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Abstract
A methodology for hierarchical statistical circuit characteriza-

tion which does not rely upon circuit-level Monte Carlo simulation
is presented. The methodology uses principal component analysis,
response surface methodology, and statistics to directly calculate
the statistical distributions of higher-level parameters from the
distributions of lower-level parameters. We have used the method-
ology to characterize a folded cascode operational amplifier and a
phase-locked loop. This methodology permits the statistical char-
acterization of large analog and mixed-signal systems, many of
which are extremely time-consuming or impossible to characterize
using existing methods.

1 Introduction
Statistical circuit characterization is essential for estimating

yield, for designing manufacturable and robust systems, for de-
riving “worst-case” models, and for testing. The most widely
used technique for performing statistical characterization is Monte
Carlo analysis [1, 2]. Unfortunately, the accuracy of results pro-
duced by a Monte Carlo analysis is only proportional to the square
root of the number of simulations performed, and the number of
Monte Carlo simulations required to produce a relatively accurate
result increases exponentially with the number of low-level statis-
tical parameters. Therefore Monte Carlo techniques can be very
expensive, unacceptably inaccurate, or both.

One promising approach to dealing with these shortcomings
involves the use of behavioral models and hierarchical characteri-
zation. Hierarchical characterization is illustrated in Figure 1. This
characterization method is part of a hierarchical design methodol-
ogy which involves different levels of abstraction [3]. The low-
level parameters typically represent transistor model parameters,
such as tox and VT 0 . The intermediate-level parameters typi-
cally represent behavioral model parameters, such as open-loop
gain and offset of an operational amplifier. The high-level per-
formances represent circuit performance specifications, such as
signal-to-noise ratio of an analog-to-digital converter. A circuit
simulator such as SPICE [4] is used to simulate the intermediate-
level parameters as functions of the low-level parameters, and a
behavioral-level simulator such as MIDAS [5] is used to simulate
the high-level performances as functions of the intermediate-level
parameters.

In this hierarchical design methodology, two statistical charac-
terizations are performed. First, the statistical distributions of the
intermediate-level parameters are calculated from those of the low-
level parameters. Second, the statistical distributions of the high-
level circuit performances are calculated from the intermediate-
level parameters. The first characterization can be quickly per-
formed with the non-Monte Carlo techniques described in this
paper. The second characterization can be performed either in the
same way or using Monte Carlo analysis. Monte Carlo analysis is
generally acceptable for the second characterization if the behav-
ioral model being used is fast and involves only a relatively small
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Figure 1: Hierarchical characterization.

number of statistical parameters, which is often the case.
The non-Monte Carlo techniques described in this paper utilize

response surface methodology (RSM) [6]. RSM involves con-
structing a circuit model which is locally linear or quadratic in
the statistical parameters. The RSM model is constructed by per-
forming an “experiment” in which the lower-level parameters are
permuted in a regular fashion about their nominal values. For
each permutation of the lower-level parameters, a simulation is
performed and the resultant values of the higher-level parameters
are recorded. The coefficients of the RSM model are then obtained
by linear regression. SIMPILOT [7] is a commercial tool which
implements RSM.

At each level of the statistical characterization it is essential
to consider the correlations between parameters, as independent
parameters are uncommon. Computing and using a variance-
covariance matrix of the parameters at each level of the hierarchy
can properly account for parameter correlations and, furthermore,
provides an excellent conduit for incorporating parameter mis-
match information into circuit models. These variance-covariance
matrices are one of the most important cornerstones of our method-
ology.

With these factors in mind, a typical flow of our statistical
characterization process begins with a set of low-level process
parameters, their nominal values, their variances, and their corre-
lations. We construct an experiment and carry out simulations to
build the quadratic response surface models for each component in
the circuit. We use analytic formulas to calculate the means, vari-



M1pc1 M1pc2 M2pc1 M2pc2 C1 C2

M1pc1 1 0 0.9 0 0 0
M1pc2 0 1 0 0.9 0 0
M2pc1 0.9 0 1 0 0 0
M2pc2 0 0.9 0 1 0 0
C1 0 0 0 0 1 0.8
C2 0 0 0 0 0.8 1

Figure 2: Example variance-covariance matrix for low-level pa-
rameters.

ances, and correlations of the intermediate-level parameters. We
then perform Monte Carlo analysis at the behavioral level, using
correlated sets of random variables, to determine the distributions
and correlations of the high-level system performances.

Our key new contributions to this method of hierarchical statis-
tical characterization, as shown in Figure 1, are in three areas:

1. a method for incorporating parameter mismatch and corre-
lation into the response surface models,

2. a method for directly calculating the expected values, vari-
ances, and correlations of higher-level parameters from
those of lower-level parameters, and

3. a method for generating correlated sets of parameters for
Monte Carlo analysis at the behavioral level.

These contributions improve the efficiency and accuracy of statis-
tical circuit characterization.

2 Parameter Mismatch and Correlation
Most MOS models are parameterized by a relatively large num-

ber of parameters, only a few of which are statistically independent
[8]. Principal component analysis (PCA) or principal factor anal-
ysis (PFA) can be used to extract the statistically relevant combina-
tions of parameters and thereby reduce the number of lower-level
parameters which must be considered [9, 10]. Given a set of model
cards which have been extracted from fabricated devices, SPAYN
[11] is a commercial tool which performs PCA and PFA. This
technique typically results in 2-3 statistically relevant principal
components per transistor, which can explain at least 75% of the
observed variation in 15 level 3 MOS model parameters.

In order to properly account for parameter mismatch, we use
a separate model card for each transistor in the circuit. Correla-
tions between transistors are specified in the variance-covariance
matrix. The correlation coefficients will be functions of transistor
areas, distances between transistors, and Vgs, according to appro-
priate mismatch models. Parameters on the same die will typically
have relatively high correlation coefficients, approaching the lim-
iting case of 1 for no mismatch. Note that using a single model
card for multiple transistors, while common, corresponds to this
limiting case of no mismatch and can produce inaccurate statisti-
cal characterizations. An example variance-covariance matrix is
shown in Figure 2. In this example, there are two orthogonal prin-
cipal factors for each transistor. There are two transistors whose
parameters are 90% correlated. There are two capacitors which
are 80% correlated to each other and uncorrelated to the transistor
parameters.

3 Analytic Statistical Calculations
Once an appropriate variance-covariance matrix for the statis-

tically-relevant low-level parameters has been obtained, we use
SIMPILOT or a similar program to construct the linear or quadratic
response surface models for each intermediate-level parameter.
Constructing this model involves defining an appropriate exper-
iment, which in SIMPILOT is typically a simplex experiment for
linear models or a Latin hypercube for quadratic models, running
ELDO [12] (SPICE) for each permutation in the experiment, and
using linear regression to solve for the coefficients of the response
surface model.

Once a linear or quadratic response surface model has been
found, the expected values, variances, and correlations of the
intermediate-level parameters can be directly computed, regard-
less of the distributions of the low-level parameters. Therefore it is
usually not necessary to resort to Monte Carlo analysis, as SIMPI-
LOT does; direct analytic solutions are faster and more accurate.

LetX be a p-dimensional vector of random variables which rep-
resents the lower-level parameters, with E[X] = � and variance-
covariance matrix D[X] = Σ. Let Y be an n-dimensional vector
representing the higher-level parameters. We wish to calculate
E[Y ] and D[Y ].

Considering the linear case first, let C be an n � p matrix of
constants representing the statistically significant coefficients in
the linear model, so that Y = CX . Theorems 3.1 and 3.2 prove
that E[Y ] = C� andD[Y ] = CΣC 0 , respectively. Note that these
theorems do not make any assumptions about the distribution of
the low-level parameters X .
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Theorem 3.2
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For the quadratic case, let A be a p� p symmetric matrix rep-

resenting the statistically significant coefficients in the quadratic
model for any one higher-level parameter yi, so that yi = X 0AX .
Note that for any given coefficients in a quadratic equation, A is
uniquely determined [13]. Let tr (A) denote the trace of A. The-
orems 3.3 and 3.4 show how E[yi] and var[yi] can be calculated.
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Evaluating (18) requires the second, third, and fourth moments
of the joint probability density function for X and thus can be
complicated in the general case. When X can be assumed to
follow a multivariate normal distribution, i.e. X � Np (�;Σ), then
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Theorem 3.5 follows immediately [14].

Theorem 3.5 If X � N (�;Σ), then
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To compute the off-diagonal elements of D [Y ], we need to
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matrices representing the coefficients of the quadratic models for
two higher-level parameters yA and yB , so that yA = X 0AX and
yB = X 0BX . Theorem 3.6 is used to compute cov
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Our IC fabrication experience has shown that the low-level pa-
rameters generally do follow a normal or log-normal distribution,
so normality of the low-level parameters, as required by Theo-
rems 3.5 and 3.6, is a reasonable assumption. One frequently-cited
theoretical justification for this assumption is the central limit the-
orem applied to the physical fabrication process.

If the low-level parametersX can be assumedto be multivariate
normal, X � Np [�;Σ], and a linear model is used, then the
intermediate-level parameters Y will also be multivariate normal,
Y � Nn

�
C�;CΣC 0

�
. When X is multivariate normal and a

quadratic model is used, then (X � �)0A (X � �) � �2
r if and

only if AΣA = A, where r is the rank of A [14]. Otherwise the
distribution of Y does not follow an easily-computable form. In
practice, however, one introduces little error by assuming that the
intermediate parameters are approximately multivariate normal,
even when a quadratic model is used.

Our C functions for calculating the expected values and vari-
ance-covariance matrix using (1), (6), (13), (28), and (29) accept
as inputs the vector � and the matrix Σ, which define the joint dis-
tributions of the low-level parameters, and a coefficient matrix C
in which each row represents the appropriately-ordered response
surface coefficients for one intermediate-level parameter. For ex-
ample, if the response surface models for two intermediate-level
parameters, p0 and p1, are

p0 = c00 + c01x1 + c02x
2
1 + c03x2 + c04x2x1 + c05x

2
2 (34)

and

p1 = c10 + c11x1 + c12x
2
1 + c13x2 + c14x2x1 + c15x

2
2 (35)

then
C =

h
c00 c01 c02 c03 c04 c05
c10 c11 c12 c13 c14 c15

i
(36)

The C functions for the linear case are straightforward. For
the quadratic case, the expected value function loops over each
intermediate-level parameter, calling (13) to compute the expected
value of that parameter. Similarly, the variance-covariance func-
tion loops over each combination of intermediate-level parameters,
calling (28) or (29) to compute the appropriate entry in the variance-
covariance matrix for that combination. A utility function converts
a row of the matrix C into a symmetric matrix of the appropriate
form to be used as A or B.

4 Correlated Parameters at the Behavioral Level
Using the techniques outlined in Sections 2 and 3 we can

calculate the nominal values, variances, and correlations of the
intermediate-level parameters. If there are a large number of cor-
related intermediate-level parameters, then PFA or PCA can be
used again, in the same fashion as for the low-level parameters, to
reduce the number of parameters which must be considered for the
behavioral modeling. Given the distributions of the intermediate-
level parameters, the next step is to calculate the distributions of
the high-level performances. We can either repeat the RSM-based
procedure used to characterize the intermediate-level parameters
or we can perform a Monte Carlo simulation. Monte Carlo simu-
lations at the behavioral level are feasible if there are a relatively
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Figure 3: Pseudo-codefor computing the Cholesky decomposition
of Σ.

small number of intermediate-level parameters and each evaluation
of the behavioral model is fast.

When performing these behavioral-level Monte Carlo simula-
tions, it is essential that the correlations between the intermediate-
level parameters be properly considered; treating them as indepen-
dent will usually produce overly pessimistic results. The way to
do this is to generate correlated sets of random numbers. Sup-
pose we want a p� 1 vector of random variables to be correlated,
with variance-covariance matrix Σ. We can form the Cholesky
decomposition of Σ to obtain an upper triangular matrix U , where

Σ = U
0

U (37)
If we generate a p� 1 vector of independent random variables X ,
with E[X] = 0 and D[X] = I , then U 0X will have E[U 0X] = 0
and D[U 0X] = Σ. Therefore pre-multiplying X by U 0 induces
the desired correlations.

Pseudo-code for computing the Cholesky decomposition of a
symmetric positive semidefinite p � p matrix Σ is shown in Fig-
ure 3. Note that all variance-covariance matrices are symmetric
and positive semidefinite [14].

5 Results
The statistical characterization techniques described in this pa-

per have been tested by performing statistical characterizations of
two circuits. The first circuit is a folded cascodeoperational ampli-
fier, which illustrates the building of a statistical behavioral model
from a SPICE-level block. The second circuit is a phase-locked
loop, which illustrates our complete methodology using multiple
levels of hierarchy.

5.1 Folded Cascode Operational Amplifier
A transistor-level schematic of the folded cascode operational

amplifier is shown in Figure 4. We statistically characterized five
intermediate-level parameters: gain, pole1, pole2, rin , and zero1.
These quantities represent the parameters which might be needed
for a behavioral model of this operational amplifier.

For the statistical MOS models we used the example database
distributed with SPAYN, which contains level 3 parameters for both
p- and n-type transistors. Since no mismatch data was available,
we assumed perfect transistor parameter matching (correlation =
1).

The statistically relevant transistor parameters were found using
PCA in SPAYN to be npc1 and npc2 for the n-type transistors and
ppc1 and ppc2 for the p-type. Considering also the variations in load
capacitors and DC voltage sources, the complete set of low-level
parameters for this example was fnpc1, npc2, ppc1, ppc2, c1, c2, v1,
v2g.

The intermediate-level parameters were defined to be fgain,
pole1, pole2, rin , zero1g. Offset would have also been included
as an intermediate-level parameter if transistor parameter correla-
tion (mismatch) information had been available. The linear and
quadratic response surface models for these intermediate-level pa-
rameters were found using SIMPILOT. Using these models, the
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appropriate functions from Section 3 were used to compute the ex-
pected values, standard deviations, and variance-covariancematrix
of the intermediate-level parameters. The results of these analytic
calculations and the CPU times on a DEC 7000 Model 610 AXP
workstation are shown in Table 1.

For comparison to these analytic results, a 1,000-run Monte
Carlo analysis was performed on the same circuit. The resultant
expected values, standard deviations, and CPU time are also shown
in Table 1. Note that the Monte Carlo results match the analytic
results quite closely.

Correlated samples of these intermediate-level parameters were
generated by computing the Cholesky decomposition U of the
variance-covariance matrix found for the quadratic models, as dis-
cussed in Section 4. These correlated samples can be used in
behavioral-level Monte Carlo analysis when this operational am-
plifier is included in larger systems.

5.2 Phase-Locked Loop
A block diagram of a commercially available PLL which is

used as a clock multiplier and for deskewing is shown in Figure 5.
The phase/frequency detector compares the phase and frequency
of the input signal to the reference signal. If the frequency of the
reference signalneeds to be increased, then the signalup is asserted
and the charge pump adds charge to the node Vc. Similarly, if the
frequency of the reference signal needs to be decreased, then the
signal down is asserted and the charge pump subtracts charge
from the node Vc . The voltage controlled oscillator generates a
frequency corresponding to the voltage on node Vc; when the PLL
is locked, the frequency generated by the oscillator is 12 times the
input frequency.

The high-level performance which we wish to statistically char-
acterize is the lock time, which we define as the time after which
Vc lies in a band that is within 1.5% of its average value for the next
1 �s. Calculating the lock time of the PLL using a transistor-level
netlist requires more than 24 hours of CPU time on a Sun Ul-
tra Sparc workstation, so traditional Monte Carlo methods would
require thousands of days of CPU time and hence are impractical.

The intermediate-level parameters for the behavioral model of
the voltage controlled oscillator are



Linear Model Quadratic Model Monte Carlo Analysis
Parameter Nominal St. Dev. Nominal St. Dev. Nominal St. Dev.
gain 110.2 dB 2.001 dB 110.2 dB 2.086 dB 110.2 dB 2.000 dB
pole1 902.0 Hz 310.1 Hz 911.4 Hz 336.5 Hz 917.2 Hz 347.2 Hz
pole2 4.025 MHz 0.763 MHz 4.028 MHz 0.766 MHz 4.026 MHz 0.783 MHz
rin 414.2 GΩ 19.73 GΩ 414.5 GΩ 20.34 GΩ 413.9 GΩ 19.88 GΩ
zero1 3.971 MHz 0.752 MHz 3.973 MHz 0.754 MHz 3.971 MHz 0.770 MHz
CPU time 24.1 s 120.5 s 2258.6 s

Table 1: Expected values and standard deviations of intermediate-level parameters.

Component Distribution
PC1 log normal
PC2 log normal
PC3 Gaussian
PC4 Gaussian
PC5 negative log normal
PC6 Gaussian
PC7 negative log normal
PC8 Gaussian

Table 2: Distributions of principal components of MOS models.

1. gain, in MHz/V, and
2. f0:8 , the output frequency when Vc = 0:8 V.

The intermediate-level parameters for the behavioral model of the
phase/frequency detector and charge pump are

1. Iup and
2. Idn .

The behavioral models are written in HDLA [15].

5.2.1 MOS Model Extraction

Statistical MOS models are needed to characterize the blocks in
the PLL. To obtain these models, we measured a sample of 100
dies from 5 wafers and 2 lots of a 0.5 �m double poly 3.3 V tech-
nology. Each die contained 5 NMOS and 5 PMOS transistors with
W/L dimensions of 10 �m/0.5 �m, 10 �m/0.4 �m, 2 �m/10 �m,
0.8 �m/10 �m, and 10 �m/10 �m. SGS-Thomson Level 3 NMOS
and PMOS models were extracted for each die, with 28 parameters
per model. The accuracy of the models is within 5%. An example
of extraction is shown in Figure 6.

The total measurement time was 45 hours using UTMOST [16]
and a prober driven by a Sun Sparc 10. Extracting the models from
the measurements took 25 hours of CPU time on a Sun Sparc 20.
The extracted models for 7 of the 100 dies were grossly inaccurate;
those dies were discarded.

The model cards were analyzed using principal component
analysis and 8 statistically significant principal components were
found. Three distributions were consideredfor each principal com-
ponent: Gaussian, log normal, and negative log normal. Note that
a log normal distribution is the distribution of y = ex when x is
Gaussian and a negative log normal is the distribution of z = t�y
where t is any real number. For each principal component, the
distribution which produces the best fit is chosen. The resultant
distributions are shown in Table 2 and a histogram of principal
component 7 is shown in Figure 7. Regardless of distribution,
each principal component is standardized to have mean = 0 and
standard deviation = 1.

5.2.2 Behavioral Model Parameters

Given the statistical transistor models, the next step is to compute
the distributions of the intermediate-level behavioral model pa-
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Figure 7: Histogram of principal component 7 of MOS models.

Linear Model Quadratic Model
Parameter Accuracy Worst Error Accuracy Worst Error
gain 92.46% 2.39% 92.60% -1.87%
f0:8 77.53% -13.07% 81.48% -10.33%
Iup 74.18% -7.35% 78.15% -4.31%
Idn 73.28% -7.39% 77.42% -4.35%

Table 3: Comparison of linear and quadratic models for inter-
mediate-level parameters.

rameters. We begin by building the linear and quadratic response
surface models of the intermediate-level parameters as functions
of the principal components of the MOS models.

To calculate the voltage controlled oscillator parameters, gain
and f0:8 , we ran transient simulations at four input voltages, mea-
suring the frequency as the average frequency of the last 25 of 120
periods at each input voltage. Gain is calculated as the slope of the
least squares estimate of the straight-line function of frequency as
a function of input voltage. F0:8 is the frequency when the input is
at 0.8 V. The accuracies of the linear and quadratic models for gain
and f0:8 are shown in Table 3. The CPU times required to build
these models are summarized in Table 4.

The phase/frequencydetector and charge pump parameters, Iup
and Idn , were measured by applying the input and reference fre-
quencies for 200 �s and averaging the Iup and Idn signals over the
period (20 �s,180 �s). The accuracies of the linear and quadratic
models for Iup and Idn are shown in Table 3, and the CPU times
are summarized in Table 4.

We note that the linear models are almost as accurate as the
quadratic models, so we use the linear models for the statistical
calculations.

Since not all of the principal components of the MOS models
were Gaussian, we computed the statistical distributions of the
intermediate-level parameters in two different ways. The first
method was the theoretical approach, using Equations 1 and 6.
The second method was a 10,000-run Monte Carlo analysis using
the linear RSM model. The results are summarized in Table 5; it is
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Figure 6: Extraction using UTMOST.

Parameters Linear Model Quadratic Model
gain and f0:8 7.50 hours 68.0 hours
Iup and Idn 4.26 hours 38.4 hours
total: 11.76 hours 106.4 hours

Table 4: CPU times for building linear and quadratic models of
intermediate-level parameters, on a Sun Sparc 20.

Analytic Calculations RSM Monte Carlo
Parameter Nominal St. Dev. Nominal St. Dev.
gain 172.3 MHz/V 2.38% 170.9 MHz/V 2.45%
f0:8 38.71 MHz 4.03% 37.34 MHz 4.15%
Iup 191.1�A 2.21% 190.8�A 2.22%
Idn 191.1�A 2.20% 190.4�A 2.16%

Table 5: Expected values and standard deviations of intermediate-
level parameters.

clear that the analytic method and the RSM Monte Carlo method
produce almost identical results. The actual distributions obtained
from the Monte Carlo analyses are shown in Figure 8. The matrix
of the correlation coefficients of the intermediate-level parameters
is shown in Figure 9.

5.2.3 High-Level Performance

Once the statistical distributions of the intermediate-level behav-
ioral model parameters have been found, we can compute the dis-
tribution of the high-level performance in which we are interested,
the lock time of the PLL.

Figure 9 shows that Iup and Idn are very highly correlated and

gain f0:8 Iup Idn
gain 1.000 0.579 0.881 0.880
f0:8 0.579 1.000 0.670 0.671
Iup 0.881 0.670 1.000 0.99999
Idn 0.880 0.671 0.99999 1.000

Figure 9: Matrix of correlation coefficients of intermediate-level
parameters.

Linear Model Quadratic Model
Parameter Accuracy Worst Error Accuracy Worst Error
lock time 50.68% -3.27% 92.53% -0.93%

Table 6: Comparison of linear and quadratic models for high-level
performance.

Analytic Calculations RSM Monte Carlo
Parameter Nominal St. Dev. Nominal St. Dev.
lock time 7.1642 �s 1.21% 7.1643�s 1.16%

Table 7: Expected values and standard deviations of high-level
performance.
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Figure 10: Distribution of lock time.

that gain is highly correlated to Iup and Idn. We therefore attempt a
parameter reduction by performing a principal componentanalysis
on the intermediate-level parameters. Only the first two principal
components turn out to be statistically significant, and together
they explain 96.22% of the parameter variation.

Next we build the linear and quadratic RSM models of the
lock time as a function of PC1 and PC2, the first two principal
components of the intermediate-level parameters. The relative
accuracy of these models is shown in Table 6. Since the quadratic
model is significantly more accurate than the linear model, the
quadratic model is used for the statistical calculations.

We compute the statistical distribution of the lock time by both
the analytic method and the RSM Monte Carlo method (1,000,000-
run sample). The results are shown in Table 7. The distribution of
the lock time, as computed from the RSM Monte Carlo analysis,
is shown in Figure 10.

6 Conclusions
We have developed a complete methodology for hierarchical

statistical circuit characterization which does not rely upon circuit-
level Monte Carlo simulation. The main new ideas are (1) a method
for incorporating parameter mismatch and correlation into RSM,
(2) a method for directly calculating expected values, variances,
and correlations of higher-level parameters from those of lower-
level parameters, and (3) a method for generating correlated sets
of parameters for Monte Carlo analysis at the behavioral level.
We have illustrated these ideas on two example circuits, a folded
cascode operational amplifier and a phase-locked loop.

One main area of future work is in determining appropriate cor-
relation coefficients to accurately model mismatch; in our example
circuits we had to assume perfect matching.

We believe this methodology will be useful for yield analysis,
setting realistic circuit specifications for large analog circuits, real-

istic worst-case modeling for both analog and digital circuits, en-
forcing matching constraints in constraint-driven place and route,
and top-down constraint-driven design.
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