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Abstract

A methodology for hierarchical statistical circuit characteriza-
tion which doesnot rely upon circuit-level Monte Carlo simulation
ispresented. The methodology uses principal component analysis,
response surface methodology, and statistics to directly calculate
the statistical distributions of higher-level parameters from the
distributions of lower-level parameters. \We have used the method-
ology to characterizea folded cascode operational amplifier and a
phase-locked loop. This methodology permits the statistical char-
acterization of large analog and mixed-signal systems, many of
which are extremely time-consuming or impossibleto characterize
using existing methods.

1 Introduction

Statistical circuit characterization is essential for estimating
yield, for designing manufacturable and robust systems, for de-
riving “worst-case” models, and for testing. The most widely
used techniquefor performing statistical characterizationis Monte
Carlo analysis[1, 2]. Unfortunately, the accuracy of results pro-
duced by aMonte Carlo analysisis only proportional to the square
root of the number of simulations performed, and the number of
Monte Carlo simulations required to produce a relatively accurate
result increases exponentially with the number of low-level statis-
tical parameters. Therefore Monte Carlo techniques can be very
expensive, unacceptably inaccurate, or both.

One promising approach to dealing with these shortcomings
involvesthe use of behavioral models and hierarchical characteri-
zation. Hierarchical characterizationisillustrated in Figure1. This
characterization method is part of a hierarchical design methodol-
ogy which involves different levels of abstraction [3]. The low-
level parameters typically represent transistor model parameters,
such as t.; and Vro. The intermediate-level parameters typi-
cally represent behavioral model parameters, such as open-loop
gain and offset of an operational amplifier. The high-level per-
formances represent circuit performance specifications, such as
signal-to-noise ratio of an analog-to-digital converter. A circuit
simulator such as SPICE [4] is used to simulate the intermediate-
level parameters as functions of the low-level parameters, and a
behavioral-level simulator such as MIDAS[5] is used to simulate
the high-level performances as functions of the intermediate-level
parameters.

In this hierarchical design methodology, two statistical charac-
terizations are performed. First, the statistical distributions of the
intermediate-level parametersare calculated from those of the low-
level parameters. Second, the statistical distributions of the high-
level circuit performances are calculated from the intermediate-
level parameters. The first characterization can be quickly per-
formed with the non-Monte Carlo techniques described in this
paper. The second characterization can be performed either in the
same way or using Monte Carlo analysis. Monte Carlo analysisis
generally acceptable for the second characterization if the behav-
ioral model being used is fast and involves only arelatively small
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Figure 1: Hierarchical characterization.

number of statistical parameters, which is often the case.

The non-Monte Carlo techniquesdescribed in this paper utilize
response surface methodology (RSM) [6]. RSM involves con-
structing a circuit model which is locally linear or quadratic in
the statistical parameters. The RSM model is constructed by per-
forming an “experiment” in which the lower-level parameters are
permuted in a regular fashion about their nominal values. For
each permutation of the lower-level parameters, a simulation is
performed and the resultant values of the higher-level parameters
are recorded. The coefficientsof the RSM model are then obtained
by linear regression. SIMPILOT [7] is a commercial tool which
implements RSM.

At each level of the statistical characterization it is essential
to consider the correlations between parameters, as independent
parameters are uncommon. Computing and using a variance-
covariance matrix of the parameters at each level of the hierarchy
can properly account for parameter correlations and, furthermore,
provides an excellent conduit for incorporating parameter mis-
match information into circuit models. These variance-covariance
matrices are one of themost important cornerstonesof our method-
ology.

With these factors in mind, a typical flow of our statistical
characterization process begins with a set of low-level process
parameters, their nominal values, their variances, and their corre-
lations. We construct an experiment and carry out simulations to
build the quadratic response surface modelsfor each componentin
the circuit. We use analytic formulas to calculate the means, vari-



Mlya  Mlye M2y M2 C1 o
M1, 1 0 0.9 0 0 0
M1, 0 1 0 0.9 0 0
M2, 0.9 0 1 0 0 0
M2, 0 0.9 0 1 0 0
Ch 0 0 0 0 1 0.8
Co 0 0 0 0 0.8 1

Figure 2: Example variance-covariance matrix for low-level pa-
rameters.

ances, and correlations of the intermediate-level parameters. We
then perform Monte Carlo analysis at the behavioral level, using
correlated sets of random variables, to determine the distributions
and correlations of the high-level system performances.

Our key new contributions to this method of hierarchical statis-

tical characterization, as shown in Figure 1, are in three areas:

1. amethod for incorporating parameter mismatch and corre-
lation into the response surface models,

2. amethod for directly calculating the expected values, vari-
ances, and correlations of higher-level parameters from
those of lower-level parameters, and

3. amethod for generating correlated sets of parameters for
Monte Carlo analysisat the behavioral level.

These contributions improve the efficiency and accuracy of statis-
tical circuit characterization.

2 Parameter Mismatch and Correation

Most MOS models are parameterized by arelatively large num-
ber of parameters, only afew of which are statistically independent
[8]. Principal component analysis(PCA) or principal factor anal-
ysis(PFA) can be used to extract the statistically relevant combina-
tions of parameters and thereby reduce the number of lower-level
parameterswhich must be considered [9, 10]. Given aset of model
cards which have been extracted from fabricated devices, SPAYN
[11] is a commercial tool which performs PCA and PFA. This
technique typically results in 2-3 statistically relevant principal
components per transistor, which can explain at least 75% of the
observed variation in 15 level 3 MOS model parameters.

In order to properly account for parameter mismatch, we use
a separate model card for each transistor in the circuit. Correla-
tions between transistors are specified in the variance-covariance
matrix. The correlation coefficientswill be functions of transistor
areas, distances between transistors, and V., according to appro-
priate mismatch models. Parameters on the samediewill typically
have relatively high correlation coefficients, approaching the lim-
iting case of 1 for no mismatch. Note that using a single model
card for multiple transistors, while common, corresponds to this
limiting case of no mismatch and can produce inaccurate statisti-
cal characterizations. An example variance-covariance matrix is
shownin Figure 2. In this example, there are two orthogonal prin-
cipal factors for each transistor. There are two transistors whose
parameters are 90% correlated. There are two capacitors which
are 80% correlated to each other and uncorrelated to the transistor
parameters.

3 Analytic Statistical Calculations

Once an appropriate variance-covariance matrix for the statis-
ticaly-relevant low-level parameters has been obtained, we use
SIMPILOT or asimilar program to construct the linear or quadratic
response surface models for each intermediate-level parameter.
Constructing this model involves defining an appropriate exper-
iment, which in SIMPILOT is typically a simplex experiment for
linear models or a Latin hypercube for quadratic models, running
ELDO [12] (SPicE) for each permutation in the experiment, and
using linear regression to solve for the coefficients of the response
surfacemodel.

Once a linear or quadratic response surface model has been
found, the expected values, variances, and correlations of the
intermediate-level parameters can be directly computed, regard-
less of the distributions of the low-level parameters. Thereforeit is
usually not necessary to resort to Monte Carlo analysis, as SIMPI-
LoT does; direct analytic solutions are faster and more accurate.

Let X beap-dimensional vector of random variableswhich rep-
resents the lower-level parameters, with £[X] = ¢ and variance-
covariance matrix D[X]| = Z. Let Y be an n-dimensional vector
representing the higher-level parameters. We wish to calculate
E[Y]and D[Y].

Considering the linear case first, let C' be an n x p matrix of
constants representing the statistically significant coefficients in
the linear model, sothat Y = C' X. Theorems 3.1 and 3.2 prove
that £[Y] = €6 and D[Y] = CZC", respectively. Note that these
theorems do not make any assumptions about the distribution of
the low-level parameters X.

Theorem 3.1
£[CX] = Co (&N
Proof: LetY = CX. Theny, =3 "  c;pa,, and
£lCx] = [(Elw] ()
= (Z cirf [m) ] ©)
r=1 i
= [(cerx))] @
e (5)
Theorem 3.2
D[CX] =CzC! (6)
Proof: LetY = CX. Then
D[CX] = DI[Y] (7)
= E[(Y —E£YD(Y - £[Y])] (8)

= £[(CX - CEXD(CX —CEIX]] (9
= E£[CX-EXDX -£[XD)'C']  (10)
= CE[X -EXDX -€[XD] ¢ (1D

= oz’ (12
For the quadratic case, let A beap x p symmetric matrix rep-
resenting the statistically significant coefficients in the quadratic
model for any one higher-level parameter y;, sothat yy; = X' AX.
Note that for any given coefficients in a quadratic equation, A is
uniquely determined [13]. Let ¢r (A) denotethe trace of A. The-
orems 3.3 and 3.4 show how £[y;] and var[y;] can be calculated.

Theorem 3.3
£(X'AX) = tr (AT) +0'Ab (13)

Proof:
E[X'AX] = E[(X -0 AX-0)+
0'AX + X'A0 - 0'A0]  (19)
Since X'Af = (X'A9) = ¢'A'X = 9'AX
and £ [0'AX]| = 9" AE [ X] = 0’ A6,
E[X'AX] = E[(X -0 AX —0)] +6'A9 (15)

= D > auE[(wi— 0. (v;—6,)] +6'A0
> aioy +6'A6 (16)

tr[AZ] + 0" A6 (17)



Theorem 3.4

var [X'AX] = &£ {((X —8) A(X — 6))2} +
ag[(0'a(x -0)°] +
4E[0'AX —0) (X - 0) A(X —0)] -
(tr (AZ))? (18)
Proof:

var [X'AX] = € {(X’AX)Z} —(£[x'Ax])* Q9

X'AX =(X -0 AX -0)+20A(X —0)+6'4A8 (20)
lettingW = X — 46,

(X'AX)? = (W AW) +4(0'aW)* + (6'46)° +
20" A9 (W' AW + 20" AW) +
4’ AWW' AW @1
using 3.3,
£ {(X’AX)Z} - ¢ {(W'AW)Z} +4€ {(e’AW)Z} +

(6'46)° + 260 A6 (tr (AZ)) +
4 [0 AWW' AW ] (22)
(€ [X'AX])" = (tr (AD))? + (6'A6)° + 26" Abir (AZ) (23)

var [X'AX] = & [(Waw)?] +4e (9 aw)?] +

48 [0’ AWW' AW — (tr (AD))®  (29)

Evaluating (18) requires the second, third, and fourth moments
of the joint probability density function for X and thus can be
complicated in the general case. When X can be assumed to
follow amultivariate normal distribution, i.e. X ~ AN, (4, %), then

£ [(W’AW) 2} = (tr (AD))? + 2tr (AZ2,  (25)
£ {(e’AW)Z} — ' AT A6, and (26)
E[0'AWW' AW] =0. (7)

Theorem 3.5 follows immediately [14].

Theorem 35 If X ~ A (4,5), then
var [X'AX] = 2tr (AZ)" + 40" AT A6 (28)

To compute the off-diagonal elements of D[Y], we need to
compute cov [y, y;] for all i, ;. Let A and B be the symmetric
matrices representing the coefficients of the quadratic models for
two higher-level parametersy4 and yp, sothat y4 = X’AX and
ys = X'BX. Theorem 3.6 is used to compute cov [yi, y; | [13].

Theorem3.6 If X ~ A, (9,5), then
cov (X'AX, X'BX) = 2tr (AZBS) + 40'AZB9  (29)

Proof: LetT = [X’ X'] bethe (2p)-dimensional vector formed
by replicating X. T ~ N (u,C), where = [6’ ¢'] and

DENDS A 0
c=[T Eaw=[4 ] T

TWT =
var [T'WT]

X'AX + X'BX (30)
var [X'AX] + var [X/BX]
—2cov [X'AX,X'BX]  (31)

cov [X'AX,X'BX] = %(2tr(WO)2+4u'WCWu—

(2tr (AZ)? + 49" AT AQ) —
(2tr (B2)’ + 40'BZBY))  (32)

= 2tr (ASB3)+49'ASB9  (33)

Our IC fabrication experience has shown that the low-level pa-
rameters generally do follow anormal or log-normal distribution,
so normality of the low-level parameters, as required by Theo-
rems 3.5 and 3.6, isareasonableassumption. Onefrequently-cited
theoretical justification for this assumptionis the central limit the-
orem applied to the physical fabrication process.

If thelow-level parameters X' can be assumedto bemultivariate
normal, X ~ N, [6,5], and a linear model is used, then the
intermediate-level parameters Y will also be multivariate normal,

Y ~ N, [C§,CZC']. When X is multivariate normal and a

quadratic model is used, then (X — 8)’ A(X — ) ~ 2 if and
only if AZA = A, wherer isthe rank of A [14]. Otherwise the
distribution of Y does not follow an easily-computable form. In
practice, however, one introduces little error by assuming that the
intermediate parameters are approximately multivariate normal,
even when a quadratic model is used.

Our C functions for calculating the expected values and vari-
ance-covariance matrix using (1), (6), (13), (28), and (29) accept
asinputs the vector ¢ and the matrix Z, which define the joint dis-
tributions of the low-level parameters, and a coefficient matrix C'
in which each row represents the appropriately-ordered response
surface coefficients for one intermediate-level parameter. For ex-
ample, if the response surface models for two intermediate-level
parameters, po and p1, are

po = coo + corxr1 + cozxi + cosr2 + cuar2ra + Cosl“g (34)
and
p1 = c10 + cuw1 4 c12rs + c13x2 + cuvT1 + C1575 (35)

then
C C C C C C
C — 00 01 02 03 04 05 (36)
C10 c1 C12 C13 C14 C15

The C functions for the linear case are straightforward. For
the quadratic case, the expected value function loops over each
intermediate-level parameter, calling (13) to compute the expected
value of that parameter. Similarly, the variance-covariance func-
tion loops over each combination of intermediate-level parameters,
calling (28) or (29) to compute the appropriate entry inthe variance-
covariance matrix for that combination. A utility function converts
arow of the matrix C' into a symmetric matrix of the appropriate
form to beused as A or B.

4 Correlated Parametersat the Behavioral Level

Using the techniques outlined in Sections 2 and 3 we can
calculate the nominal values, variances, and correlations of the
intermediate-level parameters. If there are alarge number of cor-
related intermediate-level parameters, then PFA or PCA can be
used again, in the same fashion asfor the low-level parameters, to
reduce the number of parameterswhich must be considered for the
behavioral modeling. Given the distributions of the intermediate-
level parameters, the next step is to calculate the distributions of
the high-level performances. We can either repeat the RSM-based
procedure used to characterize the intermediate-level parameters
or we can perform aMonte Carlo simulation. Monte Carlo simu-
lations at the behavioral level are feasible if there are a relatively
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Figure3: Pseudo-codefor computing the Cholesky decomposition
of Z.

small number of intermediate-level parametersand each evaluation
of the behavioral model isfast.

When performing these behavioral-level Monte Carlo simula-
tions, it is essential that the correl ations between the intermediate-
level parametersbe properly considered; treating them asindepen-
dent will usually produce overly pessimistic results. The way to
do this is to generate correlated sets of random numbers. Sup-
posewewant ap x 1 vector of random variablesto be correlated,
with variance-covariance matrix ~. We can form the Cholesky
decomposition of X to obtain an upper triangular matrix U, where

s=U'U 37)
If we generateap x 1 vector of independent random variables X,
with £[X] = 0and D[X] = I, then U’ X will have £[U'X] = 0
and D[U’'X] = 5. Therefore pre-multiplying X by U’ induces
the desired correlations.

Pseudo-code for computing the Cholesky decomposition of a
symmetric positive semidefinitep x p matrix X is shown in Fig-
ure 3. Note that all variance-covariance matrices are symmetric
and positive semidefinite [14].

5 Results

The statistical characterization techniquesdescribed in this pa-
per have been tested by performing statistical characterizations of
twocircuits. Thefirst circuitisafolded cascodeoperational ampli-
fier, which illustrates the building of a statistical behavioral model
from a Spice-level block. The second circuit is a phase-locked
loop, which illustrates our complete methodology using multiple
levels of hierarchy.

5.1 Folded Cascode Operational Amplifier

A transistor-level schematic of the folded cascode operational
amplifier is shown in Figure 4. We statistically characterized five
intermediate-level parameters: gain, poles, poley, r;,, and zero;.
These quantities represent the parameters which might be needed
for abehavioral model of this operational amplifier.

For the statistical MOS models we used the example database
distributed with SpayN, which containslevel 3 parametersfor both
p- and n-type transistors. Since no mismatch data was available,
we assumed perfect transistor parameter matching (correlation =
1).

Thestatistically relevant transi stor parameterswerefound using
PCA in SPAYN to be n,.1 and ny.2 for the n-type transistors and
Ppe1 @Nd ppe for the p-type. Considering alsothe variationsin load
capacitors and DC voltage sources, the complete set of low-level
parametersfor this examplewas{npcl, Npc2, Ppely Ppe2, €1, €2, U1,
va}.
The intermediate-level parameters were defined to be {gain,
pole;, poley, r;y, zeroi}. Offset would have also been included
as an intermediate-level parameter if transistor parameter correla-
tion (mismatch) information had been available. The linear and
quadratic response surface models for these intermediate-level pa-
rameters were found using SMPILOT. Using these models, the
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Figure 4: Transistor-level schematic of operational amplifier cir-
cuit.

Fin uj lu
—| Phase/ P Charge P Low Ve Voltage
Eref Frequency dowi Pump Idn Pas Cont.rolled
Detector Filter Oscillator

Counters
(Divide by N)

Outputs <=——

Figure 5: Block diagram of PLL.

appropriate functions from Section 3 were used to compute the ex-
pected values, standard deviations, and variance-covariancematrix
of the intermediate-level parameters. Theresults of these analytic
calculations and the CPU times on a DEC 7000 Model 610 AXP
workstation are shown in Table 1.

For comparison to these analytic results, a 1,000-run Monte
Carlo analysis was performed on the same circuit. The resultant
expected values, standard deviations, and CPU time are also shown
in Table 1. Note that the Monte Carlo results match the analytic
results quite closely.

Correlated samplesof theseintermediate-level parameterswere
generated by computing the Cholesky decomposition U of the
variance-covariance matrix found for the quadratic models, asdis-
cussed in Section 4. These correlated samples can be used in
behavioral-level Monte Carlo analysis when this operational am-
plifier isincluded in larger systems.

5.2 Phase-Locked Loop

A block diagram of a commercially available PLL which is
used as aclock multiplier and for deskewingis shownin Figure 5.
The phase/frequency detector compares the phase and frequency
of the input signal to the reference signal. If the frequency of the
reference signal needsto beincreased, thenthesignal up isasserted
and the charge pump adds charge to the node V... Similarly, if the
frequency of the reference signal needsto be decreased, then the
signal down is asserted and the charge pump subtracts charge
from the node V.. The voltage controlled oscillator generates a
frequency corresponding to the voltage on node V. ; when the PLL
islocked, the frequency generated by the oscillator is 12 times the
input frequency.

Thehigh-level performancewhichwewishto statistically char-
acterize is the lock time, which we define as the time after which
V. liesinabandthat iswithin 1.5% of its averagevalue for the next
1 us. Calculating the lock time of the PLL using atransistor-level
netlist requires more than 24 hours of CPU time on a Sun Ul-
tra Sparc workstation, so traditional Monte Carlo methods would
require thousandsof days of CPU time and hence are impractical.

The intermediate-level parameters for the behavioral model of
the voltage controlled oscillator are



Linear Model Quadratic Model Monte Carlo Analysis
Parameter Nominal St. Dev. Nominal St. Dev. Nominal St. Dev.
gain 110.2dB 2.001dB 110.2dB 2.086dB 110.2dB 2.000dB
pole 902.0Hz 310.1Hz 911.4Hz 336.5Hz 917.2Hz 347.2Hz
pole; 4.025MHz | 0.763MHz | 4.028MHz | 0.766MHz | 4.026MHz | 0.783MHz
lin 4142 GQ 19.73GQ 4145GQ 20.34GQ 413.9GQ 19.88 GQ
zeroy 3971MHz | 0.752MHz | 3.973MHz | 0.754MHz | 3.971MHz | 0.770 MHz
CPU time 24.1s 120.5s 2258.6s

Table 1: Expected values and standard deviations of intermediate-level parameters.

Component | Distribution

PC1 log normal

PC2 log normal

PC3 Gaussian

PC4 Gaussian

PC5 negativelog normal
PC6 Gaussian

PC7 negativelog normal
PC8 Gaussian

Table 2: Distributions of principal componentsof MOS models.

1. gain,in MHz/V, and

2. fos, the output frequency whenV, = 0.8 V.
Theintermediate-level parametersfor the behavioral model of the
phase/frequency detector and charge pump are

5.2.1 MOSModel Extraction

Statistical MOS models are needed to characterize the blocks in
the PLL. To obtain these models, we measured a sample of 100
diesfrom 5 wafersand 2 lots of a 0.5 ;sm double poly 3.3 V tech-
nology. Each die contained 5 NMOS and 5 PMOS transistorswith
WI/L dimensionsof 10 um/0.5 pm, 10 pxm/0.4 um, 2 pm/10 um,
0.8 pm/10 um, and 10 xm/10 um. SGS-Thomson Level 3NMOS
and PMOS modelswere extracted for each die, with 28 parameters
per model. The accuracy of the modelsiswithin 5%. An example
of extraction is shownin Figure 6.

The total measurement time was 45 hours using UTMOST [16]
and a prober driven by a Sun Sparc 10. Extracting the modelsfrom
the measurements took 25 hours of CPU time on a Sun Sparc 20.
Theextracted modelsfor 7 of the 100 dieswere grossly inaccurate;
those dies were discarded.

The model cards were analyzed using principal component
analysis and 8 statistically significant principal components were
found. Threedistributionswere consideredfor each principal com-
ponent: Gaussian, log normal, and negative log normal. Note that
alog normal distribution is the distribution of y = ¢ when « is
Gaussianand a negativelog normal isthe distributionof z = ¢t — y
where ¢ is any real number. For each principal component, the
distribution which produces the best fit is chosen. The resultant
distributions are shown in Table 2 and a histogram of principal
component 7 is shown in Figure 7. Regardless of distribution,
each principal component is standardized to have mean = 0 and
standard deviation = 1.

5.2.2 Behavioral Model Parameters

Given the statistical transistor models, the next step is to compute
the distributions of the intermediate-level behavioral model pa-
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Figure 7: Histogram of principal component 7 of MOS models.

Linear Model Quadratic Model
Parameter | Accuracy | Worst Error | Accuracy | Worst Error
gain 92.46% 2.39% 92.60% -1.87%
fo.s 77.53% -13.07% 81.48% -10.33%
lup 74.18% -7.35% 78.15% -4.31%
lan 73.28% -7.39% 77.42% -4.35%

Table 3: Comparison of linear and quadratic models for inter-
mediate-level parameters.

rameters. We begin by building the linear and quadratic response
surface models of the intermediate-level parameters as functions
of the principal components of the MOS models.

To calculate the voltage controlled oscillator parameters, gain
and fo g, we ran transient simulations at four input voltages, mea-
suring the frequency asthe average frequency of the last 25 of 120
periods at each input voltage. Gain is calculated asthe slope of the
least squares estimate of the straight-line function of frequency as
afunction of input voltage. Fo g isthefrequency when theinput is
at 0.8 V. The accuraciesof the linear and quadratic modelsfor gain
and fo g are shown in Table 3. The CPU times required to build
these models are summarized in Table 4.

The phase/frequency detector and charge pump parameters, |,
and | 4,,, were measured by applying the input and reference fre-
quenciesfor 200 us and averaging the l.,,, and | 4,, Signalsover the
period (20 145,180 uS). The accuraciesof the linear and quadratic
models for |.,, and |4, are shownin Table 3, and the CPU times
are summarized in Table 4.

We note that the linear models are almost as accurate as the
quadratic models, so we use the linear models for the statistical
calculations.

Since not al of the principal components of the MOS models
were Gaussian, we computed the statistical distributions of the
intermediate-level parameters in two different ways. The first
method was the theoretical approach, using Equations 1 and 6.
The second method was a 10,000-run Monte Carlo analysis using
thelinear RSM model. Theresultsare summarizedin Table5; itis



27
050 0.60
[ MODEL: ST3 T MODEL: ST:
[ VDS = r VDS
0.40C VBS start = [ VBS start
| Mx error = 0.a0 VP 81 Fhr
0.30_ Ave error = - Ave error
b Rrs error = [ Rrs error
8 0. 20: 8 0.20
0.10 t 7
f 0.00. _
0.00 [
010l S0.200 . 1
-2.00 0.00 -2.00 0.00
10: 48: 23
FEB/ 27/ 96
oo MV VE o o MYEVE
b voeL: ' stam {hea " vooeL: ' stame vea.
[ VDS = {--- © VDS = ==
0.20C VBS start =, 4Sim - VBS start = Sim
[ VBS step =400, 1 0.20. VBS step
[ Max error = + <% Max error 1
0.15. Ave error = ki L Ave error
t R error = [ R error
t i [
0.10- T 1 0.10 ]
I i .
0.05_ )‘:yu;‘ 1
! Il 0.00. _y ]
0.00_ / B [ ]
[ L= 0.50; [ L= 0.40
s We 10. 00 [ We 10. 00
S0.008 b b b B 2 T T T O H M R S B R A AR
-2.00 0.00 2.00 4.00 6.00 -2.00 0.00 2.00 4.00 6.00
VGS (V) VGs (V)
Figure 6: Extraction using UTMOST.
Parameters Linear Model | Quadratic Model
gainandfg.g 7.50 hours 68.0 hours .
gain fo.s lup lan
'“I;If“‘”d'd” l‘;gg:"“rs 133'2 :OL"S gan [1000 0570 0831 0880
tod: 76 hours 4 hours fos | 0579 1000 0670 0671
lup 0.881 0.670 1.000 0.99999
lan 0.880 0.671 0.99999  1.000

Table 4: CPU times for building linear and quadratic models of
intermediate-level parameters, on a Sun Sparc 20.

Analytic Calculations RSM Monte Carlo
Parameter Nominal St. Dev. Nominal St. Dev.
gain 172.3MHz/V | 2.38% 1709MHz/V | 2.45%
fos 38.71MHz 4.03% 37.34MHz 4.15%
lup 191.1 uA 221% 190.8 uA 2.22%
lan 191.1 uA 2.20% 190.4 uA 2.16%

Table5: Expected values and standard deviations of intermediate-
level parameters.

clear that the analytic method and the RSM Monte Carlo method
produce almost identical results. Theactual distributions obtained
from the Monte Carlo analyses are shown in Figure 8. The matrix
of the correlation coefficients of the intermediate-level parameters
isshownin Figure 9.

5.2.3 High-Level Performance

Once the statistical distributions of the intermediate-level behav-
ioral model parameters have been found, we can compute the dis-
tribution of the high-level performancein which we are interested,
the lock time of the PLL.

Figure 9 showsthat |.,,, and 14,, are very highly correlated and

Figure 9: Matrix of correlation coefficients of intermediate-level

parameters.
Linear Model Quadratic Model
Parameter | Accuracy | Worst Error | Accuracy | Worst Error
locktime | 50.68% | -3.2/% 0253% | -0.93%

Table 6: Comparison of linear and quadratic modelsfor high-level

performance.
Analytic Caculations RSM Monte Carlo
Parameter Nominal St. Dev. Nominal St. Dev.
lock time 71642 us | 1.21% 7.1643 s | 1.16%

Table 7: Expected values and standard deviations of high-level

performance.
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Figure 10: Distribution of lock time.

that gainishighly correlated to .., and l4,,. Wetherefore attempt a
parameter reduction by performing aprincipal componentanalysis
on the intermediate-level parameters. Only the first two principal
components turn out to be statistically significant, and together
they explain 96.22% of the parameter variation.

Next we build the linear and quadratic RSM models of the
lock time as a function of PC1 and PC2, the first two principal
components of the intermediate-level parameters. The relative
accuracy of these modelsis shownin Table 6. Since the quadratic
model is significantly more accurate than the linear model, the
quadratic model is used for the statistical calculations.

We computethe statistical distribution of the lock time by both
theanalytic method and the RSM Monte Carlo method (1,000,000-
run sample). The results are shownin Table 7. The distribution of
the lock time, as computed from the RSM Monte Carlo analysis,
is shown in Figure 10.

6 Conclusions

We have developed a complete methodology for hierarchical
statistical circuit characterization which doesnot rely upon circuit-
level Monte Carlo simulation. Themain new ideasare (1) amethod
for incorporating parameter mismatch and correlation into RSM,
(2) amethod for directly calculating expected values, variances,
and correlations of higher-level parameters from those of lower-
level parameters, and (3) a method for generating correlated sets
of parameters for Monte Carlo analysis at the behavioral level.
We have illustrated these ideas on two example circuits, a folded
cascode operational amplifier and a phase-locked loop.

One main areaof future work isin determining appropriate cor-
relation coefficientsto accurately model mismatch; in our example
circuits we had to assume perfect matching.

We believe this methodology will be useful for yield analysis,
setting realistic circuit specificationsfor large analog circuits, real-

istic worst-case modeling for both analog and digital circuits, en-
forcing matching constraints in constraint-driven place and route,
and top-down constraint-driven design.
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