
ICCAD ’96
1063-6757/96 $5.00  1996 IEEE

Tearing Based Automatic Abstraction for CTL Model Checking�

Woohyuk Lee Abelardo Pardo Jae-Young Jang Gary Hachtel Fabio Somenzi
University of Colorado
ECEN Campus Box 425
Boulder, CO, 80309

Abstract

In this paper we present the tearing paradigm as a way to
automatically abstract behavior to obtain upper and lower
bound approximations of a reactive system. We present al-
gorithms that exploit the bounds to perform conservative
ECTL and ACTLmodel checking. We also give an algorithm
for false negative (or false positive) resolution for veri�ca-
tion based on a theory of a lattice of approximations. We
show that there exists a bipartition of the lattice set based
on positive versus negative veri�cation results. Our resol-
ution methods are based on determining a pseudo-optimal
shortest path from a given, possibly coarse but tractable ap-
proximation, to a nearest point on the contour separating
one set of the bipartition from the other.

1 Introduction

We describe an approach for approximation-based formal
veri�cation of sequential systems. We obtain, automatic-
ally, upper (lower) bound approximations which allow con-
servative veri�cation for ACTL (ECTL) formulas1 . Thus,
our tearing methods directly address the inherent computa-
tional di�culty which limits formal veri�cation of practical
circuit to those with on the order of a hundred latches or
fewer. In contrast, the methods of [4] were able to perform
redundancy removal on circuits with on the order of a thou-
sand latches. In this paper we take �rst step toward estab-
lishing the practicality of applying such methods to problems
in conservative CTL model checking.

In the sequel we will manipulate BDD representations of
transition systems de�ned as M = (S;X; T; S0;O) where S
is a set of states, X is a set of input combinations, T is an en-
coded partitioned transition relation T (s; x; t) � S �X � S,
given in product form T (s; x; t) =

Qm

i=1
Ti(s; x;~ti) and S0

is a set of initial states. We operate in an encoded world,
so S = f0; 1gn, X = f0; 1gq , s 2 S denotes an n-vector
of state variable value assignments, and ~ti represents a sub-
vector of variable assignments. In a circuit context, the xi

can be called primary inputs, and the sj latch variables. O

is a similarly de�ned output domain.

Further, we assume that the block sub-relations Ti have dis-
joint next state variable support. That is, the Ti(s; x;~ti)
depend only on a local sub-vector ~ti, representing value as-
signments to only a subset of the next state variables t. The

�This work is supported in part by NSF/DARPA grant MIP-94-
22268 and SRC contract 95-DJ-560.

1ACTL (ECTL) formulas are CTL with only universal (existential)
quanti�ers and negation only at the atomic proposition level.

present state, primary input, and next state variable sup-
port of a function or relation such as Ti will be denoted as
�s(Ti), �x(Ti), and �t(Ti) respectively. We used the heur-
istic proposed in [4] to obtain the partitioned transition re-
lation. The heuristic was based on a directed graph GL =
(fv1; : : : ; vng; EL), which we call the latch graph, de�ned for
the special case of the minimum partition (m = n). In this
graph there is an edge from nodes vi to vj if and only if
sj 2 �s(Ti).

De�nition 1.1 Assume sj 2 �s(Ti(s; x)). When we replace
the block Ti(s; x) by its upper bound T dsje(s;x) = 9sjTi(s; x)

or its lower bound T bsjc(s; x) = 8sjTi(s; x), we say that we

\tear" the connection from vi to vj. A circuit is \torn" by

performing these operations on some subset of the intra-block
connections determined by the partitioning step.

Note tearing is directional, since Tj and Tk may still de-
pend on s2. Thus tearing is more �ne-grained than previous
approaches to decomposition [1, 6] which are based on \dis-
tributing the abstraction" (\en masse" tearing of all intra-
block communication). The upper bound approximation is
related to that of [4], but di�ers in that here the circuit is
decomposed, rather than the state space. The lower bound
approximation is related to that of [5], but di�ers in that here
we do not use the \selection set" heuristic, and the abstrac-
tion is formed at the encoded (circuit with latches) level of
abstraction, rather than at the abstract state space level.

We use two other tearing-like approximations as well. First,
we use \block sub-setting" (T �

Q
I
Ti; I � f1; : : : ;mg)

in the partitioned transition relation, as in [6, 1]. Second,
we approximate state sets (C(s)) by both existential (up-
per bound: C(s) � 9I(C(s))) and universal (lower bound:
8I(C(s)) � C(s)) abstractions. The �rst abstraction is dir-
ectly related to tearing connections in the physical system
being veri�ed. The second follows the spirit of tearing when
dealing with the BDDs that arise in the veri�cation process.

Although these approximations are not entirely new, we ap-
pear to be the �rst to combine them in approximation-based
veri�cation using systematic false negative/positive resolu-
tion techniques.

Figure 1 illustrates the e�ect of tearing on a simple two-
block system, whose transition relation T = T1T2 is de�ned
by T1 = (t1 � (s1s2)) and T2 = (t2 � (s1 + s2)). We
tear the connection from of s2 from the relation T2 to the
relation T1, thus leading to T

ds2e

1 = 9s2T1 = s1 + t1, and

T
bs2c

1 = (8s2T1 = s1t1). that connection has in the graph
structure de�ned by the system. Note that when functional
dependencies are eliminated by abstraction, we remain in

the same state space. The �gure shows the STGs of T1 (Part

Figure 1: Upper and lower bound tearing.

(a)), T1T2 (Part (b)), T
ds2e

1 (Part (c)), and T
bs2c

1 (Part (d)).

In Part (c), the four edges of T ds2e

1 which are not in T1, are
shown solid, while other \pseudo-edges" are shown dashed.
In Part (d) the right, the dashed edges which are in T1, but

not in T
bs2c

1 show what lower bound tearing eliminates.

Note that T ds2e

1 is an upper bound approximation to T =

T1 � T2. However, T bs2c

1 = (8s2T1 = s1t1) is not a lower
bound approximation for T = T1 � T2 (it has solid edges not

present in T1T2). Nevertheless, T bs2c

1 � T2 is a lower bound

approximation to T = T1 � T2, and so is T bs2c

1 � T
bs1c

2 .

For the simple case of Figure 1, we can use the upper bound
variable tearing approximation to e�ciently demonstrate a
false negative for AGp. For an initial state set I = f00g,
and the error set p = s1s2, there are no paths from I to
p despite the pseudo-edges induced by the approximation.
Dual cases exist where lower bound approximation may be
similarly exploited.

The experimental results reported in this paper have been
obtained using VIS [2] to which we have added the following
modules: (a) a modi�ed Partition module; (b) an Adapt-
ive CTL Model Checker, based on Upper and Lower Bound
Tearing Approximations; (d) Machine by Machine and Frame
by Frame �xed point algorithms (as in [4]), modi�ed for
backward (as opposed to forward) traversal and lower (as
well as upper) bounding.

We have added three novel contributions to the usual frame-
work of conservative CTL model checking. First, we ad-
dress the problem of false negative (or false positive) resol-
ution by developing a theory of a lattice of approximations.
When a false negative (or positive) is present, we show that
there exists a bipartition of the lattice set based on positive
versus negative veri�cation results. Our resolution methods
are based on determining a pseudo-optimal shortest path
from a given, possibly coarse but tractable approximation to
a nearest point on the contour separating one set of the bipar-

tition from the other. Second, we explore the e�ects of a �ner
grain of tearing approximation than previously employed. To
this end we propose a paradigm called \Tearing on Demand"
in which we try to maintain, for as long as possible (to the
point where BDD blow-up occurs) the usual exact model
checking algorithm. We then resort to tearing approxima-
tions only when the size of the intermediate BDD heap is too
large. Third, we show how the \Machine by Machine" and
\Frame by Frame" traversal algorithms developed in [4] can
be easily adapted to the more general veri�cation framework
model checking, as well as language containment.

2 Theory

Given a system M and its abstraction MA, we need to estab-
lish a relation between the possible behavior of M and the
behavior of MA. We will use the concept of simulation as
proposed in [8, 7] in the context of deterministic programs.
We will show that tearing produces approximations that sim-
ulate the original system.

De�nition 2.1 Let us consider two systems M1 and M2

with the same output domain O. We say that a state s1 is

simulated by state s2 (s1 � s2) if the output values of both
states are equal and every successor of s1 is simulated by a

successor of s2. We say thatM1 is simulated byM2, denoted

by M1 � M2, if for every path in M1 there exists a path in
M2 such that the simulation relation holds state-wise.

Given the transition sub-relation Ti(s; x;~ti), variable tearing
consists of tearing any variable vj 2 �s(Ti)[�t(Ti) creating
a new conjugate variable ~vj, called a Pseudo-Primary Input
(PPI). The PPI ~vj is a "free" copy of vj. If this PPI is then

removed by existential abstraction, we get T
dsje

i , whose STG
has the same states as Ti, but a superset of its edges. If

we similarly replace Ti by T
bsjc

i , the new STG will have a
subset of the original edges. By the de�nition, there exists a
simulation relation such that T � T dsje, and T bsjc � T .

Suppose we apply upper bound tearing on variables v1; : : : ; vk,
and the corresponding torn systems are denoted T 1; : : : ; T k.
Then, each torn system is an upper bound approximation
of the previous, so T � T 1

� : : : ; T k�1
� T k. Symmet-

ric reasoning applies to the universal abstraction. In either
case the �nal torn system is independent of the order of
tearing. Therefore, the set of upper and lower bound tear-
ing approximations constitutes a lattice. This is shown for
k = 3 in Figure 2, where we have added a third subsystem
T3 = (t3 � s1s2s3). Here T d123e represents the upper bound
obtained by all 3 of the connections indicated by arrows at
the top of the �gure. Similarly, T d12e is the result of tear-
ing only the �rst two connections, and so on. A strategy
for the re�nement of a tearing abstraction may be formu-
lated on such a lattice. Suppose our tearing based model
checker is asked to check the formula AGp. In the present
case, we Initially tear three variables and start with the max-
imal approximation T d123e . If a FALSE answer is returned,
since the upper bound approximation only gives true posit-
ives, this putative negative result needs to be con�rmed. The
idea is to start with the maximum upper bound T d123e and
pseudo-optimally search for the shortest path to the contour

Figure 2: Lattice of upper and lower approximations.

separating TRUE and FALSE.

The original block may be reconstructed from the \torn"
one by \stitching", the dual of tearing. If the PPIs were
eliminated by abstraction, this is done by replacing the ap-
proximated subrelations by the originals. Else we may stitch
by simply composing the PPIs with their conjugates: Ti
9~vj
eT (s; x;~ti; ~vj) � (~vj � vj). Here the term (~vj � vj) is called

the \stitching constraint".

Two separate approximation mechanisms come under the ae-
gis of \block tearing". First, block tearing includes block
sub-setting | the practice of including some blocks and ig-
noring others. This was studied by Long [6]. Second, block
tearing includes tearing all connections from block i to block
j. Both of these aspect were studied by Balarin et al. in [1].
Since we also use both, we review them brie
y below.

Block sub-setting rests on the following observation. Let C �
f1; : : : ; ng, and let TC be the transition relation obtained by
ignoring blocks Tj; j 62 C. That is, TC = �i2CTi(s; x;~ti).

Since T � TC we have M � MC , that is, MC simulates M
and each such approximation is de�ned by which of the 2n

possible subsets C is chosen, we have by Stone's theorem that
the set of approximations forms a lattice, with the tautologous
transition relation as the maximal element and the original
transition relation as the minimal element.

Group tearing consists of tearing all the connections from one
block of the partitioned transition relation to another. Note
that tearing of this type may be unidirectional or bidirec-
tional. The bidirectional type of tearing abstracts completely
the connections from block i to j and vice-versa. This kind
of tearing allows the existential quanti�cation in the image
and preimage computation to distribute over the abstracted
blocks. In the case of the upper approximation:

9s(C(s) � 9x
Q

i
Ti(s; x; ti)) �

Q
i
(9sC(s) � 9xTi(s;x; ti));

9t(C(t) � 9x
Q

i
Ti(s; x; ti)) �

Q
i
(9tC(t) � 9xTi(s; x; ti)):

The �rst identity was used in [1]. The second is just the
backward version of the same thing.

Similar types of approximations were used by Burch to sim-
plify the BDD representation of multipliers [3], and by Cho,
et al [4] to decompose the reachable state set of a sequential
circuit into a more compact Cartesian product form.

Having established that our tearing approximations creates
a hierarchy of simulation relations, we now state the rela-
tionship between simulation relations and conservative CTL
model checking. In the following ACTL and ECTL refer
to the CTL fragment restricted to universal and existential
quanti�cation respectively and negation at the level of atomic
predicates [6].

Theorem 2.1 Let M be a system with relation T and MU

obtained by upper bound tearing, so that M � MU . Then

8f 2 ACTL, MU
j= f)M j= f . Dually, if ML is obtained

by lower bound tearing, so that ML
�M , then 8f 2 ECTL,

ML
j= f)M j= f .

In addition to approximating transition relation, we may ap-
proximate the state sets computed during veri�cation. Model
checking procedures rely on �xed point computations, in
which we compute the preimage of a given constraining set
C(t). We next consider the approximation of the set C(t),
which will be based on the observation that the preimage
function is monotonic. Therefore, if we overestimate the re-
stricting set C(t) we will obtain an over approximation of its
preimage. This type of approximation is orthogonal to block
and variable tearing and therefore we may choose to use only
one of them or both at the same stage of the computation.

3 Conservative Veri�cation

We have discussed above methods based on approximating
the transition relation. Next we consider a way to obtain
lower bound of exact preimage by using universal abstraction
of the constraint set C(t). We �rst decompose the constraint
set C0(~t) into a disjunctive list

P
i
C0
i (~ti). This is done by

universal abstraction of variables ~tj where i 6= j. Since we
have performed the universal abstraction of C0(t), we are
guaranteed to have

P
i
C0
i (~ti) � C0(~t).

The next step is to compute the preimage of each C0
i with

the exact transition relation. Since C0
i only depends on ~ti

and by de�nition, Tj depends on ~tj, and not on ~ti; i 6= j,
we can distribute existential abstraction while computing the
preimage of each C0

i . We keep the resulting set C1
i (~s) in the

form of conjunctive list. When we apply this lower bound
preimage computation to �xed point computation, we uni-
versally abstract the variables sj where j 6= i from the res-
ulting set C1

i (~s) which is now in the form of conjunctive list.
Notice that, since the universal abstraction distributes over
conjunction, we never compute the entire transition relation.

We now consider the �xed point computation using the upper
and lower bound preimage computation described in pre-
vious section. We refer to the set of states that satis�es
a given formula as the satisfying set. If we use the upper
bound preimage computation to conservatively check ACTL
formulas, we obtain a lower bound of the exact satisfying set.
Similarly, if we use the lower bound preimage computation to
model check ACTL formulas, the resulting approximate sat-
isfying set will be a superset of the exact satisfying set. The
ensuing re�nement step may be viewed as tightening the up-
per/lower bounds of the satisfying set. We will assume that
the partitioned transition relation has been previously com-
puted. Algorithm approx mc upper of Figure 3 veri�es a

procedure approx mc upper(T 1 ; � � � ; Tm; I(~s); p(~t))f
1 T opt = 1; J = f1; � � � ;mg; Iv(~s) = I(~s)
2 while(: (Mem out) ^ : (Time out))
3 foreach (j 2 J) f
4 T cur = T opt

� T j

5 F j(~s) = eval(T cur ; p);
6 if((:F j(~s) \ Iv(~s)) = ;) return(TRUE)
7 Iv(~s) = Iv(~s) \ :F j(~s);
8 k� = smallestfj(:F j(~s) \ I(~s))jg

g

9 J = J � fk�g; T opt = T opt
� T k

�

10 I(~s) = Iv(~s)
g

g

Figure 3: Algorithm to prove a true positive of an ACTL
formula using upper bound approximation.

true positive of a given ACTL formula using the upper bound
approximation. The �rst step is to evaluate the formula with
every single subsystem in a given order. The eval() pro-
cedure in line 5 is identical to the evaluation procedure of
conventional model checking algorithms. The resulting set
F j(~s) is a lower bound of the exact satisfying set. For each
F j(~s), we check whether the formula evaluates to TRUE (line
6). Notice that the algorithm uses a monotonically decreas-
ing subset Iv for these checks. Each time we compute F j(~s),
we reduce the cardinality of the current Iv(~s) by intersecting
it with F j(~s) as shown in line 7. The algorithm succeeds if it
occurs that Iv(~s) is contained in the lower bound of the exact
satisfying set. In this case, the algorithm exits and returns
TRUE. When the algorithm fails to prove true positive with
a single subsystem, we update the best subsystem that pro-
duces the smallest j:F j(~s) \ I(~s)j and proceed by re�ning
the transition relation. For each re�nement we check again
whether the formula evaluates to TRUE. The algorithm it-
erates this process until it runs out of memory or runs over
certain time bound.

If this upper bound algorithm fails to prove the true positive,
we abandon this strategy and try to prove the true negative
using the lower bound algorithm of Figure 4. Unlike the up-
per bound algorithm, we �rst decompose the constraint set
p(~t) into a disjunctive list of

P
j
pj(tj) as shown in line 4

(as discussed above). If there exists any initial state that
is not contained in the upper bound of the exact satisfying
set, we know that the original ACTL formula is false (lines
9,10). In this lower bound algorithm we have shown the ad-
ditional re�nement step which is similar to the "Machine by
Machine" method applied to forward reachability analysis
in [4]. By FANOUT (Tj) we denote those subsystems whose
transition relation depends on the present state variable sj.
By FANIN(Tj) we denote those subsystems whose present
state variable is a member of the support of Tj . Every time
we encounter a smaller satisfying set F j, we re-schedule the
subsystems that are fanouts of Tj . These systems are evalu-
ated once again with the smaller care states, FFANIN(T j)

which is the conjunction of satisfying sets of components

j 2 FANIN(T). The loop from line 6 to 14 is repeated
until there is no new scheduled subsystem.

procedure approx mc lower(T 1; � � � ; Tm; I(~s); p(~t))f
/* F = satisfying set I = initial states */

1 T opt = 1; J = f1; � � � ;mg;
2 foreach(j 2 J) f

3 schedulej = 1; F j

old
= 1;

4 qj = support(Tj)� fsj ; tjg; pj(tj) = 8qjp(~t);
g

5 while(: (Mem out) ^ : (Time out))
6 while (9i (schedulei = 1)) f
7 foreach (j 2 J) f
8 T cur = T opt

� T j ;
9 F j(sj) = eval lowerbound(T; T cur ; pj(tj);

qj ; FFANIN(T j));
10 if ((:F j

\ I) 6= ;) return(FALSE)

11 if (F j
� F

j

old
) g

12 foreach (z 2 FANOUT(T j)) f
schedulez = 1 g g

13 schedulej = 0; F j

old
= F j

14 k� = smallestfjF j
jg g g

15 J = J � fk�g; T opt = T opt
� T k�

g

g

Figure 4: Algorithm to prove a true negative of an ACTL
formula using lower bound approximation.

4 Creating Approximations on demand

In this section we describe the approach in which the in-
troduction of an approximation is delayed until there is a
constraint in the model checking procedure. We recall from
Section 2 the computation of the preimage of a restricting set
C(t). The technique presented in this section detects when
intermediate preimage BDDs become too large. In this case
the intermediate result is approximated.

The relational product is computation by the following iter-
ation. Let us assume we have n sub-relations, and that the
order of quanti�cation is given. Let the initial restricting
set be C(t), and qi represent the set of variables that are
quanti�ed in the ith iterate.

PreImage0(C(t)) = C(t)

PreImagei+1(C(t)) = 9qi (Ti(s; t) � PreImagei(C(t)))

PreImage(C(t)) = PreImagen(C(t))

Suppose that both C(t) and PreImage(C(t)) may have a
compact representation in terms of BDDs. The problem with
the above approach is that even in this favorable case, the
intermediate results produced by PreImagei(C(t)) may re-
quire excessive memory. When this occurs, certain variables
in the support of the intermediate set have yet to be quan-
ti�ed. In order to reduce the size of the representation, our
algorithm will explore in advance the sets qi+1 through qn. It
then pre-quanti�es (ahead of schedule) these variables one by
one, until the size of the representation has been reduced by

a certain factor. Universal quanti�cation will be employed
if an lower bound approximation is required, else existential
quanti�cation is used.

0

25000

50000

75000

100000

125000

150000

175000

200000

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

Exact
Limit 50000 nodes

Figure 5: Bdd size during �x point computation.

Figure 5 shows the size of the intermediate results during
a �xed point computation with the ISCAS'89 circuit s1423.
The vertical divisions in the horizontal axis mark the end
of every preimage computation. In the case of the exact
method, the veri�cation of this formula required 13 preimage
computation, at the end, the formula was proved true but the
memory requirements reached 175000 BDD nodes. The ap-
proximate result instead remains below the 50000 limit and
still obtains the exact result. The approximation of tempor-
ary results also creates the need for more iterations until the
�xed point is reached, in this particular case, this number is
16, but since the operands have a more compact representa-
tion, the execution time was 3120 CPU seconds for the exact
case and 408 seconds for the approximate case (the machine
con�guration is explained in Section 5).

5 Experimental Results

Experiments were run on a Pentium Pro(200MHz) system
with 256K internal L2 cache and 128M of main memory.
Our approximation based model checker was built on top
of VIS release version 1.1 [2], which was used to perform
the corresponding exact computations where possible. Our
experimental results are given in Table 1.

Figure 6 (a) shows how the upper bound on the reachable
states of the bdlc circuit changes as we re�ne the approx-
imate system. This circuit has 2:85 � 1045 reachable states.
After initial partitioning, each subsystem contains about ten
latches. An upper bound approximation obtained with a sub-
set of just six subsystems gives a fairly tight upper bound
of just 4:05 � 1045 states. Figure 6 (b), for the CTL formula
AX(t0 = 1) (here t0 is an arbitrary next state variable) shows
how the upper and lower bounds of the satisfying set changes
as we re�ne the approximation of the bdlc transition relation.
Note the discontinuity as the number of subsystems passes
from seven to eight. As we perform the seventh re�nement,
the cardinality of the satisfying set obtained by upper bound

approximation jumps to 1:37 10 from 0. After a re�nement
with the next subsystem, we observed another small leap of
two order of magnitude. Such discontinuities are typical, and
re
ect sensitivity of the system to granular approximation.

In our benchmark set, latch counts ranged from 40 to 597.
Circuit s15850, one of the ISCAS'89 benchmark circuits, has
14 primary inputs, and 87 primary outputs. For the �rst ex-
periment on this circuit, we formulated an arbitrary ACTL
formula AG(p) where p is an arbitrary set of states, whose
characteristic function depends on about 40% of the next
state variables. The result is given in the �rst row of the
s15850 subtable. The lower bound algorithm proved the true
negative with a single subsystem, which contained 10 latches.
The second experiment (second row of subtable) was similar
to the �rst, but the support of p was decreased to about 20%
of the next state variables. The third experiment is identical
to the �rst, except that the formula is changed to AF (p).
The last experiment with this circuit veri�ed the formula
AG(TRUE). As indicated by these results, for circuits like
s15850, it is easy to �nd formulas which the exact method
fails but the approximate method succeeds. We found some
situations in which both exact and approximate methods
proved the given formula, like the second case presented in
Table 1, where a lower bound was used. However, in all
cases, our approximate method was signi�cantly faster and
required signi�cantly less memory. We did not �nd any case
in which the exact method succeeded while our approximate
method failed.

0 5 10 15 20
10

45

10
46

10
47

10
48

10
49

10
50

10
51

(a)BLDC Reachability Analysis
R

ea
ch

ab
le

 S
ta

te
s

number of subsystems

Exact Bound

Upper Bound Approximation

0 5 10 15 20
10

51

10
52

Lower Bound Approximation

(b)BDLC AX(p)

S
at

is
fy

in
g

 S
ta

te
s

number of subsystems

Upper Bound Approximation

Exact Bound

Figure 6: Evolution of upper and lower bounds

Next we present the experiments with the bdlc circuit. The
formula we used for the �rst example is AG(p) where p is an
arbitrary set of states with all next state variables in its sup-
port. The exact method exceeded the time bound. However,
the lower bound algorithm proved the true negative with
seven subsystems. The approximation obtained with these
seven subsystems contains 64 latches.

The formula for the second example is AF (I(s)). Notice
that in this case, with a single subsystem, the upper bound
algorithm came to within a factor of 30 of the exact satisfying

Partition Formula Time Max BDD Size j Satisfying States j
FFs Subsystems Exact Approx Exact Approx Exact Approx Exact Approx

s15850 597 60 ? F at 1 >18000 599 >8430 1 ? 0

F F at 1 1349 247 1703 1 0 0

? T at 1 >18000 103 >10092 717 ? 3.59e179

? T at 1 >18000 48 ? 1 ? 5.18e179

bdlc 172 18 ? F at 7 >18000 719 >91578 16 ? 5.74e51

T T at 1 32 2 51 22 8.56e46 2.85e45

T T at 1 4047 2 106763 1 5.98e51 5.98e51

s1423 74 8 T T at 1 170 1 3617 3 1.63e22 1.41e22

abp 40 10 T T at 4 1 2 21 6 69480 69120

F F at 9 1 6 54 49 1158 29268

Table 1: Tearing results

set. The third example is again AG(TRUE), and this time
a single subsystem comes to within 1%.

The next circuit we used is the ISCAS'89 benchmark circuit
s1423. Although it has only 74 latches, this circuit is not
traversable and it is known to be a "di�cult" circuit. The
formula we used is AF ((G726=0 + G729=1)). Again this
experiment shows how closely the upper bound to the satis-
fying set approximates the exact satisfying set when just a
single subsystem (around 9 latches) is used.

The last circuit contains 40 latches. It is a generic arbiter
controller included in the VIS distribution. Comparison
with the exact computation was made with two complex
ACTL formulas. With only four subsystems, the approx-
imate method came very close to the exact satisfying set,
and proved the formula TRUE. For the second formula, nine
subsystems were needed to prove the formula FALSE with
the lower bound algorithm.

6 Conclusions

We have presented a tearing paradigm for conservative model
checking of ECTL and ACTL formulae. We addressed the
problem of false negative (or false positive) resolution for
model checking on a selection of medium to large examples,
which were impossible for traditional exact methods. Al-
though we were successful, we desire to focus future e�ort
on still larger examples and more realistic CTL formulae.

We also presented some promising but preliminary results
on a separate paradigm, which we called \Approximation on
Demand". These techniques aim to avoid the memory re-
quirements in the relational product computation, and they
provide a �ner control on the bounds produced by the ap-
proximation in the system.

We presented a theory of a lattice of approximations, which
arises in variable tearing and block tearing. Our resolution
methods are based on determining a locally-optimal shortest
path from a given, possibly coarse but tractable approxima-
tion to a nearest point on the contour separating one set of
the bipartition from the other.

Experimental results showed that in many cases, the exact
method could not verify the given formula while the approx-
imate method succeeded with a relatively economical approx-
imation, based on a small number of subsystems.

Acknowledgments: We acknowledge help from Rajeev
Ranjan, Tom Shiple, Gitanjali Swamy, and Robert Brayton.

References

[1] F. Balarin and A. L. Sangiovanni-Vincentelli. An iterative

approach to language containment. In C. Courcoubetis, editor,

Fifth Conference on Computer Aided Veri�cation (CAV '93).

Springer-Verlag, Berlin, 1993. LNCS 697.

[2] R. K. Brayton et al. VIS: A system for veri�cation and syn-

thesis. In T. Henzinger and R. Alur, editors,Eigth Conference

on Computer Aided Veri�cation (CAV'96), pages 428{432.

Springer-Verlag, Rutgers University, 1996. LNCS 1102.

[3] J. R. Burch. Using BDDs to verify multipliers. In Proceedings

of the Design Automation Conference, pages 408{412, San

Francisco, CA, June 1991.

[4] H. Cho and F. Somenzi. Sequential logic optimization based

on state space decomposition. In Proceedings of the European

Conference on Design Automation, pages 200{204, Paris,

France, February 1993.

[5] P. Kelb, D. Dams, and R. Gerth. Practical symbolic model

checking of the full �-calculus using compositional abstrac-

tions. Technical Report 95-31, Department of Computing Sci-

ence, Eindhoven University of Technology, 1995.

[6] D. E. Long, A. Browne, E. M. Clarke, S. Jha, andW. Marrero.

An improved algorithm for the evaluation of �xpoint expres-

sions. In D. L. Dill, editor, Sixth Conference on Computer

Aided Veri�cation (CAV'94), pages 338{350. Springer-Verlag,

Berlin, 1994. LNCS 818.

[7] K. L. McMillan. Symbolic Model Checking. Kluwer Academic

Publishers, Boston, MA, 1994.

[8] R. Milner. An algebraic de�nition of simulation between pro-

grams. Proc. 2nd Int. Joint Conf. on Arti�cial Intelligence,

pages 481{489, 1971.

	CDROM Home Page
	1996 Home Page
	ICCAD 96
	Front Matter
	Table of Contents
	Session Index
	Author Index

