
ICCAD ’96
1063-6757/96 $5.00 1996 IEEE

Generation of BDDs from Hardware Algorithm Descriptions

Shin-ichi Minato

NTT System Electronics Laboratories

Kanagawa Pref., 243-01, Japan

Abstract
We propose a new method for generating BDDs

from hardware algorithm descriptions written in a pro-
gramming language. Our system can deal with control
structures, such as conditional branches (if-then-else)
and data dependent loops (while-end). Once BDDs are
generated, we can immediately check the equivalence of
two di�erent algorithm descriptions just by comparing
BDDs. This method can also be applied to veri�cation
between algorithm-level and gate-level designs. An-
other interesting application is to synthesize loop-free
logic circuits from algorithm descriptions. We show
the experimental results for some practical examples,
such as Greatest Common Divisor (GCD) calculation.
Although our method has a limitation in size of prob-
lems, it is very practical and useful for actual design
veri�cation.

1 Introduction
In designing hardware algorithms, one may write

the register transfer (RT) level or gate-level HDL di-
rectly, but many designers prefer to use a program-
ming language, such as C, Pascal, etc., since they are
familiar with those languages. We call this algorithm-
level description. Hardware designers may produce
several versions of algorithm-level descriptions, one of
which may represent just a function of the submodule
independent of the real implementation, while another
may give the best one in terms of computation time
or hardware resource's requirements.

These hardware algorithms are usually composed
by hand, so design errors may possibly occer. Al-
though many veri�cation tools are available for the
RT-level or gate-level descriptions[1, 2], problems still
remain in verifying the correctness of algorithm-level
ones. Currently, most designers write an algorithm
as carefully as possible, and con�rm the correctness
by software simulation with a number of stimuli. Un-
fortunately, it is hard to cover all instances, so unex-
pected bugs may possibly remain. Recently, Srivas et
al.[3] presented a formal veri�cation system based on
the automatic theorem prover; however, in this sys-
tem, users are sometimes required to give additional
information to prove the theorem e�ciently, and it is
hard for many designers to master.

In this paper, we propose a new method for gener-
ating BDDs from algorithm-level descriptions written
in a programming language. Our method can deal
with control structures, such as conditional branches
(if-then-else), data dependent loops (while-end), and

arrays of variables. Once BDDs are generated, we
can immediately check the equivalence of two di�er-
ent algorithms just by comparing BDDs, since BDDs
are canonical representations of logic functions. This
method can also be applied to veri�cation between
algorithm-level and RT-level designs. Another inter-
esting application is to synthesize loop-free logic cir-
cuits from BDDs which have been extracted from the
algorithm-level descriptions.

Based on this method, we implemented a symbolic
execution system for algorithm-level descriptions.
This system can be utilized for many practical prob-
lems; for example, we tried Euclid's algorithm[4] that
calculates the Greatest Common Divisors (GCDs),
and succeeded in generating BDDs which gave GCDs
for any pair of integers up to a thousand. We also
generated BDDs from another algorithm of GCD cal-
culation, and checked the equivalence of the two BDDs
for the di�erent algorithms. In addition, our system
is very convenient for analyzing the behavior of the
algorithm; for example, we can check the maximum
times of loop execution, and which input assignments
lead to it. A stable state in the endless loop can also
be detected. Although our method has a limitation
in size of problems, it is very practical and useful for
actual design veri�cation.

In the remainder of this paper, we �rst show an
example of algorithm-level description and the tech-
nical problems of generating BDDs from it. We then
present the data structure and algorithm for calculat-
ing arithmetic and Boolean expressions. Next, we pro-
pose a method for handling control structures such as
branches and loops. Manipulating arrays of variables
is also discussed. Finally, we describe the implemen-
tation of our system and show experimental results.

2 Algorithm-Level Descriptions
First, we clarify the problem discussed in this pa-

per. As an example, Fig. 1(a) shows a ow chart of Eu-
clid's Algorithm to calculate GCDs for a given pair of
integers. It consists of the arithmetic operations of in-
tegers, assignments of variables, a conditional branch,
and a loop structure. For given inputs A and B, this
algorithm repeats division operations until B = 0, and
then output the GCD.

In case of implementing this algorithm through
hardware, we usually design a sequential machine with
some registers, ALUs, and a control unit. However, if
we only consider the relation between input and out-
put, this algorithm can be regarded as a logic func-

B>0
?

Q [A / B]
R A - B Q
A B
B R

input A, B

output A

yes

no
A B

GCD(A, B)

Algorithm

(a) Flow chart. (b) Function of algorithm.

Figure 1: Euclid's algorithm for GCD calculation.

tion that computes a binary-coded vector GCD(A;B)
from A and B as shown in Fig. 1(b). The goal of
this paper is to generate BDDs representing such logic
functions based on symbolic execution. As BDDs are
canonical representations of logic functions, the forms
of BDDs are independent of the internal structures of
algorithms. By comparing these BDDs, we can check
the equivalence of two algorithms. If the BDD forms
are di�erent, the logical EX-OR of the two BDDs gives
the counter examples of inputs to make di�erent out-
puts.

In this paper, we consider the algorithm-level
descriptions having the following structures, which
are commonly supported in many programming lan-
guages.

� Expressions containing arithmetic operations of
integers, equality and inequality, and bit-wise
logic operations.

� Program variables for saving the results of cal-
culation to be referred to in other expressions.

� Conditional branches (if-then-else)

� Data dependent loops (while-end).

� Arrays of variables.

Discussed theoretically, algorithms may have an in�-
nite number of instances. In such cases, we cannot
generate BDDs since they require an in�nite number
of input variables. In this paper, we assume a �xed
number of input/output variables with a �nite bit-
length.

In generating BDDs based on the symbolic execu-
tion of algorithms, there are two technical problems:

� Data structures for symbolic calculation of arith-
metic operations of integers.

� Symbolic execution of data dependent branches
and loops. (For example, repeating times de-
pends on the values of symbolic inputs.)

We have already presented a method using BDD
vectors[5] for calculating arithmetic operations, but it
does not handle data dependent branches and loops.
In the following sections, we present methods of solv-
ing these problems.

x1

x2

0

0
0

0

1 1

1

1

x1

x2 x2
00 11

F0F1F2(sign)

x1 x2

0 0
0

0
1

1
1 1

F (F2 F1 F0)

0 (0 0 0)
1 (0 0 1)
3 (0 1 1)
4 (1 0 0)

F = 3 x1 + x2

Figure 2: BDD vector for a B-to-I function.

3 Manipulation of BDD Vectors
We present a method for manipulating BDD vec-

tors for calculating arithmetic and logic operations
of integers. (Details are described in [5].) In this
method, we deal with arithmetic Boolean expressions
and B-to-I (Boolean-to-integer) functions, which are
extended models of conventional Boolean expressions
and switching functions.

Arithmetic Boolean expressions are extended
Boolean expressions including not only logic opera-
tors but also arithmetic operators for constant integers
and switching input variables (symbols). For example,
(3x1+x2) is an arithmetic Boolean expression, that re-
turns an integer value 0, 1, 3, or 4 for each assignment
of f0; 1g to the input variables x1; x2. In general, an
arithmetic Boolean expression represents a function
from a binary-vector to an integer: (Bn ! I). We
call this a B-to-I (Boolean-to-integer) function.

In order to represent B-to-I functions using BDDs,
we decompose a B-to-I function into n pieces of switch-
ing functions each of which represents a digit of the
binary-corded integer, as shown in Fig. 2. We call such
representation the BDD vector. For negative numbers,
we used 2's complement representation. The BDD of
the most signi�cant bit indicates the conditions under
which the function returns negative value.

In our method, an arithmetic expressions can be
assigned to a program variable to save the calculation
result and reuse it in subsequent expressions. Each
program variable stands for a B-to-I function, and it
is represented by a BDD vector. In this paper, we
denote the program variables by strings starting with
an uppercase letter, to distinguish them from input
variables denoted by strings starting with a lowercase
letter.

When the algorithm-level description requires an
input variable having integer values, we represent it
by using a number of switching input variables for
each digit of binary code, as

X = x1 + 2x2 + 4x2 + � � �+ 2n�1xn:
For generating a BDD vector for a given arithmetic

Boolean expression, we �rst generate trivial ones rep-
resenting input variables or constant numbers, and
then construct BDD vectors by applying some arith-
metic and logic operations according to the structure
of the expression. Arithmetic operations like addition,

A 0 ; B 0
if (3x+ y < 4) then

A 10
B 3

else
A 5

endif

(a) Original description.

x y

00 01 10 11
A 10 10 10 5
B 3 3 3 0

(b) Expected result.

A 0 ; B 0
C (3x+ y < 4)
E C

A (E � 10) + (E �A)

B (E � 3) + (E �B)

E C

A (E � 5) + (E � A)

(c) Translated description.

Figure 3: An example of if-then-else structure.

subtraction, multiplication, division, and shifting can
be performed by using BDD logic operations simulat-
ing a conventional hardware algorithm of arithmetic
circuits. We assumed integer values only, so division
produces a quotient and a remainder. Equality and
inequality operation is performed by subtraction fol-
lowed by evaluation of the sign-bit BDDs. Logic op-
erations, such as AND, OR, and EXOR, are imple-
mented as bit-wise operations between two BDD vec-
tors.

It is very useful for practical applications to �nd
the upper (or lower) bound value of a B-to-I function
for all possible combinations of input values. This can
be done e�ciently by determining each digit of BDD
from the highest to the lowest based on the binary
search.

4 Handling of Control Structures
It is a problem to generate BDDs from the descrip-

tions including data dependent branches and loops be-
cause we hardly determine which statement will be ex-
ecuted, or how many times the loop will be repeated.
For example, the Eucrid's algorithm (Fig. 1) repeats
the loop until B = 0, but the repeat times depends on
the values of input variables.

Here, we present a way to handle the two control
structures: if-then-else and while-end having symbolic
conditions. These two structures are basic enough to
describe the generality of algorithms.

4.1 If-Then-Else Structures

First, we describe a method for dealing with the
if-then-else structures with symbolic conditions. Fig-
ure 3(a) shows a simple example of such a structure.
In this case, the condition (3x + y < 4) is satis�ed
when x = 0 or y = 0. If it is satis�ed, then the assign-
ment A 10 and B 3 are executed. Otherwise, A

A 3x + y ; B 0
while (A > 0)

B B +A

A A � 1
end

(a) Original description.

x y

00 01 10 11
A 0 0 0 0
B 0 1 6 10

(b) Expected result.

A 3x+ y ; B 0
E (A > 0)
while (E 6� 0)

B E � (B+A)+(E �B)

A E � (A� 1)+ (E �A)
E E � (A > 0)

end

(c) Translated description.

Figure 4: An example of while-end structure.

becomes 5 but B keeps its initial value of 0. After exe-
cuting this if-then-else part, A and B should have the
values depending on x and y, as shown in Fig. 3(b).

For computing the B-to-I functions from such a
data dependent branch, we de�ned the switching func-
tion E , that represents whether the statement is exe-
cutable or not. We call this executable function. Using
an executable function, the assignment

A expr
can be translated into

A (E � expr) + (E �A);
which means that the value of A does not change when
E = 0. In this way, the description of Fig. 3(a) can
be translated into a deterministic sequence as shown
in Fig. 3(c). We can generate BDD vectors from the
translated descriptions.

When the if-then-else structures are nested, the sec-
ond depth of executable function becomes the conjunc-
tion with the �rst depth ones. In general, the n-th
depth of executable function En can be computed as
the conjunction of En�1 and the function of the n-th
condition. We de�ne E0 = 1. In our implementation,
we prepared a stack to save E

n
for each depth of the

if-then-else structures.
Using the executable functions, we can eliminate

data dependent branches from the algorithm descrip-
tions. Multiple branches, such as the case statement,
can be translated into a number of nesting if-then-else
structures.

4.2 While-End Structures
Next, we propose a way to deal with the while-

end structures with symbolic conditions. We show an
example in Fig. 4(a). In this case, the assignments
B B+A and A A�1 are repeated while (A > 0)
is satis�ed. The repetitions depend on the values of
x and y. The �nal results of A and B are shown in
Fig. 4(b).

The concept of the executable function is also use-
ful in executing the while-end structures. If the while-

I 10
while (I > 0)

I I � 2x
end

(a) Detectable case.

I 10
while (I > 0)

I I + 1
end

(b) Undetectable case.

Figure 5: Detection of endless loops.

condition is not satis�ed at the �rst evaluation, the
loop is never executed. Therefore, the �rst time, the
statements in the loop are executed under executable
function E that corresponds to the while-condition.
After the �rst execution, the values of some program
variables may change, and the while-condition is eval-
uated again. In this step, the new executable function
can be computed as the conjunction of current E and
the new while-condition. We repeat this procedure un-
til E � 0 (unsatis�able). This unsatis�ability check-
ing is quite easily done by BDD operations. Unless
the algorithm description has endless loops, E eventu-
ally becomes unsatis�able, and we can break the loop.
Using this method, the example in Fig. 4(a) can be
translated into a deterministic procedure, as shown in
Fig. 4(c).

The nested loops can be executed in a similar way
to the if-then-else structures. The n-th depth of exe-
cutable function En is initialized as En�1, and we then
compute the conjunction of the while-condition. As
usual programming languages, the number of total re-
peating times becomes the product of the repeating
times for each depth. The nesting of if-then-else and
while-end structures is also executed similarly.

If the description has an endless loop, our method
will not terminate. A way to detect the existence of
an endless loop. Every time we evaluate the while-
condition, we check the programming variables which
appears in the loop. If all the variables have kept the
same values as the last time, we can detect a stable
state to allow the loop to be continued endlessly. The
�nal executable function represents the condition of
the input variables to fall into the endless loop. This
information is very useful in debugging the algorithm
description. We show an example in Fig. 5(a). In this
case, the loop does not terminate when x = 0, and it
can be detected with our method.

Unfortunately, there is another type of endless
loops which cannot be detected. Figure 5(b) is one
such example. Variable I increases every time, but it
will never break the while-condition. It is very di�cult
to recognize this type of endless loops.

4.3 Arrays of Variables
When describing algorithms with loop structures,

we sometimes use arrays of variables. It makes the
descriptions more compact, and increases the applica-
bility of the programming language. However, there
is a problem in how to manipulate the array speci-
�ed by a symbolic index. For example, A(x+y) refers
A(0);A(1), and A(2) depending on the values of x and
y. Namely, the statement:

B A(x+ y)

is equivalent to:
B x � y � A(0) + (x� y) �A(1) + x � y �A(2),

and
A(x+ y) B

is equivalent to the sequence of statements:
if (x � y) then A(0) B,
if (x� y) then A(1) B,
if (x � y) then A(2) B.

In our implementation, such expressions are translated
automatically. The space for the array variables are
allocated when they appear for the �rst time. The
indices of negative numbers can also be used. For ex-
ample, when the expression A(100x � 50y) appears,
the space for only four variables A(0); A(50); A(100),
and A(�50) are allocated. (no space allocated for
A(1) � � �A(49).) The possible values of the index can
be known by checking BDD vectors.

5 Implementation and Experimental

Results
Based on the above method, we implemented a

symbolic execution system for algorithm-level descrip-
tions. The program is written in C++ language on a
SPARC station 10 (SunOS 4.1.3, 128MB). This system
is implemented as an interpreter with a C-shell-like
interface, both for interactive execution by keyboard
and for batch jobs to read a script �le. It computes
the B-to-I functions for the arithmetic Boolean expres-
sions, and the results are represented by BDD vectors.

Our system allows up to 65,535 di�erent input vari-
ables. We can generate up to several millions of BDD
nodes, limited by main memory size. Using print
command, any time we can observe the current re-
sults of execution. The results of B-to-I functions are
displayed in various formats, such as Karnough maps,
bit-wise Boolean expressions, graphic display of BDD
forms, and net lists in Verilog HDL. The statistical in-
formations, such as number of BDD nodes, can also be
displayed. These formats are helpful in understanding
the behavior of the algorithms.

For evaluating the performance of our system, we
conducted experiments to generate BDD vectors from
some practical examples of algorithm-level descrip-
tions. The results are shown in Table 1. The col-
umn \Name" indicates the sort of functions, \#In"
and \#Out" shows the total number (bit) of the in-
puts and outputs. \BDD node" shows the number of
nodes for representing output variables, not including
ones for intermediate variables.

In this table, the name \euc-n" and \mygcd-n" are
the scripts of GCD calculation for a pair of n-bit in-
tegers. \prime-n" means the prime check function,
which returns 1/0 whether the given n-bit integer is a
prime number or not. \hamm-n" describes the func-
tion that counts the Hamming distance between a pair
of n-bit binary codes. \fact-n" calculates the factorials
for given n-bit integers. For \fact-6", the BDD vec-
tor represents all factorials up to 63 !, and the output
bit-length reaches as many as 290. \sel-n" describes
the function of the n-to-1 data selector, that has n-bit
data inputs and dlogne-bit control inputs. \enc-n"
is the n-bit priority encoder from one-hot code into

Table 1: Experimental results.

Name #In #Out BDD node* Time(s)
euc-4 8 4 86 1.2
euc-6 12 6 775 7.8
euc-8 16 8 6,850 154.6
euc-10 20 10 63,589 3,906.5
mygcd-4 8 4 86 7.4
mygcd-6 12 6 775 57.3
mygcd-8 16 8 6,850 1,089.1
prime-8 8 1 46 3.6
prime-12 12 1 352 36.0
prime-16 16 1 3,242 880.0
hamm-15 30 4 387 0.3
hamm-31 62 5 1,667 1.4
hamm-63 126 6 6,915 8.0
fact-4 4 41 65 2.6
fact-6 6 290 1,160 170.3
sel-16 20 1 31 0.2
sel-64 70 1 127 0.9
sel-256 264 1 511 3.4
enc-15 15 4 42 0.3
enc-63 63 6 290 1.6
enc-255 255 8 1,666 14.2

* using negative edges.

binary code.
Here we illustrate the scripts and BDD forms for

several examples. \euc-n" is the description of Eu-
clid's algorithm for n-bit GCD calculation. Fig-
ure 6(a) shows the script \euc-4". (In this example,
we assumed that the output is zero when at least one
of the inputs is zero.) Our system can interpret this
script directly, and generates a BDD vector including
all the information about the GCDs for any pair of
integers. The result of BDD form is printed out in
Fig. 7. If we assign certain 0/1 values into the input
variables, this BDD vector immediately gives a binary-
coded GCD number. We succeeded in generating the
BDD vector for \euc-10" (up to 1,023) in a practical
time and space.

We also tried to run \mygcd-n", which is another
algorithm for GCD calculation. The script \mygcd-4"
is shown in Fig. 6(b). This algorithm repeats checking
for all the numbers whether each number can be a
common divisor or not. Our system interprets this
description as well. The result of BDD vector was
completely the same as one for Eucrid's algorithm.
In terms of CPU time, \euc-n" is much faster than
\mygcd-n" because of the di�erence in total execution
steps.

For debugging or analyzing the descriptions, we can
insert additional program variables to observe the in-
ternal behavior of execution. For example, Euclid's
algorithm repeats the loop many times, but the max-
imum repeat times are not obvious. By inserting the
statement I=I+1 at the inside of while-loop and look-
ing at the result of I, we can check the maximum
repeat times and which input assignments lead to it.

In Fig. 8, we show another script example, which
describes 8-bit prime check function \prime-8". This

symbol a3 a2 a1 a0
symbol b3 b2 b1 b0
A = a0+2*a1+4*a2+8*a3
B = b0+2*b1+4*b2+8*b3
if(A==0 | B==0) then

A = 0
else

while(B > 0)
Q = A/B
R = A - B*Q
A = B
B = R

end
endif
print /size A

(a) Eucrid's algorithm.

symbol a3 a2 a1 a0
symbol b3 b2 b1 b0
A = a0+2*a1+4*a2+8*a3
B = b0+2*b1+4*b2+8*b3
if(A==0 | B==0) then
A = 0

else
C = 1
I = 2
while(I<=A & I<=B)
while(A==A/I*I & B==B/I*I)
C = C*I
A = A/I
B = B/I

end
I = I+1
end

endif
print /size C

(b) \mygcd" algorithm.

Figure 6: Scripts for 4-bit GCD calculation.

Figure 7: BDDs for 4-bit GCD calculation.

algorithm attempts to divide the given integer by all
possible numbers, and if no number can be a divisor,
the output F will be true. If we implement this al-
gorithm as a sequential machine with some registers
and ALUs, it will take many clock cycles to compute
results. Our system can atten this algorithm into a
combinational logic. The result of BDD form is shown
in Fig. 9. This BDD corresponds to a loop-free combi-
national circuit that performs prime checking within
a single clock cycle.

The number of BDD nodes does not directly de-
pend on the number of execution steps in the scripts.
It is decided by the number of input variables and the
nature of the functions. For the tractable functions,
we can use up to several hundreds of input variables;

symbol a(8..1)
A = 0; I = 8
while(I>0)
A = A*2+a(I)
I = I-1

end
F = 1
if(A<=1) then
F = 0

endif
if(A%2==0 & A>2) then
F = 0

endif
I = 3
while(I*I<=A & F==1)
if(A%I==0) then
F = 0

endif
I = I+2

end
print /size F

Figure 8: Scripts for 8-bit prime check function.

Figure 9: BDDs for 8-bit prime check function.

however, in the worst case, the BDD size grows ex-
ponentially to the number of input variables. It is a
limitation of our method in size of problems. In terms
of execution time, it depends not only on the BDD
size but also on the number of the execution steps.
Deeply nested loops are not favorable since they are
time consuming.

6 Conclusion
We have proposed a new method for generating

BDDs from algorithm-level descriptions written in a
programming language. Our system can handle con-
ditional branches and data dependent loops. Once
BDDs are generated, we can immediately check the
equivalence of two di�erent algorithm descriptions just

by comparing BDDs. In addition, our system can dis-
play the current results of internal program variables.
It is very useful for debugging and analyzing the be-
havior of algorithms.

Another interesting application is to synthesize
loop-free logic circuits from algorithm-level descrip-
tions. We previously developed a method[6] to synthe-
size gate-level combinational circuits from BDD repre-
sentations. This method would enable us to synthesize
hardware modules from algorithm-level descriptions.
FPGAs are useful for implementing such circuits into
actual devices. In this way, we can accelerate the sys-
tem by transforming a part of software into a hard-
ware module that computes the outputs within a sin-
gle clock cycle.

So far, our system does not support subroutine
calls. One of the reasons is that we implemented the
system as an interpreter with both interactive and
batch-style interfaces. If we implement another sys-
tem which runs in batch-style only, it is possible to
handle the subroutines with local scope variables.

Algorithm-level descriptions written in a program-
ming language are very easy to read and write for most
of designers. Our system can interpret such descrip-
tions directly. Although there is a limitation in size of
problems, our method is very practical and useful for
actual design veri�cation.

References
[1] R. Bryant and Y.-A. Chen, Veri�cation of Arith-

metic Circuits with Binary Moment Diagrams,
Proc. of ACM/IEEE 32rd DAC, pp. 535-541,
June, 1995.

[2] J. Burch, E. Clarke, L. McMillan, and D. Dill,
Sequential Circuit Veri�cation Using Symbolic
Model Checking, Proc. of ACM/IEEE 27th DAC,
pp. 535-541, June, 1990.

[3] M. Srivas and A. Miller, Applying Formal Veri�-
cation to a Commercial Microprocessor, Proc. of
IEEE CHDL'95, pp. 493-502, Aug., 1995.

[4] D. Knuth, The Art of Computer Program-
ming, Vol. I: Fundamental Algorithms, Addison-
Weslay, Reading Mass., 1973

[5] S. Minato, Arithmetic Boolean Expressions, In
Binary Decision Diagrams and Application for
VLSI CAD, chapter 9, pp. 109-128, Kluwer Aca-
demic Publishers, Oct., 1995.

[6] S. Minato, Fast Factorization Method for Implicit
Cube Set Representation, IEEE Trans. on CAD,
Vol. 15, No. 4, pp. 377-384, Aplil, 1996.

[7] S. Minato, Graph-Based Representations of Dis-
crete Functions, In T. Sasao, editor, Representa-
tion of Discrete Functions, chapter 1, pp. 1-27,
Kluwer Academic Publishers, April, 1996.

	CDROM Home Page
	1996 Home Page
	ICCAD 96
	Front Matter
	Table of Contents
	Session Index
	Author Index

