; d];C2 : [a; e; g];C3 : [x; y; f].

3.3. The Cluster Interference Graph
After grouping the variables into clusters of sizeM , we

build anInterference Graph (IG)of the clusters, which rep-
resents the desirability to store clusters in memory, so that
they donot map into the same cache line. Each node in
the Interference Graph represents one cluster of variables
obtained from procedurePerformClustering. A high edge
weight between two nodes indicates a large number of con-
flict misses in the data cache, if the respective clusters were
to map into the same cache line. We first convert the Vari-
able Access SequenceA into a Cluster Access Sequence
by renaming each nodeu in the sequence by the clusterC,
whereu 2 C. We then construct the Cluster Interference
Graph by first creating a node inIG for each cluster inF
(the set of clusters), and then assigning edge weighte(u; v)

between nodesu andv to be the number of times the access
to clustersu andv alternate along the execution path. E.g.,
for the variable sequencea ! b ! c ! d ! e;M = 2;
and the clusteringx : [a; d]; y : [b; c] andz : [e], we have
the Cluster Access Sequencex ! y ! y ! x ! z. This
results in an Interference GraphIG, with edgese(x; y) =

2; e(x; z) = 1, ande(y; z) = 1. The pair of nodesx andy
alternate twice in the execution path, due to the edgesx! y

andy ! x, causinge(x; y) = 2. The other pairs change or-
ders only once. The composition rules to be followed for
conditionals and loops are identical to those used for build-
ing the Variable Access Sequence (Section 3.1).

3.4. Memory Location Assignment
The final assignment of variables to memory locations

should consider the clustering and conflict-penalty infor-
mation in the Interference Graph. To minimize the conflict
misses in the data cache during code execution, we need to
ensure that cluster pairs with large edge weights do not map
to the same cache line when we assign memory locations.

We define thecost of a memory assignment(C) as fol-
lows: C =

P
x;y2V (IG) e(x; y) � P (x; y) wheree(x; y)

is the edge weight, andP (x; y) = 1 or 0, depending on
whether memory locations forx andy map into the same
cache line or not. Figure 3(b) shows the effect of a sam-
ple memory assignment for anIG with six clusters (Fig-
ure 3(a)), on a cache with four lines. We haveP (a; e) =

P (b; f) = 1 andC = e(a; e) + e(b; f) = 1 + 3 = 4. We
solve the following problem:Find an assignment of clus-
ters in IG to memory locations, such that the assignment
costC is minimized. This problem can be easily shown to

(a) (b)

a

b

c

d

e

f

0

1

2

3

4

5

6

7

Memory

Cache

a b

c

e

1

2

3

4

1

1
1

1

1

2

1
1

3

2

1

f

d

Figure 3. (a) Interference Graph (b) Memory Assign-
ment

be NP-hard, by using a reduction from the Graph Colour-
ing problem. We present below a greedyO(n2) heuristic
(wheren is the number of clusters) to solve the Cluster As-
signment problem for a cache of sizek that is similar to the
PerformClusteringprocedure.

We proceed to make the memory assignmentspageby
page, where a memory page consists ofk cache lines –
the size of the data cache. Note thatk consecutive clus-
ters in memory will never conflict in cache. We define the
cost of assigning clusteru to cache linei as cost(u; i) =P

v2X e(u; v), whereX is the set of clusters that have al-
ready been assigned to cache linei. This cost is the sum of
edge weights ofu with all nodes that are already assigned
to map into cache linei.

ProcedureAssignClusters
Input: IG(V;E) – Cluster Interference Graph
Output: Assignment of Clusters to Memory Locations

Sort the vertices ofIG in descending order ofS(u)
�� S(u) is defined in Section 3.2
LetX be this sorted list of vertices
while (X 6= �) do

Create new pageP in memory
while (size of pageP < k) and (X 6= �) do

u = head of listX
Assignu to line i of pageP , wherecost(u; i) is
minimum overi = 0 . . .k� 1
Deleteu fromX

For the exampleIG in Figure 3(a), the page size is
k = 4 lines. When we apply procedureAssignClus-
ters on this example, we first sort the vertices in de-
creasing order of the sum of their incident edge weights:
f(13); c(11); e(9); b(8); a(6) andd(5). Clustersf; c; e; and
b are placed into the first pageP0. While attempting to as-
sign a into the second pageP1, we find: cost(a; 0) = 2
(sincee(a; f) = 2), cost(a; 1) = 1, cost(a; 2) = 1, and
cost(a; 3) = 1. Thus, we choose a line within pageP1 that
minimizes the cost, and assigna to line 1. Clusterd has:
cost(d; i) = 1 for all i, so we assign line 0 ofP1 to d. The
final assignment is:P0: (0� f ; 1� c; 2� e; 3� b) andP1:
(0� d; 1� a).

For ann-way associative cache, we use the same defini-
tion of cost, except that the cost remains zero for the firstn

clusters assigned to the same cache line.

4. Memory Organization for Array Variables

We solve the memory organization problem for arrays
by first constructing theInterference Graphamong arrays
in the code, and then assigning memory addresses to each
array by minimizing the possibility of cache conflicts with
other arrays in the code.2

4.1. Constructing the Interference Graph

In the case of arrays, we note that if two arraysA andB
are accessed repeatedly within a loop, then there is a pos-
sibility that the accesses toA andB might cause conflict
misses in the data cache (Section 2). The Interference Graph
(IG) of arrays represents the possibility of cache conflicts
between the arrays in the code.

We first create a node for each array in the specification.
Next, we determine the arrays that are repeatedly accessed
in each loop, and add the loop boundBl to the edge weights
between each pair of arrays. This signifies that a total of
Bl cache conflicts could possibly arise between each pair
of arrays during execution of this loop. The resultingIG
gives us a criterion to prioritize the order in which we as-
sign memory addresses to arrays. The complexity of this
procedure isO(Ln2), whereL is the number of loops, and
n is the number of arrays in the code.

(a) (b)

a b

c

22

15 15

for i = 0 to 7

for j = 0 to 15
a[i] = b[i] * c[i]

int a[16], b[16], c[16];

a[i] = b[i+3] + 3

Figure 4. (a) Code showing arrays accessed in loops (b)
Interference Graph

In Figure 4(b), we show the Interference Graph derived
from the code shown in Figure 4(a). The first loop causes
e(a; b) = 7. The second loop adds 15 toe(a; b); e(a; c),
ande(b; c). The IG helps identify the order in which the
memory address assignment to arrays should be done.

4.2. Memory Assignment to Array Variables

In solving the problem of memory assignment of array
variables, we assume that the loop bounds and array dimen-
sions are known at compile time. We also assume that a uni-
dimensional array ofN elements is stored inN consecutive

2The problem of clustering of variables to avoid compulsory misses is
not relevant in the case of arrays, as most arrays are usually much larger
than a cache line – often much larger than the cache itself.

memory locations, and multidimensional arrays are stored
in row-major format. (The issue of selection of a good stor-
age technique for multi-dimensional arrays is addressed in
[12]). The memory assignment problem is NP-hard, be-
cause the degenerate case, when the array dimension = 1,
itself happens to be NP-hard (Section 3.4).

From the Interference Graph, we use theS(u) values for
each nodeu (defined in Section 3.2) to determine the order
of assignment of arrays.S(u) signifies the relative impor-
tance of the nodes, because a higherS(u) indicates thatu
could possibly be involved in many cache conflicts.

Central to the technique we use for memory assignment
of arrays, is a computation of thecostof assigning an array
(u) to begin at a specific memory addressA. This cost is
equal to theexpected number of cache conflicts with all ar-
rays that have already been assigned, if u were to begin at
A. Note that if the first element ofu is fixed at addressA,
all the other elements ofu are automatically assigned their
respective locations.

To determine whether two specific accesses to two arrays
in the same loop will map into the same cache line (i.e, cause
cache conflict miss), we perform a symbolic evaluation of
the equality checking function. Two memory locationsX
andY will map into the same cache line in a direct-mapped
cache withk lines (M words per line), if the condition:

�j
X

M

k
�

j
Y

M

k�
modk = 0

i.e., (bX=Mc � bY=Mc) is an integral multiple ofk, which re-
solves to:

(nk � 1) <
X � Y

M
< (nk + 1) (1)

wheren is any integer. Clearly, the symbolically evalu-
ated expression:(X �Y)=M , might not always reduce to a
constant, becauseX andY could be arbitrary functions of
any variable in the code. If the expression does not resolve
to a constant, then we conclude that the two arrays do not
conflict.

To formalize a strategy to perform the memory assign-
ment of arrays, we first describe the cost functionAssign-
mentCostthat returns the expected number of conflicts when
an array is tentatively assigned a specific location.

Function AssignmentCost
Input: u – Array under test;A – Proposed start address;

Access Sequence; Array assignments already completed;
IG – Interference Graph

Returns: Expected number of cache conflicts for this assignment
Initialize cost= 0
for all vlje(vl; u) 6= 0, vl already assigned
�� all assigned arrays having an edge withu in IG

for each loop (boundL) with accesses tov l andu
w = no. of times control would alternate between
elements ofvl andu mapping into same cache line (i)
cost= cost+w� L

return cost

In line (i) above, the number of times control alternates
betweenvl andu is determined by the access sequence, and
whether they map to the same cache lines is determined by
Condition (1).w represents the number of cache misses in
the loop due to conflict betweenvl andu. The procedure
AssignArrayAddressesbelow outlines the strategy for deter-
mining the addresses for each array.S(u) values are used
to prioritize the order of assignment, and each array is as-
signed to start from the first available memory location that
generates the lowestAssignmentCost, taking the arrays al-
ready assigned into consideration.

ProcedureAssignArrayAddresses
Input: IG – Interference Graph;k – no. of cache lines
Output: Assignment of addresses to all arrays (nodes inIG)

AddressA = 0
Sort nodes inIG in decreasing order ofS(u): v0 . . .vn�1

for i = 0 . . .n� 1
Initialize costc =1, min= 0
for j = 0 . . .k� 1

if AssignmentCost(vi;A+ j) < c then
c = AssignmentCost(vi;A+ j); min= j

Assign address(A+min) to first element ofvi
UpdateA = A+min+ size(vi) for next iteration

The worst case complexity of procedureAssignArrayAd-
dressescould beO(nkP), wheren; k;andP are the number
of nodes (arrays), cache lines, and total array accesses in the
specification respectively. However, in real behaviors, we
have observed that the loopj = 0 . . .k�1 tends to converge
very soon (typically less than 2 or 3 iterations), because the
number of different array elements that are accessed in inner
loops of code is usually small and finite.

This completes the memory address assignment of scalar
and array variables in the behavior.

5. Experiments and Results

We now describe the experiments performed on several
benchmark examples to validate our memory organization
strategy. Our experimental platform was the CW4001 em-
bedded processor core simulator from LSI Logic running a
SUN SS-5, using a sample configuration of: 1 KB instruc-
tion cache; 256 byte data cache; Line size = 4 words; Ar-
ray dimension = 16 (for 1-dimensional) and 16� 16 (for
2-dimensional); Memory latency = 5 cycles. The latency
number is an aggressively low value for the fastest memo-
ries. Since the performance difference widens even more
for higher memory latencies, the improvements we have
shown are the minimum possible.

Column 1 of Table 1 shows the example designs on
which we performed our experiments, and Column 2 gives
the number of scalar and array variables in each. All the ex-
amples are benchmark code kernels used in image process-
ing, telecommunication, and other applications in the DSP

Hit Ratio (%) #Cycles(x1000) Red
Benchmark sc/ar Unopt Opt Unopt Opt (%)

SOR 4/7 17.2 52.2 24.3 20.4 16.0
Laplace 2/2 95.8 95.8 11.6 11.6 0.0
dequant 7/5 38.3 82.4 7.3 6.3 13.7

FFT 20/4 2.4 23.7 66.4 61.5 7.4
idct 20/3 28.3 56.8 23.0 20.2 12.2

leaf comp 5/3 27.7 76.9 5.4 4.8 11.1
matrix add 2/3 9.3 75.6 11.5 7.5 34.8

hydro 6/2 21.3 79.7 58.0 38.1 34.3
inner prod 2/3 7.0 75.2 31.9 21.8 31.7

tri diag elim 2/3 2.7 75.0 38.5 23.8 38.2
lin recur1 3/2 50.6 65.7 100.5 99.1 1.4
eqnof state 5/4 64.0 91.2 93.5 91.5 2.1
ADI integ 17/6 53.4 61.6 60.6 57.8 4.6
2D PIC 8/8 60.2 79.7 26.5 20.7 21.9
1D PIC 4/12 19.6 81.4 89.3 47.6 46.7

implicit cond 11/7 2.7 74.6 46.4 36.9 20.5
2D hydro 8/9 17.4 64.1 521.3 267.7 48.6

genlin recur 5/3 2.1 80.6 51.7 40.4 21.9
ord transport 7/9 8.8 79.4 121.4 83.2 31.5

planckian 4/5 2.7 75.2 48.5 33.6 30.7
2D impl hydro 5/6 8.1 64.3 150.6 105.8 29.7

Average 25.7 72.0 21.9

Table 1. Summary of Results

and scientific domain.SORandLaplaceare algorithms fre-
quently used in DSP applications such as image process-
ing. Dequant, leafcompand Idct are modules from the
MPEG decoder application.FFT is the Fast Fourier Trans-
form routine, also popular in the DSP domain.Matrix add,
inner productandtri diagonalelim are frequently used in
routines involving multi dimensional arrays treated as ma-
trices. Hydro, lin recur 1, and the rest are other code ker-
nels of typical scientific applications, constituting the Liv-
ermore Loops benchmark suite. Columns 3 and 4 show a
comparison between thedata cache hit ratiosfor theUnop-
timized(no regard to cache parameters) andOptimized(our
technique) memory organizations. In almost all the exam-
ples, we notice that the difference in the hit ratios is sub-
stantial (46 % on an average). Columns 5 and 6 show the
execution time in thousands of cycles). There is a significant
reduction in the total cycle time for most of the applications
(Column 6). The total cycle time reduced by an average
of 21.9% over all the examples. This reduction is less than
the data cache hit ratio because the instruction cache perfor-
mance remains unchanged.

6. Conclusions and Future Work
Code generation for embedded processors reveals the

scope for many optimizations that have been hitherto unad-
dressed in traditional compilers. An important feature that
can be exploited while generating code for embedded pro-
cessors is the parameters of the data cache. In this paper, we
have demonstrated how a careful data layout strategy that
takes into account the parameters of the data cache, such
as cache line size and cache size, could induce significant

performance improvements in the execution of embedded
code.

We described techniques for clustering variables to min-
imize compulsory cache misses, and for solving the mem-
ory assignment problem with the objective of minimizing
conflict cache misses. The experiments we performed on
standard benchmark code kernels from the DSP and sci-
entific domains, indicate that significant performance im-
provements result from our memory assignment techniques.
We noticed an average improvement of 46% in the data
cache hit ratios for the benchmark examples for which we
generated code that was executed on the simulator for the
CW4001 embedded processor core from LSI Logic.

In the future, we plan to integrate our memory assign-
ment techniques with reordering of the memory accesses in
the code. Reordering holds out the possibility of obtaining
further improvements in performance through reduction in
both compulsory and conflict misses in the data cache.

References
[1] G. Araujo, et. al., “Challenges in Code Generation for Embedded

Systems,” inCode Generation for Embedded Processors, ed., P.
Marwedel and G. Goosens, pp. 48-64, 1995.

[2] K. Au, et. al., “MiniRISC(tm) CW4001 - A Small, Low-Power
MIPS CPU Core,” Proc. CICC, 1995.

[3] D. Callahan, K. Kennedy, and A. Porterfield, “Software Prefetch-
ing,” Proceedings, ASPLOS, pp 40-52, April 1991.

[4] D. Gannon, et. al., “Strategies for cache and local memory man-
agement by global program transformation,” Journal of Parallel
and Distributed Computing, 5(5): 587-616, October 1988.

[5] G. Goosens, et. al., “An Efficient MicrocodeCompiler for Applica-
tion Specific DSP Processors,” IEEE Transactions on CAD/ICAS,
vol 9, No. 9, pp. 925-937, September 1990.

[6] N. P. Jouppi, “Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers,”
ISCA, pp 364-373, May 1990.

[7] N. P. Jouppi, “Cache Write Policies and Performance,” ISCA, pp
191-201, May, 1993.

[8] Y-T. S. Li, et. al., “PerformanceEstimation of Embedded Software
with Instruction Cache Modeling,” ICCAD, November 1995.

[9] S. Liao, et. al., “Storage Assignment to Decrease Code Size,” Proc.
PLDI, June 1995.

[10] C. Liem, et. al., “Instruction-Set Matching and Selection for DSP
and ASIP Code Generation,” ED&TC, pp. 31-37, March 1994.

[11] P. Marwedel and G. Goosens, “Code Generation for Embedded
Processors,” Kluwer Academic Publ., 1995.

[12] P. R. Pandaand N. D. Dutt, “Reducing Address Bus Transitions for
Low Power Memory Mapping,” ED&TC, pp 63-67, March 1996.

[13] P. Paulin, et. al., “FlexWare: A Flexible Firmware Development
Environment for Embedded Systems,” inCode Generation for
Embedded Processors, ed., P. Marwedel and G. Goosens, 1995.

[14] A. Sudarsanam and S. Malik, “Memory Bank and Register Allo-
cation in software Synthesis for ASIPs,” ICCAD, Nov, 1995.

[15] H. Tomiyama and H. Yasuura, “Optimal Code Placement of Em-
bedded Software for Instruction Caches,” ED&TC, March 1996.

[16] M. J. Wolfe, “A Data Locality Optimizing Algorithm,” ACM SIG-
PLAN’91 Conf. on PLDI, June, 1991.

[17] Y. Yamada, et. al., “Reducing Cache Misses in Numerical Appli-
cations Using Data Relocation and Prefetching,” Technical Report
CRHC-95-04, University of Illinois, Urbana, 1995.

	CD-ROM Home Page
	ISSS Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

