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Abstract

In this paper we discuss, what breakpoints in Source Level
Emulationa are, how we can work with them and how we
have to change the cicuit generated by high level synthesis
to do so. We show the details of breakpoint encoding and
detection in our approach. The presented approach allows
for breakpoint detection by hardware means without seri-
ously slowing down the circuit or dramatically increasing
its size.

1. Introduction

For years, high level synthesis is of increasing impor-
tance in design automation. The increasing number of
commercial available tools for high level synthesis indi-
cates that the abstraction level of the design entry will
raise to the algorithmic level at least for some kinds of
applications

While there is much effort spent in methods for synthe-
sis, there are only few groups concentrating on design val-
idation and debugging of high level specifications. In
general, validation can be done by simulation and emula-
tion. Simulation is a powerful means to detect mistakes in
the specification. Some groups work on simulation tools
for whole systems consisting of hardware and software
and even other technologies like mechanics [1][2]. How-
ever, simulation can only be applied to the specification
level, and even there, a design can only be partially vali-
dated because simulation is very time consuming.

Validating at the specification level is not sufficient, if
high level synthesis is applied. There are interface compo-
nents and custom components in such designs, which are
not visible at the algorithmic level. So validation is also
necessary on lower levels of abstraction. But there, simula-
tion is less applicable because it is too slow.

a. Work partially supported by the Deutsche For-
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Emulation is a technique, which allows for validation
of designs at a low abstraction level almost in real time [3].
But emulation works at the gate level. Thus, a designer
cannot relate the probed signals to the specification. For
this reason, debugging is only possible at the I/O signals of
the system. Quickturn has addressed this problem with the
HDL-ICE [4] system, which allows to relate the probed
signals to an RT-specification, but still there is a big gap
between the algorithmic level and the level, where valida-
tion is done.

In [10], we have proposed Source Level Emulation
(SLE) as a method to close this gap by combining behav-
ioral simulation with hardware emulation. The idea of
SLE is to run the application on an emulator hardware and
to keep the correlation between hardware elements and the
behavioral VHDL source such that it is possible to stop the
hardware by interrupting the clock and to extract values of
variables in the source code by reading registers of the cir-
cuit. This correlation is mainly obtained through logging
the synthesis steps of the high level synthesis.

SLE allows for symbolic debugging of a running hard-
ware similar to software debugging. This includes the
examination of variables, the setting of breakpoints, and
single step operation. All this is possible with the applica-
tion running as a real hardware implementation on a hard-
ware emulator. By backannotating the values read from the
circuit, we can do debugging at the source code level. We
do not need to capture the environment of the application
in a simulator. We just connect the emulator to the envi-
ronment of the application. There is no need to write
(often enormous) simulation environments in VHDL
which is even better since these simulation environments
are at least as fault-prone as the application itself.

In this paper, we discuss two important issues of SLE in
more detail: The hardware that we introduce additionally
into the generated circuit to set and detect breakpoints, to
read data path registers, and to control the circuit opera-
tion. The second issue of this paper is to define, what a
breakpoint is in terms of hardware and how we can man-



age to set and detect such breakpoints without needing a
tremendous hardware overhead and without extremely
slowing down the circuit. In the next chapter we discuss
the breakpoint issue. In chapter 3 we give a detailed
description of the hardware extensions we need for SLE.
We conclude the paper with some results in chapter 4 and
a summary.

2. Breakpoints in SLE

2.1. Breakpoint definition

High level synthesis generates a circuit from a software
program like specification. The circuit contains a data
path, where the data computations are carried out, and a
controller, which controls when a component in the data
path is active. The controller is a finite state machine that
sets control values for the data path and reacts to condition
values from the data path.

Since we want to debug a running circuit at the source
code level, we have to define a breakpoint as something
which is visible in the source code. On the other hand, a
breakpoint must also be visible in the circuit to enable us
to detect it. Thus, we define a breakpoint as an operation
like +, *, etc. If such an operation is executed by a compo-
nent, we can detect it in the running hardware.

Definition 1. A breakpoint is a triple (Op, IO, T). It is
interpreted as the time T, at which the input or output IO of
operation Op transports data.

Definition 2. A breakpoint is calleddetectable break-
point, if Op is implemented by a hardware component and
if IO is visible in the data path at the RT level.

Figure 1 illustrates the definitions. Part a) shows all
inputs and outputs of a '+' operation as visible in the data
path. Part b) shows an example, where the input/output X
is not visible due to an optimization during synthesis.

In the following, we will use breakpoint as synonym to
detectable breakpoint. The use of non detectable break-
points is not allowed since we cannot detect them by hard-
ware means.

2.2. Breakpoint types

One possibility to detect the time T of a breakpoint in
the hardware is by looking at the controller states, since
the controller manages the sequential behavior of the data
path. The relation between the breakpoint time, and a con-
troller state is static and known from the synthesis process.
In the data path, there are operations which are always
executed in a certain controller state. We call breakpoints

at this type of operationsMoore breakpoints. Such a
breakpoint is reached, if the controller state matches the
breakpoint time T.

There are also operations, that are executed at transi-
tions of controller states. To detect breakpoints at those
operations, we need to know about the current state and
the next state of the controller. These breakpoints are
called Mealy breakpoints. A Mealy breakpoint is
reached, if the controller state matches the breakpoint time
T and if the next state is right one for the breakpoint.

Both, Mealy and Moore breakpoints, can be extended
by data dependency. This allows for setting a conditional
breakpoint. For instance we could say "stop atB in the
expressionY := A * B;  if B = 5." More sophisticated
conditions are possible, but require also more hardware
overhead. Naturally, we could always stop at a breakpoint
and do the evaluation of the conditional expression in soft-
ware after reading the corresponding values from the cir-
cuit. This is not what we want, since it would make it
impossible to run the circuit in its real environment. Thus
we have to keep the conditions very simple.

2.3. Breakpoint encoding

Since we want to react, if a breakpoint is reached by
interrupting the circuit, we have to detect the breakpoints
by hardware means. To do that, we need to encode the
breakpoints in a way that allows for very simple testing
whether a controller state corresponds to a breakpoint or
not. This encoding of the breakpoint (breakpoint ID) has
to satisfy the following constraints:

• Different breakpoints must have different IDs.
• For each controller state that is element of a particular

breakpoint set the controller must produce the correspond-
ing breakpoint ID. This can be compared to a breakpoint
register. If equal, the breakpoint is reached.

Above, we have implicitly mentioned. that a breakpoint
would correspond to one controller state. Then the state

Y := A + B;

ADD
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X := A(i) * B(i);
Y := Y + X;
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Figure 1. a) A, B, Y as detectable breakpoints
and b) X as non detectable bp



encoding would also serve as breakpoint encoding for
hardware breakpoint detection. The reality is not as sim-
ple. A breakpoint can be represented by a whole set of
controller states. Furthermore, these sets of states can
intersect, as the example in figure 2 shows. For instance
this could be caused by path based scheduling [7].

In Figure 2 we have constructed a case to show what

can happen. For simplicity, we identify the breakpoint tri-
ple (Op, IO, T) by the operation Op.The code fragment
does not compute anything sensible, but a similar case
may occur in a real example. If we constrain the hardware
resources to two adders and a comparator, scheduling and
controller construction can result in a controller as shown.
The left path of the controller shows the if-path, the right
one shows the else-path. There are 8 detectable break-
points, three of them represented by one controller state,
the others represented by two states each.

In state 3, for instance, we have to produce the ID of
breakpoint OP3 and of breakpoint OP4, but we can only
have one controller output word in this state. An easy but
inefficient way to solve the problem would be to code each
breakpoint with three bit and to have a 6-bit word as con-
troller output containing both IDs. The first 3 bit would
then indicate OP3, while the last 3 bit would indicate OP4.
To detect breakpoint OP3, we would tell the breakpoint
comparator to ignore the last 3 bit. States 3 and 4 have to
show the same pattern in the first 3 bit then. The same rule
can be applied to each state. Then we would have to add a
6 bit word to the controller outputs just for breakpoint
detection. This can cause an explosion of the controller
logic in larger applications.

In general, this can be formulated as the problem to
binary encode elements of an arbitrary set structure in a
way, that, given a particular subset code, one can see
whether or not an element is part of that subset just by
ignoring some bit positions (which are fixed for a subset).
As many other problems in synthesis, this is an NP-hard

problem. Thus, for the general case, a heuristic has to be
used.

2.4. A heuristic for breakpoint encoding

The heuristic we use is driven by the following assump-
tions and facts:

• Usually, if a breakpoint set A intersects with another
breakpoint set B, then A is a subset of B or vice versa.

• A subset structure like the one given in Figure 2 can
be constructed, but it will happen very rarely to that
extend, since the data dependencies usually won‘t allow
for such differences in the execution order in different if-
paths.

• Breakpoint intersection can only happen in the local
context of loops if these contain a hierarchy of if-branches.
There cannot be an intersection of breakpoints belonging
to different loops, since all loop are scheduled independ-
ently of each other. This greatly reduces the size of such
intersected breakpoint clusters.

The algorithm we use is hierarchically organized. A
level of hierarchy is made up of all intersecting sets,
excluding supersets, which belong to the next higher level,
and subsets, which belong to the next lower level. Encod-
ing starts at the highest of hierarchy.

We defineTop as the set of all breakpoint sets,Top(S) as
the set of all subsets ofS. The set of clusters in the setS is
C(S), where a clusterCS is given by:

Init: We set the working setCurrent= Top.
Step 1: : Assign a binary

encoding (the cluster ID). The following sub-encodings of
different clusters are attached to the cluster ID and can
share the same bit positions.

Step 2: Within eachCCurrent, all intersecting sets are
assigned one bit. This number of bits is added to the clus-
ter ID.

Step 3:  : Set
Current = Top(S), and go to Step 1. The result of this sub-
encoding is attached to the encoding achieved so far. For
differentS, these share the same bit positions.

In step 2, we need the assumptions we made above
about the intersection of breakpoints. E.g. in a case like the
one given in figure 2, the encoding according to step 2 is
far away from being optimal. Here we would need 8 bits
with our heuristic, while an encoding with 4 bits is possi-
ble to fulfil the constraints mentioned above.

The number of bits is given by the following recursive
formula:

.

if cond then
  C := M + N;   (OP1)
else
  X := X1 + X2; (OP2)
end if;
Y1 := A  + B;   (OP3)
Y2 := B  + C;   (OP4)
Y3 := Y1 + A;   (OP5)
Y4 := Y1 + B;   (OP6)
Y5 := Y2 + Y3;  (OP7)

cond

OP1,OP3

OP4,OP5

OP6,OP7

OP3,OP4

OP5,OP6

OP7,OP2
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5
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2
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cond OP1 OP3 OP4 OP5 OP6 OP7 OP2

Figure 2. Breakpoints represented by an inter-
secting set of controller states
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The worst case runtime of the algorithm is
O(Bp2 * CS), where Bp denotes the number of possible
different breakpoints and CS denotes the number of con-
troller states. This is an equal complexity to state of the art
scheduling algorithms since Bp is proportional to the
number of operations. In practice, the runtime is much
less, since there is no global intersection of breakpoints,
thus the algorithm always works locally.

2.5. Example for breakpoint encoding

The example in figure 3 shows a number of intersecting
breakpoints to which we apply our algorithm to clarify its
operation.

First, we identify two clusters at the top level of hierar-
chy:

C1: Bp. 1, 2, 3, 4, 5, 6
C2: Bp. 7, 8
The first bit of the encoding is then '0' for C1 and '1' for

C2. The next bits depend on the clusters and may be
shared for different clusters. For C2 we get one bit for Bp.
7 on the highest level and if we go down one level, we get
an additional bit for Bp. 8.

For cluster 1, we get 2 bits, one for Bp.1 and one for
Bp. 2 at the highest level. Going down one level, we get
another 2 bit for Bp. 3 and Bp. 4, which share the positions
with the 2 bit for Bp. 5 and Bp. 6. Thus, the encoding of
the states is according to table1.

Bit 1 tells us the cluster, bit 2 indicates that a state
belongs to Bp 1, if we are in cluster C1, or to Bp. 7, if we
are in cluster C2. The meaning of the other bits is analog
to that. The encoding needs 5 bit, which is optimal by
chance in this case. It cannot be done with less bits and
still satisfy the necessary constraints.

3. Breakpoint detection in the hardware

3.1. Breakpoint detection logic

As mentioned above, we can detect breakpoints by
comparing the encoded controller state identifier with a
given breakpoint ID. Depending on the breakpoint we are
interested in, we need to ignore certain bits of the identi-

fier. The identifier is a signal generated by the controller.
An example of the VHDL style of the generated controller
together with the breakpoint identifier is shown in figure 4.

It is a process with a case statement, in which the outputs
and the next state are computed according to the current
state. In each state, we generate the corresponding identi-
fier for breakpoint detection.

The breakpoint detection logic we need to add to the
generated circuit is shown in figure 5.

We need a register to write in the desired breakpoint
and a mask register, where we tell the comparator, which
bits of the breakpoint identifier and the breakpoint register
it should ignore. The first bit of the breakpoint register
tells the comparator to constantly output '0' if it is set, i.e.
it represents the operation with no breakpoint set. The
comparator tests the not masked bits of the breakpoint
identifier and the breakpoint register for equality. If equal,
the BP-reached signal is raised to '1'. The BP-scanin signal
represents a scan path for setting and changing break-
points in circuit. Thus, we do not need to synthesize the
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Figure 3. Example for the encoding algorithm

State Encoding

1 0 10 10

2 0 10 00

3 0 10 11

4 0 10 01

5 0 11 00

6 0 01 10

7 0 01 11

8 0 01 01

9 1 1 1 --

10 1 1 0 --

Table 1. Example State encodings

fsmlogic: process(current_state, input_list)
begin

default_assignments ;
  case current_state is
    WHEN state1 =>

identifier <= "01010";
output_assignments;
next_state_assignment;

    WHEN state2 =>
identifier <= "01000";
output_assignments;
next_state_assignment;

    ......
  end case;
end process fsmlogic;

Figure 4. Breakpoint IDs in the generated
VHDL controller



circuit each time we want to set a new breakpoint. All this
is done dynamically in the implemented circuit.

The detection of data dependent breakpoints is also
very similar to that. We just replace each register in the
data path by a component which contains a data register, a
programmable register for breakpoint detection and a
comparator.

3.2. Debugging controller

The programming of breakpoints and the interrupt of
the circuit is done by the debugging controller. This com-
ponent allows the host to control the circuit operation. An
abstract scheme of its operation is shown in figure 6.

The macro statecommand is the initial state of the
controller. In this state it waits for a command and the cir-
cuit is interrupted. As commands we can have the follow-
ing:

• Write a breakpoint
• Write values to the data path registers
• Read the contents of the data path registers
• Step one clock cycle
• Run the circuit

BP-ID reg. mask reg.

BP-comparator

BP-ID (from controller)

BP scanin

BP reached

Figure 5. Breapoint detection logic

Write to
breakpoint or

data path
 registers

Command

Read
data path
registers

Step one
clock
cycle

Run
circuit

Bp_reached
or Interrupt

Figure 6. Simplified diagram of dbg. controller

Each command is decoded, and the controller switches
to the corresponding macro state, which manages the
required action. In each macro state, the controller comes
back to thecommand state after the action is finished.
Only in run_circuit  state it remains until a breakpoint is
reached or an interrupt command is issued by the host.
Interrupting the circuit is done by setting a clock_control
signal to '0', which then prevents the data path registers
and the circuit controller from operation. Thus, the circuit
halts.

Each register in the data path is exchanged according to
figure 7 by a register which allows for the required opera-

tion control. The inputs added to the original data path reg-
ister are used for programming/readback of the register
contents via a scan path (scan_in, scan_en, scan_out), and
for enabling normal data path operation (clock_ctrl).
These additional inputs are managed by the debugging
controller.

The debugging controller is not application dependent.
We implement it together with the application on the
FPGAs for reasons of simplicity, but it may also reside
outside of the programmable logic.

4. Results

The described technique is implemented within our
synthesis tool named CADDY [5][6][7]. All changes to
the circuit controller and to the data path are applied auto-
matically during the generation of the VHDL code by
CADDY. There is no manual work by the user required for
the generation of the debug model. The debugging control-
ler communicates with a SUN workstation via the parallel
port.

The applications listed below for the results were all
real synthesized, downloaded and run on our WEAVER
[8] prototyping board. The following applications were
done:

• GCD: A standard example for high level synthesis.
• SIRDG: A circuit which computes "single image ran-

dom dot stereograms". It receives a source image with the
height information via a parallel interface and writes the
generated image to a host via a parallel interface.

outp
n

n
register

load inp

clock

clock

load

scan_en
clock_ctrl

inp

outp

scan_in

scan_out

n

n

register

Figure 7. a) Original and b) for dbg inserted
data path register

a) b)



• DCT: A circuit which computes a two-dimensional
8x8-DCT. It is implemented as a coprocessor for the
Hyperstone processor [9]. The communication with the
processor is done via the external processor bus.

In table 2, the area values of the different circuits are
listed. All values are given in CLBs for the Xilinx XC4000
series. Please note, that the constant overhead for the
debugging controller (ca. 44 CLBs) virtually can be sub-
tracted from the overhead numbers for the examples,
because it is not depending upon the application. It could
easily be implemented separately from the FPGAs.

• Orig. refers to the original circuit without debug over-
head.

• Dbg 1 includes the overhead for debugging without
the possibility of data dependent breakpoints. It shows the
value with/without debugging controller.

• Dbg 2 represents the full version with data dependent
breakpoints.

• Mealy denotes the number of bits needed for the
Mealy identifiers,Moore denotes the number of bits of the
Moore identifiers. The sum of Mealy and Moore is added
to the output of the circuit controller.

• #Bp denotes the number of different detectable break-
points in the specification.

• #States lists the number of controller states of the cir-
cuit controller.

Table 3 shows the delay that is added by the additional
logic for debugging.

The values are obtained by the Xilinx tool 'xdelay'. This
tool provides a quite pessimistic estimation. All designs
run at a significantly higher clock speed on our Weaver
board. Nevertheless, it shows the relation between the dif-
ferent implementations. There is not much difference
between the two versions with debugging overhead, since
the evaluation of conditional breakpoints does not slow
down the circuit additionally. Our approach mainly adds
controller delay. Therefore we do not add any delay to the

dct, which is mainly determined by the combinatorial mul-
tiplier. To this path, we do no add any delay. Therefore, the
debug versions can be clocked with equal frequency.

5. Summary

In this paper, we have presented the details of how we
handle breakpoints in our new SLE approach. We have
discussed, how we can relate breakpoints set in an algo-
rithmic specification to an implemented circuit. We have
shown, how we encode the breakpoints and how we detect
them by hardware means. We have demonstrated the
applicability of our approach by a set of implemented cir-
cuits.
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Circuit Orig. Dbg 1 Dbg 2 Mealy Moore

GCD 60 128/84 141/97 3 3

SIRDG 99 190/146 213/179 2 5

DCT 387 474/430 476/432 1 6

Table 2. Area values

Circuit Orig. Dbg 1 Dbg 2

GCD 5.7 Mhz 4.7 Mhz 4.5 Mhz

SIRDG 7.7 Mhz 4.8 Mhz 4.9 Mhz

DCT 3.5 Mhz 3.5 Mhz 3.5 Mhz

Table 3. Clock frequencies
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