
ICCAD ’96
1063-6757/96 $5.00 1996 IEEE

Efficient Solution of Systems of Boolean Equations

Scott Woods Giorgio Casinovi

School of Electrical & Computer Engineering Info Tech & Telecommunications Lab
Georgia Institute of Technology Georgia Tech Research Institute

Atlanta, GA 30332-0250 Atlanta, GA 30332-0800

Abstract
This paper describes an algorithm for the efficient solu-

tion of large systems of Boolean equations. The algorithm
exploits the fact that, in some cases, the composition op-
eration of Boolean functions represented by BDD’s can be
performed in a very efficient manner. Thus, the algorithm
tries to eliminate as many variables and equations as pos-
sible through function composition. When the system can
no longer be reduced in this way, the elimination process is
continued through the use of Shannon decomposition. Nu-
merical results show that the performance of this algorithm
is significantly superior to that of a previous algorithm pro-
posed by the authors.

1 Introduction
Given a Boolean function f(x1; x2; : : : ; xn), the prob-

lem of determining whether there exist Boolean values for
x1; x2; : : : ; xn such that f evaluates to a logic one (or a logic
zero) is known as the Boolean satisfiability problem. This
problem arises in a number of areas related to the synthesis,
simulation and testing of digital networks, such as output
encoding and state assignment of finite state machines [1],
timing analysis and delay-fault test generation of combi-
national circuits [2], automatic test-pattern generation [3],
and the determination of the initial state of a digital network
containing feedback loops. In [4], the authors presented an
algorithm to solve Boolean equations based on repeated
applications of the Shannon decomposition. Its main fea-
tures were its ability to take advantage of the sparsity of the
system of equations to be solved, and the fact that it could
determine whether the system of equations had no, one, or
more than one solution.

This paper describes an improved version of that algo-
rithm which is mathematically equivalent to it, but tries to
exploit as much as possible the fact that the composition
of Boolean functions represented by BDD’s can, in some
particular cases, be performed in a very efficient manner.
Section 2 contains a description of the algorithm and some

This work was supported in part by the National Science Foundation
under grant MIP-9211163.

theoretical results related to it, while Section 3 describes
a number of variable numbering schemes that have been
tried by the authors to improve the algorithm’s efficiency.
Finally, some experimental results are shown and discussed
in Section 4.

2 Solving Boolean equations
Throughout this section, it will be assumed that the sys-

tem of equations to be solved arises from the problem of
finding the initial state of a digital network described at the
gate level. As will become apparent later, the algorithm that
computes the solution of this system of equations relies on
the network’s signal flow graph. It should be noted, how-
ever, that the dependency graph of the system of equations
is isomorphic to the network’s signal flow graph. There-
fore, the algorithm described here can be applied to any
system of Boolean equations: all that is necessary to do is
to replace the network’s signal flow graph with the depen-
dency graph of the system to be solved.

In order to reduce the size of the system to be solved, it
is advantageous to decompose the network into its strongly
connected components. Since it is assumed that all the gates
are unidirectional, the gate-level circuit can be represented
as a directed graph. An algorithm that identifies strongly
connected components in a directed graph was developed
by Tarjan [5]. The complexity of this algorithm isO(n+e),
where e is the number of graph edges, and n the number of
graph vertices (i.e. the number of nodes in the network). A
side benefit of using this algorithm is that it sorts the graph
vertices in reverse topological order. Traversing a graph in
this order ensures that each vertex is visited only after all
of its predecessors have already been visited: in the case
of a digital network, this corresponds to propagating signal
values through the network following the signal flow graph.

Once the graph has been sorted and its strongly con-
nected components identified by Tarjan’s algorithm, signal
values can be propagated through the network,starting from
the primary inputs. For this purpose, a strongly connected
component is regarded as one gate, and when all inputs
to the component are known a special routine is called to

compute the values of the nodes inside the component: as is
shown below, this requires the solution of a set of Boolean
equations.

Let x1; x2; : : : ; xn denote the logic values of the nodes in
a digital circuit. For each gate in the circuit, a corresponding
Boolean equation can be written that expresses the value
of the gate’s output as a function of its input values. Such
equations have the form:

xi = gi(x1; : : : ; xn); i = 1; : : : ; n; (1)

where xi denotes the value of the output of the i-th gate,
and gi is the Boolean function implemented by the gate.
By the laws of Boolean algebra, the system of equations
(1) is equivalent to:

fi(x1; : : : ; xn) = xiḡi [x̄igi = 0; i = 1; : : : ; n: (2)

This system, in turn, can be reduced to the single equation:

F 1(x1; : : : ; xn) =
n[
i=1

fi(x1; : : : ; xn) = 0: (3)

The simplest way to solve eqn. (3) is to express F 1 in terms
of its Shannon decomposition with respect to x1, and to
rewrite the equation as:

x1F
1
x1
(x2; : : : ; xn) [x̄1F

1
x̄1
(x2; : : : ; xn) = 0:

It can be shown [6, p. 58] that the values of x1 that solve
this equation are exactly those that satisfy the inequalities:

F 1
x̄1
(x2; : : : ; xn) � x1 � F̄ 1

x1
(x2; : : : ; xn):

Of course, values of x1 that satisfy both inequalities exist
if and only if F 1

x̄1
� F̄ 1

x1
. By the laws of Boolean algebra,

this last inequality is equivalent to the equationF 1
x̄1
F 1
x1
= 0.

Therefore eqn. (3) can be solved if and only if the following
equation can be solved:

F 2(x2; : : : ; xn) =

F 1
x̄1
(x2; : : : ; xn)F

1
x1
(x2; : : : ; xn) = 0: (4)

Since function F 2 does not depend on x1, the number of
unknowns has been reduced by one from the original equa-
tion. Recursive application of this technique reduces the
original system of equations to one equation in the unknown
xn, whose solutions (if they exist) are determined by in-
equalities of the type: an � xn � b̄n, where an and bn are
Boolean constants. If anbn 6= 0, the system of equations
(3) has no solutions. If anbn = 0, the system can be solved
by back-substituting the values of xn; xn�1; : : : ; xi+1 into
the inequalities:

F i
x̄i
(xi+1; : : : ; xn) � xi � F̄ i

xi
(xi+1; : : : ; xn): (5)

In principle, this algorithm allows the computation of
all the solutions of the original set of equations. From a
practical standpoint, its main drawback is that the start-
ing point is a function that depends on all the unknowns.
Since the number of unknowns can be quite large, it may
be impracticable, if not impossible, to handle the functions
generated by the algorithm. For this reason, modifications
to the algorithm are needed to keep the size of the resulting
BDD’s, and the complexity of the algorithm, to a man-
ageable level. In [4], the authors proposed the following
modification, which takes advantage of the sparsity of the
equations. Let:

Si = fj : fj depends on xi but not on x1; : : : ; xi�1g;

and define:

Gi(xi; : : : ; xn) =
[
j2Si

fj(xi; : : : ; xn)

F 1(x1; : : : ; xn) = G1(x1; : : : ; xn) (6)

F i+1 = (F i
xi
F i
x̄i
) [Gi+1:

It can be shown [4] thatF i depends only on xi; : : : ; xn and
that the solutions of eqns. (2) and (3) can still be computed
through inequalities (4),using the functionsF i as defined in
eqn. (6). The advantage of this modifications is that, before
variable xi is eliminated, only those functions that depend
explicitly on xi are included in F i, and the size of the
BDD representingF i is thus reduced. Experimental results
obtained by the authors have shown that this algorithm
can handle systems containing hundreds of unknowns in
reasonable times.

A further simplification to the algorithm can be made
in the following way: if the function g1 in eqn. (1) does
not depend on x1, the variable x1 can be eliminated by
substituting g1 for it in the remaining equations:

xi = gi(g1(x2; : : : ; xn); x2; : : : ; xn) i = 2; : : : ; n:

Of course, the substitution has to be performed only for
those functions gi that depend explicitly on x1. The con-
nection between this algorithm and the one described earlier
is illustrated by the following theorem.

Theorem 1 Let the functions fi, F 1 and F 2 be as defined
in eqns. (2), (3) and (4), respectively. If g1 does not depend
on x1, then:

F 2(x2; : : : ; xn) =
n[
i=2

fi(g1(x2; : : : ; xn); x2; : : : ; xn):

Proof: Consider the Shannon decomposition of fi:

fi = x1fi;x1 [x̄1fi;x̄1 :

Since x1 = g1(x2; : : : ; xn), and g1 does not depend on x1,
it follows that:

n[
i=2

fi(g1(x2; : : : ; xn); x2; : : : ; xn) =

=
n[
i=2

g1fi;x1 [ḡ1fi;x̄1 =

= g1

n[
i=2

fi;x1

!
[ḡ1

n[
i=2

fi;x̄1

!
:

On the other hand, the Shannon cofactors of f1 are: f1;x1 =
ḡ1 and f1;x̄1 = g1. From the definition of F 1 and the
properties of the Shannon decomposition, it follows that:

F 1
x1

=
n[
i=1

fi;x1 = ḡ1 [

n[
i=2

fi;x1

!

F 1
x̄1

=
n[
i=1

fi;x̄1 = g1 [

n[
i=2

fi;x̄1

!
:

Then, from eqn. (4):

F 2 =

"
ḡ1 [

n[
i=2

fi;x1

!#"
g1 [

n[
i=2

fi;x̄1

!#
=

= ḡ1

n[
i=2

fi;x̄1

!
[g1

n[
i=2

fi;x1

!

[

n[
i=2

fi;x̄1

!
n[
i=2

fi;x1

!
:

But the last term in the equation above is redundant, be-
cause, if g1 = 0:

n[
i=2

fi;x̄1

!
[

n[
i=2

fi;x̄1

!
n[
i=2

fi;x1

!
=

n[
i=2

fi;x̄1

!
;

and, if g1 = 1:
n[
i=2

fi;x1

!
[

n[
i=2

fi;x̄1

!
n[
i=2

fi;x1

!
=

n[
i=2

fi;x1

!
:

Hence:

F 2 = ḡ1

n[
i=2

fi;x̄1

!
[g1

n[
i=2

fi;x1

!
;

which proves the theorem’s statement. 2

This theorem shows that, if g1 does not depend on x1,
eliminating x1 by substituting the function g1 for it, is

mathematically equivalent to eliminating it through Shan-
non decomposition. algorithm. Of course, if the function
g2(g1(x2; : : : ; xn); x2; : : : ; xn) does not depend on x2, the
same technique can be used to eliminate x2 from the re-
maining equations. This procedure can be repeated until
the system of equations is reduced to:

xi = gi(xp; : : : ; xn); i = p; : : : ; n; (7)

where each function gi does depend on xi. From a cir-
cuit standpoint, this corresponds to looking at the original
network as a block of combinational logic with p feedback
loops which correspond to variables xp; : : : ; xn, as shown
in Fig. 1. This system can be solved by resorting to the
method described in eqns. (1–3).

xp+1

xn

px

xp+1

px

nx

Combinational Logic

Figure 1. Network corresponding to the reduced
set of equations

From a practical standpoint, the advantage of this al-
gorithm is that initially the elimination of a variable is
accomplished through one function composition operation,
instead of a Shannon decomposition followed by an AND
operation. If the functions are represented by BDD’s, and
the variable ordering is chosen appropriately [7], the com-
positionoperation can be performed in a very efficient man-
ner. The next section describes a number of variable num-
bering algorithms that have been experimented with by the
authors.

3 Ordering strategies
It is well known [7] that the size of a BDD represent-

ing a Boolean function is affected by the order in which
the variables are numbered. Since the complexity of most
operations on BDD’s is related to the BDD size, it is im-
portant to try to keep the size of the BDD’s as small as
possible throughout the entire variable elimination process.
Moreover, since the goal of the algorithm described in the
previous section is to eliminate as many variables as pos-
sible through function composition, it is also important to
number the variables so that the composition operation can

be performed in as efficient a manner as possible. Sev-
eral variable numbering schemes have been suggested to
achieve those goals. This section describes three different
implementations of the algorithm described in the previ-
ous section, based on three different variable numbering
and elimination strategies. In all implementations, the first
step consists of identifying the variables corresponding to
the feedback loops in a strongly connected components, as
shown in Fig. 1. The strongly connected component can
now be regarded as a block of combinational logic, whose
primary inputs are the feedback loop variables.

The first implementation relies on the numbering strat-
egy suggested in [8]. This method is based on a traversal of
the network graph in depth-first order, from primary outputs
to primary inputs, with a number of heuristic modifications
intended to optimize the size of the resulting BDD. This
algorithm yields a numbering for the primary inputs to the
networks; BDD’s for the primary outputs can then be ob-
tained by repeated applications of the BDDApply() function
following the network’s signal flow graph.

The result of this operation is a set of BDD’s represent-
ing the functions gi of eqn. (7). Further simplification of
this system of equations is possible if some of the functions
gi do not depend on xi: in this case the variable xi can be
eliminated from the set of equations by variable substitution
through the BDDCompose() function, as explained in the
previous section. When all possible variable substitutions
have been performed, the resulting system of equations is
reduced to a single Boolean equation (eqn. (3)) and then
solved by repeated applications of the Shannon decompo-
sition, as described at the beginning of Section 2.

The two other implementationsof the Boolean equations
solution algorithm are based on the variable-numbering
strategies suggested in [9]. In the first of the two methods
described in this reference, nodes are numbered according
to their level in the network: this is similar to numbering
nodes according to a reverse breadth-first traversal of the
network graph. The second method, called fanin by the
authors, is a combination of depth-first and breadth-first
numbering strategies. Both methods assign numbers to all
nodes in the networks, including internal nodes, and not
just to primary inputs, as was the case for the algorithm
described in [8].

Once all variables have been assigned a number, BDD’s
are built for all the gates in the strongly connected compo-
nent. This is equivalent to generating a system of Boolean
equations of the type shown in eqn. (7), where the number
of variables is now equal to the number of nodes contained
in the strongly connected component. Of course, a large
number of them can be eliminated by variable substitution
through the BDDCompose() function. When no more vari-
able substitutions can be performed, the system of equations

is once again solved by Shannon decomposition.

4 Experimental results
The three implementations described in the previous

section were tested on the 1989 ISCAS benchmarks. BDD
manipulation was performed using the routine library de-
veloped at the ECE Department of Carnegie-Mellon Uni-
versity [10]. The results are reported in Table I: all CPU
times refer to a Sparcstation 20/5 running SunOS 4.1.4.
The first column contains the size of the largest strongly
connected component found in the circuit: this is an upper
bound on the size of the system of equations to be solved.
The second column reports the time necessary to find the
initial state of the network using the algorithm described in
[4], which is based on Shannon decomposition. The other
three columns refer to the three implementations of the al-
gorithm described in Section 3. It can be observed that
the performance of the algorithm described in this paper is
vastly superior to the one based on Shannon decomposition
for any ordering strategy. The best performance, especially
on the largest benchmarks, is given by the first implemen-
tation described in Section 3. The superior performance
of that implementation does not necessarily mean that the
ordering strategy suggested in [8] is better than those de-
scribed in [9]. Another factor to be taken into account is that
the first implementation uses both BDDApply() and BDD-
Compose() to build the BDD’s, while the other two rely
exclusively on BDDCompose(). In fact, execution profiles
have shown that anywhere from 30 to 85% of the total
CPU time is spent in the BDDCompose() function. Thus,
the efficiency of the composition operation can become the
dominant factor in determining the efficiency of the overall
algorithm.

5 Conclusion
In this paper we have shown how the performance of

an algorithm for the solution of systems of Boolean equa-
tions can be greatly improved by taking advantage of the
composition operation of Boolean functions represented by
BDD’s. Because the efficiency of the composition opera-
tion and the size of the resulting BDD’s are significantly
affected by the order in which the variables are numbered,
three different ordering strategies were tried. Numerical
results obtained on the 1989 ISCAS benchmarks show that
the algorithm described here performs significantly better
than a previous one developed by the authors. Although
the application considered in this paper was the computa-
tion of the initial state of a digital network, the algorithm
can easily be applied to any system of Boolean equations:
all that is necessary is to replace the signal graph of the
network with the dependency graph of the system of equa-
tions to be solved. Thus it is our belief that this algorithm
has potential applications also in other areas, such as state

TABLE I
Solution times (in seconds) for ISCAS89 benchmarks

Max. Shannon Apply Compose Compose
Ckt. Size Decomp. Compose Level Fanin

s510 28 20.4 0.55 0.98 0.95
s641 12 1.25 0.03 0.97 1.00
s820 17 8.52 0.15 0.60 0.63
s953 22 3.72 0.13 0.65 0.70
s1423 133 69.16 79.13 151.01 202.1
s1488 36 > 3600 0.51 2.58 2.62
s1494 34 > 3600 0.53 2.58 2.58
s5378 14 7.75 0.08 2.35 2.36
s9234 86 > 3600 1.96 40.55 40.82
s15850 159 > 3600 6.90 242.66 276.33
s35932 37 > 3600 12.91 988.80 960.48
s38417 278 > 3600 13.10 422.52 414.62
s38584 2 > 3600 1.13 4.40 4.70

assignment, test generation, and all those problems that
require the solution of large systems of Boolean equations.

6 Acknowledgement
The authors would like to thank Kanwar J. Singh, of

AT&T Bell Laboratories, for suggesting the idea that led to
the development of the algorithm described in this paper.

References
[1] S. Devadas and A. R. Newton, “Exact Algorithms

for Output Encoding, State Assignment, and Four-
Level Boolean Minimization”, IEEE Transactions on
Computer-Aided Design, vol. 10, no. 1, pp. 13–27,
January 1991.

[2] P. C. McGeer, A. Saldanha, P. R. Stephan, R. K.
Brayton, and A. Sangiovanni-Vincentelli, “Timing
Analysis and Delay-Fault Test Generation using Path-
Recursive Funcions”, in Proceedings of the 1991 In-
ternational Conference on Computer-Aided Design,
Santa Clara, CA, November 1991, pp. 180–183.

[3] T. Larrabee, “Test Pattern Generation Using Boolean
Satisfiability”, IEEE Transactions on Computer-
Aided Design, vol. 11, no. 1, pp. 4–15, January 1992.

[4] Scott Woods and Giorgio Casinovi, “Gate-Level
Simulation of Digital Circuits Using Multi-Valued
Boolean Algebras”, in Proceedings of the 1995 in-
ternational Conference on Computer-Aided Design,
Santa Clara, CA, November 1995, pp. 413–419.

[5] R. E. Tarjan, “Depth-first search and linear graph
algorithms”, SIAM Journal on Computing, vol. 1, pp.
146–160, 1972.

[6] Sergiu Rudeanu, Boolean Functions and Equations,
North-Holland Publishing Co., Amsterdam, 1974.

[7] R. E. Bryant, “Graph-Based Algorithms for Boolean
Function Manipulation”, IEEE Transactions on Com-
puters, vol. C-35, no. 8, pp. 677–691, August 1986.

[8] M. Fujita, H. Fujisawa, and N. Kawato, “Evaluation
and Improvements of Boolean Comparison Method
Based on Binary Decision Diagram”, in Proceedings
of the 1988 International Conference on Computer-
Aided Design, Santa Clara, CA, November 1988, pp.
2–5.

[9] Sharad Malik, Albert R. Wang, Robert K. Brayton,
and Alberto Sangiovanni-Vincentelli, “Logic Veri-
fication using Binary Decision Diagrams in a Logic
Synthesis Environment”, in Proceedings of the 1988
International Conference on Computer-Aided Design,
Santa Clara, CA, November 1988, pp. 6–9.

[10] Karl S. Brace, Richard L. Rudell, and Randal E.
Bryant, “Efficient Implementation of a BDD Pack-
age”, in Proceedings of the 27th ACM/IEEE Design
Automation Conference, Orlando, FL, June 1990, pp.
40–45.

	CDROM Home Page
	1996 Home Page
	ICCAD 96
	Front Matter
	Table of Contents
	Session Index
	Author Index

