
A Codesign Experiment in Acoustic Echo Cancellation: GMDFα

L. FREUND, M. ISRAEL,
F. ROUSSEAU

LAMI, Université d'Evry
Bld des Coquibus

91025 Evry - FRANCE
{name}@lami.univ-evry.fr

J. M. BERGE

France Telecom - CNET
Chemin du Vieux Chêne

38243 Meylan - FRANCE
berge@cns.cnet.fr

M. AUGUIN, C. BELLEUDY,
G. GOGNIAT

I3S, Université de Nice
CNRS, 41 bld Napoléon III

06041 Nice - FRANCE
{name}@alto.unice.fr

Abstract

Hardware/software codesign approaches consist generally
in HW/SW partitioning and scheduling, constrained code
generation, hardware and interface synthesis. This paper
presents the codesign of an industrial experiment in acoustic
echo cancellation (GMDFα algorithm) and emphasizes the
partitioning and communication synthesis steps. This experi-
ment points out interesting problems such as data and pro-
grams distribution between system memories and modeling
communications in the partitioning process.

1. Introduction

The continuous advances in processor and ASIC technolo-
gies allow for the integration of increasingly complex speci-
fic systems. However, the improvements in design
automation techniques for system production are increasing
more slowly than those of integration capabilities of ASICs.
Consequently, there is a strong interest in higher levels for
system modeling and synthesis and particularly hardware/
software codesign approaches ([11], [7], [18], [9] for exam-
ple). Starting from a high level specification of a system, co-
design techniques attempt to quickly find refined
specifications of effective mixed implementations by a syste-
matic exploration of various trade-offs. Codesign generally
comprises several tasks including HW/SW partitioning and
scheduling, constrained code generation, hardware and com-
munication synthesis.

Acoustic echo cancellation is a good example of embed-
ded system design since the problem of its real time imple-
mentation is still a challenging one, especially in broad band
teleconference systems. Numerous algorithms have been
proposed [10] but performances of the well known NLMS al-
gorithm are too limited to deal with large teleconference
rooms. The GMDFα algorithm [2] has good convergence and
tracking performances and is a good candidate for echo can-
cellation. Nevertheless, for a long impulse response this algo-
rithm involves numerous computations on a large set of data.
Therefore, the real time implementation of the GMDFα algo-

rithm constitutes a significant challenge for codesign meth-
odologies.

The outline of this paper is as follows: Section 2 de-
scribes the GMDFα algorithm, Section 3 introduces our
codesign approach and its application to the GMDFα algo-
rithm, and the design results are presented in Section 4 fol-
lowed by concluding remarks.

2. Description of GMDFα
2.1 Introduction

For some years, there has been considerable interest
shown in improving high quality handfree telephone and
acoustic conference applications. However, the acoustic cou-
pling between the loudspeaker and microphone of each ter-
minal is a significant operating difficulty.

One solution to this problem may be the application of
the adaptive filtering method to an acoustic echo canceller.
The adaptive filter corresponds to the impulse response of a
FIR filter structure with variable coefficients. An algorithm
computes the variation in filter coefficients and minimizes
the matching error energy (Fig. 1). However, the adaptive fil-
ter length L may be several thousand coefficients at a sam-
pling rate of 16 KHz. This fact leads to difficulties in real-
time implementation of the algorithm.

The GMDFα (Generalized Multi-delay frequency Do-
main Filter) algorithm is one of the frequency-domain block
adaptive algorithms. A block formulation involving a filter
with fixed coefficients during N samples (N is the block size)
allows various techniques (FFT, Fast FIR) to be applied in the
frequency domain to reduce the arithmetic complexity.

Room 1Room 2

+
-

e(n)

y'(n)

x(n)

y(n)

estimated echo

echo
+

acoustic echo

echo

ADAPTIVE

FILTER

Fig. 1 : Acoustic Echo Cancellation method

2.2 Specification of GMDFα
Different parameters define the complexity of the GMDFα

algorithm: N is the block size, K the number of blocks, and L
the filter length (with K = L / N). R new samples are pro-
cessed at each iteration of the algorithm, and the filter is
adaptedα (overlapping factor) times per block (with R = N /
α). The size of data (8, 16 bits for example), their type (inte-
ger, real), and their representation (fixed point, floating
point) are other parameters, which affect implementation.
This oversampling implies an increased arithmetic complex-
ity, but allows a fast convergence rate. The functional de-
scription (Fig. 2) shows the arithmetic complexity of the
algorithm.

The starting point of our experiment concerns the Directed
Acyclic Graph (DAG) of the GMDFα, depicted in Fig. 3.
This decomposition is manually obtained by study of the
specification (functional description) or a VHDL model at
the behavioral level. In this DAG G=(N, A), nodes N repre-
sent computation tasks and arcs A describe data transfert and
control precedences between nodes. The precedence con-
straints between two nodes are expressed by an arc. On each
arc, the name and the volume of data are given. A dotted line
means that this data will be used at the next iteration of the
algorithm. Node 0 computes FFT on the input signal (XT).
Node 1 is the normalization block. The output of node 2 gives
the estimated output in the frequency domain (Qx which de-
notes arrays Qr and Qi of complex values) by a convolution

product, and after an FFT-1 (node 3), we obtain the estimated
output in the time domain (Ytest). The difference between the
desired output (YT) and the estimated output is calculated in
node 4. Node 5 provides the echo (YF). Node 6 transforms
the error signal (Et) into an error signal in the frequency do-
main (Ex) by one FFT. In nodes 7.i and 8.i, (i=1..k) filter co-

efficients are computed by FFT and FFT-1 operations of each
elementary cell.

2.3 Software implementations

Several studies have tried to implement this algorithm on
general purpose DSPs. [1] shows that a real time implemen-
tation is difficult on the TMS320C30 for a medium length fil-
ter (L = 1024). This real time implementation is very slow,
compared with the maximum run time (the ratio is between 2
and 4). In [13], GMDFα is implemented on two
TMS320C40s interconnected by a parallel bus. In this exper-
iment, the second processor is active for only 50% of the total
processing time, with a simplified version of GMDFα. This

simplified version uses only 3 FFTs (or FFT-1) instead of 2K
+ 3.

2.4 Hardware implementations

The hardware implementation has been studied in [5] and
the feasibility has been demonstrated on a specific architec-
ture. In this hardware implementation, some computations
(division) are assumed to be executed by a processor. This ar-
chitecture uses digital delay lines with an optimized area as

memorization elements. It involves FFT and FFT-1 operators,
and a specific Operating Unit (OU) composed of 2 multipli-
ers with multiplexed inputs and one accumulator. It allows
the execution of a complex multiplication in only two clock
cycles. Memorization elements are composed of delay lines
(a dynamic memory with sequential access). This solution of
a read-write cycle in one clock cycle to be executed, thus en-
abling the operating unit to be used at maximum rate. In the

0.5µm CMOS technology, the global area is about 15 mm2,
but this solution requires a very long design time.

3. Codesign of GMDFα

3.1 Decomposition of GMDFα
Regardless of these results, it seems interesting to mix

hardware and software parts to implement GMDFα. Using

FFT
(2N)

FFT-1

 (2N)

WOLA

FFT
(2N)

Normalization
µ

Z-αR

Z-αR

Z-αR

+

desired output YT(R)

Error Ex(2N)

Echo YF(R)

Et
Ytest

FFT-1 FFT

⊕
Z-R

⊗

⊗⊗

C.k

Elementary cell C.k

µEx

+
-

C.1

C.2

T

Fig. 2 : Functional description

XT

XT(R)

Xx(2N)

Tkk(N)

Qx(2N)

YTest(2N)

YT(R) Yn(R)

YF(N)

Et(2N)
Ex(2N)

HRes.1(2N)

HRes.K(2N)

H.1(2N)

H.K(2N)

0

1

2 3 4

5

6

7.1

7.K

8.1

8.K

XsRr(2KN)

HRes.2(2N)
H.2(2N)

7.2 8.2

X(2N-R)

Pk(N)

XsRx(2αKN) Y(N-R)

Fig. 3 : DAG of GMDF α

previous results, Table 1 summarize the execution times of
DAG nodes.

Table 1 Execution times for various
implementations

Hardware execution times come from [5] in the 0.5µm
CMOS technology. For the software part, the execution times
of TMS320C40 and DSP56002 are given (inµs) with the fol-
lowing parameters: N=128, L=1024,α=2, data are words of
16 bits, real, and coded as fixed points. Following the sam-
pling rate of the audio signal (16 KHz), the maximum execu-
tion time allowed for one iteration is 8 ms.

Since the algorithms used to implement each node and dis-
tribution of arrays into parallel memories of the DSPs are not
identical for the two processors, there are differences in the
node execution times. Note that the execution times of the
TMS are estimated and those of the 56002 are real.

3.2 HW/SW partitioning

During the Hardware/Software Partitioning step, designers
look for the best trade-off between hardware and software
parts. We assume that in data flow systems (such as telecom-
munications systems), three problems have to be solved:as-
signment (choice of implementation),scheduling and
resource allocation.

The main goal of the HW/SW partitioning is to find anas-
signment in hardware or software for all parts of the system
specifications (all nodes of the DAG in our case). Their dates
of execution are determined duringscheduling. The study of
scheduling allows different objectives to be targeted: minimi-
zation of operators, minimization of HW/SW communica-
tions, minimization of execution time for example. The
problem ofresource allocation is to find the type and number
of resources used to implement the system. Trying to share
resources between functionalities is the main difficulty. A re-
source can be an operator (more or less complex), such as
UAL, adder, FFT or memorization elements such as register,
FIFO, RAM.

In High Level Synthesis (HLS), scheduling and resource
allocation problems exist. As they are NP-complete prob-

lems, numerous and various heuristic techniques have been
published and provide good, but not optimal solutions. It
seems that the two problems are similar in both HLS and
HW/SW partitioning. One of the main differences concerns
communications. In HLS, the communication times are gen-
erally ignored between functional units. In HW/SW partition-
ing for data flow systems, data can be vectors or matrices, and
the partitioning step must take this parameter into account.

We have proposed a heuristic technique in [17] which
solves scheduling and assignment problems for a DAG spec-
ification. This algorithm is an extension of the Force Directed
scheduling algorithm [16], adapted for the HW/SW partition-
ing of tasks. It attemps to find the minimal cost schedule able
to satisfy the set of constraints, given the global time con-
straint. Refer to [17] for further details and methodology.

3.3 HW/SW Partitioning of GMDFα
We propose two different HW/SW partitionings for GMD-

Fα, obtained using our algorithm. The first implementation is
a trade-off between execution time and hardware area. The
scheduling and dates of execution are summarized in Table 2.
The TMS320C40 (DSP56002 resp.) is active for 91% (90%)
of the total processing time, but only 71% (57%) of the 8 ms
corresponding to the sampling rate. The hardware operators

used are one FFT-1 (1.8 mm2) and one OU (0.5 mm2). Note
that the hardware execution of nodes 7.2 to 7.8 in the first
partitioning overlaps with the software computation of nodes
8.1 to 8.7. Similar behavior is obtained for hardware nodes
8.1 to 8.8 in the second partitioning.

Table 2 First partitining of GMDF α

With the second partitioning (Table 3) which minimizes
the hardware operator area, the TMS320C40 (DSP56002 re-
sp.) is active for 97% (97%) of the total processing time, and
73% (70%) of the 8 ms. This solution requires only one FFT

(1.8 mm2) and one adder (0.07 mm2). The number of data
transfers between hardware and software units is Tcom = 2 N
(3 + 2 K) words of 16 bits, i.e., Tcom = 4864. These partition-
ings do not take into consideration any side effects on total
execution time and area due to communications, controls and

Node Hardware TMS320C40 DSP56002

0 87 552 450

1 XXX 321 472

2 123 517 730

3 87 552 470

4 8 26 62

5 8 32 34

6 87 552 406

7.i 117 648 548

8.i 98 584 451

Total 2120µs 12408µs 10616µs

SW
Nodes

HW
Nodes

Scheduling 320C40
begin -> end (µs)

Scheduling 56002
begin -> end (µs)

Hardware
operators

0 0 -> 551 0 -> 449

1 552 -> 872 450 -> 921

2 552 -> 675 450 -> 572 OU

3 676 -> 762 573 -> 659 FFT-1

4 763 -> 770 660 -> 667 OU

5 771 -> 778 668 -> 675 OU

6 873 -> 1424 922 -> 1327

7.1 1425 -> 1541 1328 -> 1444 OU, FFT-1

8.1...8.8 1542->...->6213 1445->...->5053

6213µs 5053µs OU, FFT-1

allocation of DSP memories. Thus, in the following sections,
synthesis of the complete architecture is described.

Table 3 Second partitining of GMDF α

3.4 Allocation of arrays and code sections to DSP
memories.

After partitioning we obtain a set of nodes implemented by
the software part. Since the DSP processors considered in our
design contain internal data and program memories, the map-
ping of code and data sections corresponding to these nodes
is of great importance for optimizing resource utilization.
Furthermore, these DSP processors contain two internal par-
allel data memories to sustain the data throughput with the
core. A process may be accelerated by a factor of up to 3 if its
data and instructions are properly moved from outside to in-
side. In the same way, the throughput of communications can
be accelerated if data are placed in internal memories. At
present, the mapping of arrays and code is performed after
partitioning but it would be desirable to consider this opera-
tion during the partitioning step[12]. Firstly, arrays accessed
by nodes are distributed among the parallel memories in or-
der to maximize the possibilities of parallel moves of data.
This mapping does not depend on the internal/external allo-
cation. Hence, the aim of internal/external allocation of code
sections and arrays is to assign to internal memories objects
that have high utilization rates. This allocation can be per-
formed for example with a knapsack algorithm[3]. After ar-
ray location in memories, more accurate data tranfer
behaviors may be determined for communication synthesis.

Generally, data array transfer is performed either by direct
access mode (DMA) or by memory mapped I/O move oper-
ations. The selection of transfer mode depends on the capa-
bilities integrated in the target processor. For example, the
Motorola DSP56002 does not integrate a real DMA protocol,
i.e., the DMA controller is located outside the DSP and each
value is transferred through an interrupt mechanism. Thus, on
the DSP56002, CPU operations and DMA transfers are ex-
clusive. On the TMS320C40 they may be overlapped but
modeling the behavior of this DSP is more complex since nu-

merous conflicts may occur due to movements of instructions
and data sharing buses. In Table 4, approximate models of the
total execution times on these DSPs for a transfer of N values
and C cycles of CPU operations (C≥ 0) are depicted. Note
that for DMA transfers these two tasks overlap, and models
are very different due to the disparate architectures of the
DSPs. Notationext->int represents a transfer from an exter-
nal to an internal data memory of the TMS320C40. Interac-
tions between data and instruction flows are not modeled
here. The execution time on the DSP56002 depends on the lo-
cation of instructions and data. One extremity of the I/O
transfer is necessarily external to the DSP. Notationint/ext
concerning the DSP56002 means that move instructions are
located in the internal program memory and the other extrem-
ity of the transfer concerns an external data memory.

Table 4 Number of clock cycles for N I/O
operations and C CPU operations

3.5 Synthesis of communications

Data transfers in the GMDFα application deal with arrays
of data. Thus synthesis of communications consists in deter-
mining for each HW/SW transfer:
- the type of transfer (synchronous or asynchronous),
- the needed hardware support and the associated protocol,
- the transfer mode (DMA or memory mapped I/O).

Previous works have focused on communication synthesis
after HW/SW partitioning. In [4] and [15] the aim is to max-
imize utilization bandwidths of buses by analyzing peak and
average data transfer rates over communication channels but
they do not consider the scheduling of tasks after partitioning.
However, this scheduling constitutes a set of timing con-
straints that communications must respect. In [14] the synthe-
sis of channels uses as specification a sequence of timed
events each one corresponding to a single data transfer.
Transfers of arrays is not supported by this approach. The
most relevant work to our problem is presented in [6]. Inter-
face optimization attempts to maximize the use of non-block-
ing protocol in order to minimize control logic on channels.
But the side effects consist in the introduction of control de-
lays in both sender and receiver that impose a global refer-
ence clock.

In our approach [8], to avoid the problem due to a global
reference we consider that both sender and receiver do not
share the same clock. With such an assumption communica-

SW
Nodes

HW
Nodes

Scheduling 320C40
begin -> end (µs)

Scheduling 56002
begin -> end (µs)

Hardware
operators

0 0 -> 86 0 -> 86 FFT

1 87 -> 407 87 -> 558

2 408 -> 924 559 -> 1288

3 925 -> 1476 1289 -> 1758

4 1477 -> 1502 1759 -> 1820

5 1503 -> 1534 1821 -> 1854

6 1503 -> 1589 1821 -> 1907 FFT

7.1
7.2...7.8

1590 -> 2237
2238->...->6773

1908 -> 2455
2456->...->5743

8.8 6774 -> 6871 5744 -> 5840 FFT, Adder

6871µs 5840µs FFT, Adder

Transfer
mode

TMS320C40 (40ns) DSP56002 (25ns)

DMA ext->int : Max(N+14,C)
int->ext : Max(2N+14,C)
ext->ext: Max(3N+14,C)

C>8N => C+4N+4
C ≤ 8N => 12N + 4

Move ext->int : N+4+C
int->ext : 2N+4+C
ext->ext: 3N+4+C

int/int : C+4N+8
int/ext : C+6N+8
ext/ext: C+8N+8

tions can be handled thanks to an asynchronous or a synchro-
nous transfer. The asynchronous transfer allows both sender
and receiver to be independent at the communication sched-
ule, but hardware support may be important because all the
transferred data need to be memorized, for example through
FIFOs. The synchronous transfer needs less resources since
handshake signals and data buses are only required, but with
that type of transfer, sender and receiver need to be synchro-
nized at the communication schedule in order to exchange
data without memorization. The synchronization mechanism
corresponds to a rendez-vous primitive. This synchronization
may introduce delays with respect to the initial schedule.
Consequently, before allocating a synchronous transfer to a
communication between two nodes, it must be checked that
the total time required to execute the application is not over-
stepped. In our communication synthesis method we mini-
mize the hardware area by using as much as possible
synchronous transfer even if a local reschedule is necessary.
The result must respect the total execution time settled for the
application.

The next step in the communication synthesis flow out-
lines the nature of communication protocols. Two types of
communication protocols are considered: blocking or non-
blocking. When using a blocking protocol for a communica-
tion, the sender (resp. receiver) must verify that the receiver
(resp. sender) is ready before starting the transfer. On the
contrary, when using a non-blocking protocol no verification
by the sender and the receiver is performed since all the com-
munication resources requested for the transfer are assumed
to be available (for example a buffer). In our case, sender and
receiver use blocking protocols if a synchronous transfer type
is applied. For an asynchronous transfer the receiver uses a
blocking protocol to ensure that the data emitted for that com-
munication are all available. The sender uses a non-blocking
protocol since requested memorization elements (FIFO) are
allocated.

When protocols are defined, transfer modes can be associ-
ated with all communication links. The selection of the trans-
fer mode depends on the capabilities integrated in the target
processor. As mentioned above most recent processors can
handle DMA transfers and memory mapped I/O move oper-
ations. The choice of the transfer mode is done to ensure the
best communication timing performance. We use the cost
function given in Table 4 to determine the transfer mode.
This cost function takes into account the volume of data to be
transferred and the total amount of potential instructions that
can overlap the transfer.

These steps define all the communication supports. Next,
instruction threads that manage the communications are gen-
erated for the processor and a controller that handle the hard-
ware communication signals is synthesized. The
communication interface produced allows the complete exe-
cution of the application.

After synthesis of the whole hardware entities we get the
architecture depicted in Fig. 4 corresponding to the second
partitioning. Data arrays pointed out in the figure share the
same memory units in the ASIC part. Since execution times
of hardware nodes of GMDFα are small compared to those
of the software nodes, there is room for rescheduling hard-
ware nodes without increasing the overall execution time.
Thus, all communications are implemented using a synchro-
nized transfer. Data are not buffered and are exchanged di-
rectly from the internal memory of the sender to the internal
memory of the receiver.

4. Design results

The following results are given for the DSP56002. The
partitioning of the GMDFα application leads two solutions.
If delays due to communications are omitted and data and
code sections are both mapped into external memories of the
DSP, the total execution times of these solutions are 12.5ms
and 13.96ms. However, if location of array and code sections
is optimized between external and internal memories, the ex-
ecution time of the second partitioning is reduced by a factor
of 2 (5.84 ms). This point illustrates the importance of con-
sidering different software implementations of nodes during
the partitioning/scheduling of the application [12].

Elapse times for communications associated with the sec-
ond partitioning are given in Fig. 5.

Note that software to hardware data transfers after nodes 4
and 7.i (i<8) use different modes even if some parallelism ex-
ists between HW and SW units: the volume of computations
of node 5 is too limited to efficiently exploit the DMA trans-
fer mode (see Table 4). The DMA transfer in node 7.i has a
duration of 25µs and overlaps for 74µs with the computations
of node 7.i+1. Each node from 7.1 to 7.7 has an execution
time of 574µs including the DMA transfer. At the end of node
7.8 the transfer is performed with explicitmove instructions
and requires 54µs. Consequently, the total elapse time due to
hardware/software communications is 411µs and the total ex-

Hi

Hr

DSP56002

data/program

C
om

m
un

ic
at

io
n

Adder

FFT
Mr

Port A

Host Interface

Port C

ASIC

Fig. 4 : HW/SW architecture for GMDF α.

DMA

Mr : Xr, Er, HNr
Mi : Xi, Ei, HNi
X :XXr
M : Et, Hres

memory

an
d

A
S

IC
 c

on
tr

ol
le

r

Mi

MX

Xt

memory unit

ecution time of the GMDFα application is 6.25ms, i.e. less
than the limit of 8 ms imposed by the sampling.The ratio of
HW/SW communications represents less than 7% of the total
execution time.The idle time of the DSP is only 2% of the to-
tal execution time whereas the idle time of the hardware unit
is 77%. The second partitioning attempts to minimize the
hardware area, and thus helps to maximize the utilization of
the DSP.

The required sizes of program and data memories in the
DSP56002 are 528 words and 9.4Kwords respectively. Inter-
nal/external distribution of data arrays is of prime importance
with this DSP since only 512 words of internal data memories
are available.

The area of the hardware unit including the DMA control-
ler, FSM controller, 2.8Kwords of data memories, one FFT

module and one adder is 4.5mm2 in a 0.5µm technology.

5. Conclusion and future works

The codesign flow for an acoustic echo cancellation algo-
rithm described by a DAG was presented. An adapted force
directed scheduling is applied on nodes of the DAG to dis-
tribute tasks to hardware and software units. With the knowl-
edge of this partitioning/scheduling, communications are
synthesized and the global architecture is constructed. This
experience illustrates interesting results. The use of DSP or
core processors implies to consider the allocation of data and
program into internal or external data memories during the
partitioning phase. Consequently, different software solu-
tions have to be considered during partitioning/scheduling/al-
location of tasks.

Moreover, since delays due to data transfers between HW
and SW units are very dependent on this data distribution, ef-
fects of communications on produced solutions would be
considered during partitioning of the specification in order to
exhibit HW/SW systems that respect firmly cost and timing
constraints. Futhermore, some intensive computing applica-
tions require transfers of data arrays between processing

units. These transfers may be pipelined or overlapped with
computations of nodes. Then, more efficient solutions would
be achieved if these communication schemes are considered
during partitioning step.

Generally, codesign methodologies consider target archi-
tectures composed of one ASIC and a single processor. But
complex applications (for example full MPEG2 codec for
videoconference) that are (soon) integrable on one chip re-
quire often more sophisticated systems able to exploit differ-
ent levels of grain of parallelism. Therefore, there is a
challenge in more general system architectures and co-syn-
thesis methods able to deal with these intensive computing
applications.

6. References
[1] AIT AMRANE O., Identification des systèmes à réponse impulsion-

nelle longue par filtre adaptatif en fréquence: Application à l'annula-
tion d'échos acoustiques.Thèse de Doctorat, ENST - Paris, France,
september, 1992 (in french).

[2] AMRANE A., MOULINES E., GRENIER Y., Structure and conver-
gence analysis of the generalized multi-delay adaptative filter.Int’l.
Conf. EUSIPCO-92, Brussels, August, 1992.

[3] CORMAN T.H., LEISERSON C.E., RIVEST R.L.,Introduction to
algorithms.MIT Press, 1992.

[4] DAVEAU J.M., ISMAIL T.B., JERRAYA A.A., Synthesis of System-
level communication by an allocation-based approach.Int. Synposium
on System Synthesis, pages 150-155. Cannes - France, september 13-15,
1995.

[5] EL HELWANI A., LESCAN P., VLSI Architecture of the Generalized
Multi Delay Frequency-Domain Algorithm for Acoustic Echo Cancel-
lation.Proc. of ICASSP. Detroit, may 9-12, 1995.

[6] FILO D., KU D., COELHO C., De MICHELI G., Interface optimiza-
tion for concurent systems under timing constraints.IEEE Trans. on
VLSI.268-281, september, 1993.

[7] GAJSKY D., VAHID F., Specification and design of embedded hard-
ware-software systems.IEEE Journal Design and Test of Computers.
pages 53-67, spring, 1995.

[8] GOGNIAT G., Etude de la synthèse des communications dans les
systèmes logiciels/materiels.Technical Report RR96-12, I3S, Sophia-
Antipolis, France, march, 1996 (in french).

[9] GUPTA R.K., COELHO C.N., De MICHELI G. Program implementa-
tion schemes for hardware software systems.IEEE Computer Journal.
48-55, january, 1994.

[10] HANSLER E., The hands-free telephone problem: an annoted bibliog-
raphy.Signal Processing. 27259-271, 1992.

[11] JERRAYA A., ISMAIL T., Synthesis steps and design models for code-
sign.IEEE Computer,28(2):44-52, february, 1995.

[12] KALAVADE A., LEE E., The extended partitioning problem: hard-
ware/software mapping and implementation-bin selection.Proceedings
Int. Workshop on Rapid System Prototyping, pages 12-18. Chapel Hill,
NC, June 7-9, 1995.

[13] LE TOURNEUR G., THOMAS J.P., GILLOIRE A., Real time imple-
mentation of the GMDF Alpha algorithm on a multi DSP TMS320C40
board.EUSIPCO-94, pages 1007-1010. Edinburg - Scotland, september
13-16, 1994.

[14] MADSEN J., HALD B., An approach to interface synthesis.Int. Sym-
posium on System Synthesis, pages 16-21. Cannes-France, september
13-15, 1995.

[15] NARAYAN S., GAJSKI D., Synthesis of System-level Bus Interface.
European Conference on Design Automation, pages 395-399. Paris-
France, february, 1994.

[16] PAULIN P.G., KNIGHT J.P., Force-Directed Scheduling for the Behav-
ioral Synthesis of ASIC's.IEEE Trans. on Computer-Aided-Design.
8(6):661-679, june, 1989.

[17] ROUSSEAU F., BENZAKKI J., BERGE J.M., ISRAEL M., Adaptation
of Force-Directed scheduling algorithm for hardware/software parti-
tioning. Proceedings Int. Workshop on Rapid System Prototyping.
Chapel Hill, NC, June 7-9, 1995.

[18] WOO N.S., DUNLOP A.E., WOLF W., Codesign from cospecification.
IEEE Computer Journal.42-47, january, 1994.

FFTIn

1 2 3 4 5

FFT

7.1 7.2

MOVE

DMA

MOVE

MOVE

MOVE

MOVE

XrXi Et ErEi

HRes HRes HrHi

HW unit

SW unit

Xt

Fig. 5 : Scheduling and elapse times of commu-
nications with DSP56002

XXr

HNr
Add

7.8

DMA

HRes
FFT

HNi HNr
AddFFT

HNi HNr
AddFFT

HNi

105µs 104µs 54µs74 µs74 µs

20 µs27 µs27 µs27 µs21µs

HW unit

SW unit

Node 0 Node 6

Node 8.1 Node 8.7 Node 8.8

	CD-ROM Home Page
	ISSS Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

